![]() Method for manufacturing a PTC element
专利摘要:
A PTC element with reduced thickness is manufactured are lower cost by forming an electrode layer on a surface of a flat-plate-shaped PTC material, such that it extends over the upper and lower surfaces and at least one of the side surfaces thereof, and forming an upper surface electrode and a lower surface electrode so that the terminals thereof are positioned on one of the surfaces of the PTC material, by partially removing the electrode layer 11 to segment it into a region where the electrode layer 11 is present on either of the upper or lower surfaces of the PTC material 1 and a region where it extends over the upper and lower surfaces as well as a side surface. 公开号:US20010008167A1 申请号:US09/749,565 申请日:2000-12-28 公开日:2001-07-19 发明作者:Kazutaka Furuta;Norikazu Iwasaki 申请人:Sony Chemicals Corp; IPC主号:H01C17-28
专利说明:
[0001] 1. Field of the Invention [0001] [0002] The present invention relates to a method for manufacturing PTC elements suited for surface mounting. [0002] [0003] 2. Description of the Related Art [0003] [0004] PTC (Positive Temperature Coefficient) elements are known as protective elements for controlling the current which flows through circuits to be protected since their resistance value increases as they give off heat in overcurrent conditions. [0004] [0005] PTC elements essentially possess a structure in which the upper and lower surfaces of a flat-plate-shaped PTC material are sandwiched by electrodes; however, in order for these elements to be used in surface mounting, the terminals of the upper and lower electrode need to be together on one surface. [0005] [0006] A conventional method for manufacturing such surface mount-type PTC elements involves, as depicted in FIGS. 4A to [0006] 4E, sandwiching a PTC material 1 between an upper electrode foil 2 a and a lower electrode foil 2 b (FIG. 4A), forming through-holes 3, establishing connection between the upper electrode foil 2 a and the lower electrode foil 2 b by filling the through-holes 3 with a plating layer 4 (FIG. 4B), patterning the electrode foils 2 a, 2 b of the upper and lower surfaces as well as the plating layer 4 (FIG. 4C), applying an insulating material 5 to the assembly except those portions which are to serve as the electrode terminals on the plating layer 4 (FIG. 4D), then cutting the assembly along cutting lines L which pass through the through-holes 3 (FIG. 4E). [0007] This allows an electrode terminal [0007] 6 a of the upper electrode foil 2 a and an electrode terminal 6b of the lower electrode foil 2 b to be formed on the bottom surface of the PTC material 1, an electrode terminal 6 a′ of the upper electrode foil 2a and an electrode terminal 6 b′ of the lower electrode foil 2 b to be formed on the upper surface of the PTC material 1, and thereby a PTC element 10X to be obtained, on which surface mounting can be performed at the upper or lower surfaces of the PTC material 1 (FIG. 4E). [0008] However, the steps for manufacturing the PTC element [0008] 10X as shown in FIGS. 4A to 4E are complex, and the manufacture costs high. Moreover, the PTC element 10X is not moulded, which results in poor moisture resistance as well as the risk of ignition when the PTC element gives off more heat than normal. [0009] In response to these defects, proposed is the injection mould method of manufacture, as shown in FIG. 5, in which a surface mount-type PTC element [0009] 10Y is manufactured by sandwiching the upper and lower surfaces of the PTC material 1 between the electrode foils 2a, 2b, forming leads 7, 8 to allow the electrode terminals 6a, 6b of the electrode foils to be accessible on one surface of the PTC material 1, and moulding the whole assembly with a moulding material 9 so as to leave only the electrode terminals 6a, 6b exposed. [0010] However, even in the procedure for manufacturing of the PTC element [0010] 10Y , once the PTC material 1 has been sandwiched between the electrode foils 2a, 2b, the leads 7, 8 need to be laminated thereon, which necessitates a costly increase in the number of manufacturing steps and components. A further problem is that the thickness of the element will increase. For example, if the thickness of the PTC material t1 is 0.4 mm, the thickness t2 of each electrode foil 2a, 2b 0.05 mm, the thickness t3 of each lead 7, 8 0.2 mm and the thicknesses t4a, t4b of the mould material 9 on the upper and lower surfaces 0.3 and 0.6 mm respectively, the thickness of the whole PTC element assembly t0 will be 1.8 mm. SUMMARY OF THE INVENTION [0011] In an attempt to resolve the aforedescribed problems with the prior art, it is an object of the present invention to reduce the thickness of surface mount-type PTC elements and enable them to be manufactured at lower cost. [0011] [0012] The present inventors perfected the present invention as a result of discovering that surface mount-type PTC elements of reduced thickness can be obtained using a streamlined manufacturing process that is economically advantageous, by forming an electrode layer using an electrode foil or the like so as to wrap a flat-plate-shaped PTC material, partially removing the electrode layer to form upper and lower electrodes, then having the electrode terminals thereof be formed on either the upper or lower surface of the PTC material. [0012] [0013] In other words, the present invention provides a method for manufacturing a PTC element, comprising the steps of: [0013] [0014] forming an electrode layer on a surface of a flat-plate-shaped PTC material, such that it extends over the upper and lower surfaces and at least one side surface thereof; and [0014] [0015] removing a portion of the electrode layer to segment it into a region where it is present on either of the upper or lower surfaces of the PTC material and a region where it extends over the upper and lower surfaces as well as a side surface, to form an upper surface electrode and a lower surface electrode of which the terminals are positioned on one of the surfaces of the PTC material. [0015] BRIEF DESCRIPTION OF THE DRAWINGS [0016] FIGS. 1A to [0016] 1C are diagrams depicting processes for manufacturing a PTC element according to an embodiment; [0017] FIG. 2 is a cross sectional view of a PTC element pertaining to a different embodiment; [0017] [0018] FIGS. 3A to [0018] 3D are diagrams depicting processes for manufacturing a PTC element pertaining to a different embodiment; [0019] FIGS. 4A to [0019] 4E are diagrams which depicts a method for manufacturing a conventional surface mount-type PTC element; and [0020] FIG. 5 is a cross sectional view of a surface mount-type PTC element manufactured using an injection moulding method. [0020] DESCRIPTION OF THE PREFERRED EMBODIMENTS [0021] The present invention shall be described in further detail with reference to the drawings. The same symbols refer to the same or similar structural elements throughout the drawings. [0021] [0022] Figs. 1A to [0022] 1C are process diagrams of a manufacturing method of a first embodiment of the present invention. According to this manufacturing method, as shown in Fig. 1A, first, an electrode layer 11 is formed by pressing an electrode foil onto a flat-plate-shaped PTC material 1 so that it extends over the upper and lower surfaces 1a, 1b and at least one side surface 1c of the PTC material 1. [0023] Next, the electrode layer [0023] 11 is partially removed by means of a diamond cutter or the like along a break line 12, in order to segment it into a region where the electrode layer 11 is present on the lower surface 1b of the PTC material 1 and a region where it extends over the upper surface la, the side surface 1c and the lower surface 1b of the PTC material 1 (Fig. 1B). The upper surface electrode 13 and the lower surface electrode 14 are thereby formed from the electrode layer 11, resulting in a PTC element 10A. In this PTC element 10A, one end 13a of the upper electrode 13 extends over the lower surface 1b of the PTC material 1; therefore, the need to laminate a separate lead etc. is obviated due to the fact that the terminal of the upper electrode 13 and the terminal of the lower electrode 14 are formed on one of the surfaces of the PTC material 1. The positioning of the electrodes thus allows the terminals of the upper electrode 13 and the lower electrode 14 to be formed on the lower surface 1b of the PTC material 1. According to this method for manufacturing a PTC element, therefore, the thickness of the element can be reduced and a surface mount-type PTC element readily obtained. [0024] It is preferable for the so-obtained PTC element [0024] 10A to be moulded, in consideration enhancing its moisture resistance and preventing ignition when unusual amounts of heat are given off. In particular, e.g., a moulded PTC element 10B can be obtained by applying a mould material 9 thereon, while leaving the terminals of the upper electrode 13 and the lower electrode 14 exposed (FIG. 1C). [0025] There is no particular limitation on the configuration of applying the mould material [0025] 9 to the PTC element 10A, provided that the terminals of the upper electrode 13 and the lower electrode 14 are accessible. For example, as shown by the PTC element 10C depicted in FIG. 2, the entire surface of the element aside from the terminal portions 13a, 14a of the upper surface electrode 13 and the lower surface electrode 14 may be covered by the mould material 9. [0026] FIG. 3A to [0026] 3D are process diagrams of a modified example of a method of manufacture pertaining to the present invention. According to this method, the entirety of the upper and lower surfaces 1a, 1b as well as the two sides 1c, 1d of the flat-plate-shaped PTC material 1 are covered by an electrode layer 11 which has been electroplated thereon (FIG. 3A). [0027] Next, the electrode layer [0027] 11 is partially removed by means of a diamond cutter or the like along break lines 12, so as to segment it into a region where the electrode layer 11 is present on the lower surface 1b of the PTC material 1 and a region where it extends across the upper surface 1a, the side surfaces 1c, 1d and the lower surface 1b of the PTC material 1, resulting in a PTC element 10D which has an upper electrode 13 and a lower electrode 14 (FIG. 3B). Bisecting this PTC element 10D at the centre of the electrode surface along the straight line L perpendicularly to the electrode surface will yield a PTC element 10AA which has the same structure as the PTC element shown in FIG. 1 (FIG. 3C), and which can be moulded using the moulding material 9 (FIG. 3D). [0028] There are no particular limitations as regards the PTC material [0028] 1 itself as pertains to the aforedescribed method for manufacturing a PTC element; so-called polymer PTCs, in which conductive fine particles have been dispersed in a crystalline polymer (e.g., a polyolefin-based resin), barium titanate-based PTCs, cristobalite-based PTCs (Japanese Patent Application Laid-Open No. 10-261505) and the like can all be used. [0029] Glass or another inorganic insulating material, or various epoxy-, acrylic- or polyester-based flame-resistant organic resins can be used as the moulding material [0029] 9. Printing and coating are cited as examples of methods for moulding PTC elements using such inorganic insulating materials or organic resins. EXAMPLES [0030] The present invention shall now be described in detail according to the following embodiment. [0030] [0031] The PTC element [0031] 10B as depicted in FIG. 1C was manufactured in the following manner, in accordance with the manufacturing procedure depicted in FIGS 1A to 1C. High-density polyethylene (HDPE; Hizex 5000H, manufactured by Mitsui Petrochemical Industries, Ltd.), which is a crystalline polymer, ethylene-ethylacrylate copolymer (EEA; NVC6170, manufactured by Nippon Unika) and microspherical conductive carbon particles which had been subjected to a silver plating treatment (MSB-10A, manufactured by Nippon Carbon) were compounded in a weight ratio of 44:22:34 and the mixture were kneaded at 190° C. using a pressure kneader, and pressed in a hot press (190° C., 5 kg/cm2, 20 sec) to yield a 400 μm thick film. This film was cut to a size of 2.5 mm×4 mm to yield a PTC material 1. [0032] A 35 μm-thick electrolytic copper foil was affixed onto the upper surface la, the side surface [0032] 1c and the lower surface 1b of this PTC material 1 as an electrode layer 11, using a hot press. A diamond cutter was then used to cut the copper foil on the lower surface 1b of the PTC material 1 along a 0.5 mm-wide cutting line 12, in the vicinity of the border between the lower surface 1b and the side surface 1c. [0033] A flame-resistant resin (ELM-1000, manufactured by Nippon Pernox), was applied as a moulding material [0033] 9 to the entirety of the element, excepting the terminal portion of the upper surface electrode 13 and the terminal portion of the lower surface electrode 14 to yield a PTC element 10B. [0034] The PTC element [0034] 10B thus obtained was 0.8 mm thick, which was roughly ½as thick as the PTC element 10Y shown in FIG. 5. [0035] According to the present invention, surface mount-type PTC elements can be manufactured thinner in an economically advantageous manner. [0035] [0036] The disclosure of the specification, claims and drawings of Japanese Patent Application No. 2000-10212 filed on Jan. 14, 2000 are hereby incorporated by reference. [0036]
权利要求:
Claims (3) [1" id="US-20010008167-A1-CLM-00001] 1. A method for manufacturing a PTC element, comprising the steps of: forming an electrode layer on a surface of a flat-plate-shaped PTC material, such that it extends over the upper and lower surfaces and at least one side surface thereof; and removing a portion of the electrode layer to segment it into a region where it is present on either of the upper or lower surfaces of the PTC material and a region where it extends over the upper and lower surfaces as well as a side surface, to form an upper surface electrode and a lower surface electrode of which the terminals are positioned on one of the surfaces of the PTC material. [2" id="US-20010008167-A1-CLM-00002] 2. The method for manufacturing a PTC element according to claim 1 , wherein said electrode layer is formed by affixing an electrode foil to the PTC material. [3" id="US-20010008167-A1-CLM-00003] 3. The method for manufacturing a PTC element according to claims 1 or 2, further comprising a moulding step which is carried out after said electrode layer has been partially removed, to allow the terminal of the upper surface electrode and the terminal of the lower surface electrode to be exposed.
类似技术:
公开号 | 公开日 | 专利标题 US6020808A|2000-02-01|Multilayer conductive polymer positive temperature coefficent device JP3020843B2|2000-03-15|Manufacturing method of circuit protection device US6172591B1|2001-01-09|Multilayer conductive polymer device and method of manufacturing same US9035740B2|2015-05-19|Circuit protective device and method for manufacturing the same KR20050071330A|2005-07-07|Over-current protective device and manufacturing method thereof US5907272A|1999-05-25|Surface mountable electrical device comprising a PTC element and a fusible link US6429533B1|2002-08-06|Conductive polymer device and method of manufacturing same US5884391A|1999-03-23|Process for manufacturing an electrical device comprising a PTC element WO2004061885A1|2004-07-22|Protection element US5900800A|1999-05-04|Surface mountable electrical device comprising a PTC element US5699607A|1997-12-23|Process for manufacturing an electrical device comprising a PTC element US6656304B2|2003-12-02|Method for manufacturing a PTC element US7026583B2|2006-04-11|Surface mountable PTC device US6348852B1|2002-02-19|Chip PTC thermistor and method of manufacturing the same US20030117258A1|2003-06-26|Thin film chip resistor and method for fabricating the same WO2011079549A1|2011-07-07|Surface-mount type over-current protection element WO2021088386A1|2021-05-14|Thin film fuse and manufacturing method WO1997028543A1|1997-08-07|Surface mountable electrical device comprising a ptc element JP3134067B2|2001-02-13|Low resistance chip resistor and method of manufacturing the same JP3012875B2|2000-02-28|Manufacturing method of chip resistor JP3567144B2|2004-09-22|Chip type resistor and method of manufacturing the same JPH10189306A|1998-07-21|Chip resistor JP3444240B2|2003-09-08|Manufacturing method of chip type PTC thermistor WO2010081312A1|2010-07-22|Laminated surface mounting type thermistor and manufacturing method thereof US6963476B2|2005-11-08|Method for manufacturing resettable fuses and the resettable fuse
同族专利:
公开号 | 公开日 JP3628222B2|2005-03-09| US6656304B2|2003-12-02| JP2001196202A|2001-07-19|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 WO2002063739A1|2001-02-06|2002-08-15|Sony Chemicals Corp.|Protection circuit-equipped secondary battery|JPS60158602A|1984-01-27|1985-08-20|Fuji Electric Co Ltd|Voltage nonlinear resistor| US5852397A|1992-07-09|1998-12-22|Raychem Corporation|Electrical devices| US5488348A|1993-03-09|1996-01-30|Murata Manufacturing Co., Ltd.|PTC thermistor| JPH06275408A|1993-03-24|1994-09-30|Murata Mfg Co Ltd|Ptc thermistor| US6023403A|1996-05-03|2000-02-08|Littlefuse, Inc.|Surface mountable electrical device comprising a PTC and fusible element| JPH09219302A|1996-02-13|1997-08-19|Daito Tsushinki Kk|Ptc element| JPH1012404A|1996-06-26|1998-01-16|Matsushita Electric Ind Co Ltd|Lamination type ptc thermistor and its manufacture| JP3340643B2|1997-03-21|2002-11-05|日本碍子株式会社|Composite PTC material| JPH10289806A|1997-04-16|1998-10-27|Daito Tsushinki Kk|Ptc element| US6020808A|1997-09-03|2000-02-01|Bourns Multifuse Ltd.|Multilayer conductive polymer positive temperature coefficent device| US6242997B1|1998-03-05|2001-06-05|Bourns, Inc.|Conductive polymer device and method of manufacturing same| JP2000082603A|1998-07-08|2000-03-21|Murata Mfg Co Ltd|Chip-type thermistor and its manufacture| JP3402226B2|1998-11-19|2003-05-06|株式会社村田製作所|Manufacturing method of chip thermistor| JP3736602B2|1999-04-01|2006-01-18|株式会社村田製作所|Chip type thermistor|USRE44224E1|2005-12-27|2013-05-21|Polytronics Technology Corp.|Surface-mounted over-current protection device| US8044763B2|2005-12-27|2011-10-25|Polytronics Technology Corp.|Surface-mounted over-current protection device| US8313871B2|2006-11-22|2012-11-20|GM Global Technology Operations LLC|Fuel cell heating| KR100922471B1|2007-09-27|2009-10-21|삼성에스디아이 주식회사|Protection Circuit Module of Secondary Battery and Secondary Battery using the same| WO2010053158A1|2008-11-07|2010-05-14|タイコエレクトロニクスジャパン合同会社|Ptc device| US8531263B2|2009-11-24|2013-09-10|Littelfuse, Inc.|Circuit protection device|
法律状态:
2000-12-28| AS| Assignment|Owner name: SONY CHEMICALS CORP., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FURUTA, KAZUTAKA;IWASAKI, NORIKAZU;REEL/FRAME:011421/0590 Effective date: 20001213 | 2003-11-13| STCF| Information on status: patent grant|Free format text: PATENTED CASE | 2007-05-14| FPAY| Fee payment|Year of fee payment: 4 | 2011-05-04| FPAY| Fee payment|Year of fee payment: 8 | 2015-05-20| FPAY| Fee payment|Year of fee payment: 12 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 JP2000010212A|JP3628222B2|2000-01-14|2000-01-14|Manufacturing method of PTC element| JP2000-010212||2000-01-14|| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|