![]() Electronic memory circuit and related manufacturing method
专利摘要:
An electronic memory circuit comprises a matrix of EEPROM memory cells. Each memory cell includes a MOS floating gate transistor and a selection transistor. The matrix includes a plurality of rows and columns, with each row being provided with a word line and each column comprising a bit line organized in line groups so as to group the matrix cells in bytes, each of which has an associated control gate line. A pair of cells have a common source region, and each cell symmetrically provided with respect to this common source region has a common control gate region. 公开号:US20010007536A1 申请号:US09/779,956 申请日:2001-02-09 公开日:2001-07-12 发明作者:Federico Pio 申请人:STMicroelectronics SRL; IPC主号:H01L27-11521
专利说明:
[0001] The present invention relates to circuits, and, more particularly, to an electronic memory circuit. [0001] BACKGROUND OF THE INVENTION [0002] As known, EEPROM memories, while being a nonvolatile type of memory, allow electrical modification of the information contained therein in either a write or an erase step. It is also known that each EEPROM cell comprises a floating gate transistor and a selection transistor. Once the selection transistor is enabled, it is possible to alter the state of the associated floating gate transistor, by exploiting a passage of electrons for tunnel effect through a thin layer of silicon oxide, the so-called tunnel oxide. Such a thin layer is provided below a portion of the floating gate region of the floating gate transistor, in which the charge is stored. [0002] [0003] During the write and erase steps of the cells, positive voltages are usually applied to the diffusion below the tunnel region or to the control gate. Such voltages are between 8 and 18 Volts in order to generate a sufficiently high electrical field at the opposite ends of the thin oxide to activate the tunnel effect efficiently. [0003] [0004] According to the prior art as shown in FIGS. [0004] 1-5, the matrix includes a structure 1′ comprising a plurality of rows 3′ and a plurality of columns 4′. Rows 3′ comprise Word Lines WL′1, WL′m. Columns 4′ instead comprise Bit Lines BL′ of the matrix and the Control Gate Lines CG′. Preferably, the Bit Lines BL′ are grouped in bytes, i.e. in groups of eight bits, BL′0. BL′7. In particular, each byte has an associated line CG′. [0005] At the crossing of a word line WL′ and of a bit line BL′, a selection transistor [0005] 5′ is provided. Further on, a bit line BL′ connects together all the drain terminals of the selection transistors 5′ common to a given column 4′ of the matrix. Every selection transistor 5′ is associated and connected in series to a MOS floating gate transistor 2 a′. [0006] In more detail as shown in FIG. 3, the EEPROM memory cell [0006] 2′ comprises a MOS transistor 2 a′ with a floating gate region 6′ wherein the charge is stored that allows the two different states of the cell to be distinguish: i.e. “written” or “erased”. A control gate region 7′, is capacitively coupled to the floating gate region 6′ through an intermediate, interpoly dielectric layer. Through such dielectric layer, voltage is transferred to the floating gate region 6′ from the control gate region 7′, during the write and/or erase steps of the cell 2′. The control terminal of the control gate region 7′ is common to all the cells 2′ forming a same byte in the structure 1′. The erasing of a byte is accomplished by addressing the word line WL′i corresponding to the desired i-th line and the control gate line CG′j corresponding to the selected byte. [0007] The prior art process for making these memory cells on a P-type silicon substrate, with the control gate region self-aligned with the floating gate region, includes: the formation of active areas; the implantation of doped regions of N+ type; the formation of oxides of different thickness; the deposition and the following selective removal of a first layer of polysilicon for defining the floating gate regions in the direction of the Word Lines; the formation of an interpoly dielectric; the deposition and the following selective removal of a second layer of polysilicon for defining the control gate lines and the floating gate regions self-aligned to the control gate regions; and the implantation of the source and drain regions. [0007] [0008] In order to achieve good operation of the matrix the control gate line CGj of each byte is required to be electrically separated from the control gate line of the other bytes. During the formation of the floating gate regions, the first layer of polysilicon between the floating gate regions belonging to adjacent cells of the same byte is removed; this step defines the floating gate regions in the direction of the line. [0008] [0009] In order to minimize the area of each cell, it is desirable that the control gate lines of adjacent bytes be very close to each other. Therefore, during the above-described process step, the first layer of polysilicon is removed also by the source line portion common to two adjacent bytes. As previously described, after the above step is carried out, an intermediate oxide layer and then the second layer of polysilicon are formed, in order to make the control gate region. In order to make the final gate region of the floating gate transistor, a selective removal of the stack including the second layer of polysilicon, of the dielectric interpoly layer and of the first layer of polysilicon, is respectively carried out. This last removal is required in the process for making the final gate region and defines the length thereof. [0009] [0010] In the portion of the source region common to two bytes, wherein the first layer of polysilicon has been removed during the first step of definition of the floating gates, the second step of removal of the first layer of polysilicon for defining the final gate region is not selective enough for discriminating the first layer of polysilicon or the surface of the substrate of silicon in single-crystal form. Therefore, the surface of the source region has notches [0010] 30 as shown in FIG. 5. [0011] This surface arrangement of the common source region has various drawbacks. First of all, these notches may become receptacles for contaminating material, which would be hard to remove because of the small dimensions of the notches [0011] 30 themselves. Further, because of the differences in height present on the surface of the source region, the subsequent implantation of dopant provides non-uniform implanted region. This increases the resistance of the common source region. This drawback is particularly significant for the EEPROM parallel access memory matrices, because all the cells of the same byte will be read at the same time and thus the current in the common source region will reach relatively high values. This may lead to a read error on the single memory cell because of the resistance introduced by the presence of these notches. SUMMARY OF THE INVENTION [0012] An object of the present invention is to provide an electronic memory circuit wherein the control gate line is electrically common to pairs of cells belonging to the same byte. [0012] [0013] These and other advantages, features and objects in accordance with the present invention are provided by an electronic memory circuit comprising a matrix of EEPROM memory cells, each memory cell incorporating a MOS floating gate transistor and a selection transistor. The matrix includes a plurality of rows and columns, each row being provided with a word line and each column comprising a bit line organized in line groups so as to group the matrix cells in bytes, each of which has a associated control gate line. A pair of cells having a common source region, and each cell being arranged symmetrically with respect to the common source region, has a common control gate region. Advantageously, the common control gate region covers the common source region. [0013] BRIEF DESCRIPTION OF THE DRAWINGS [0014] The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein, wherein: [0014] [0015] FIG. 1 is a schematic view of a circuit structure made according to the prior art; [0015] [0016] FIG. 2 is an enlarged schematic view, from above, of a portion of a semiconductor wherein an EEPROM memory cell is included in the circuit structure according to the prior art; [0016] [0017] FIG. 3 is an enlarged cross-sectional schematic view, taken along the line III-III of FIG. 2 of a portion of a semiconductor, including an EEPROM memory cell according to the prior art; [0017] [0018] FIG. 4 is an enlarged cross-sectional schematic view, taken along the line IV-IV of FIG. 2 of a portion of a semiconductor, including an EEPROM memory cell according to the prior art; [0018] [0019] FIG. 5 is an enlarged cross-sectional schematic view, taken along the line V-V of FIG. 2 of a portion of a semiconductor, including an EEPROM memory cell according to the prior art; [0019] [0020] FIG. 6 is a schematic view of an electronic circuit made according to the present invention; [0020] [0021] FIG. 7 is an enlarged schematic view, from above, of a portion of a semiconductor wherein an EEPROM memory cell is included in the electronic circuit according to the present invention; [0021] [0022] FIG. 8 is an enlarged cross-sectional schematic view, taken along the line VIII-VIII of FIG. 7 of a portion of a semiconductor, including EEPROM cells according to the present invention; [0022] [0023] FIGS. [0023] 9 to 16 are cross-sectional views illustrating the process steps for making the EEPROM memory cells according to the present invention; [0024] FIG. 17 is an enlarged cross-sectional schematic view, taken along the line XVII-XVII of FIG. 7; [0024] [0025] FIG. 18 is an enlarged cross-sectional schematic view, taken along the line XVIII-XVIII of FIG. 7; [0025] [0026] FIG. 19 is a schematic view of a second embodiment of the circuit according to the invention; [0026] [0027] FIG. 20 is a schematic view of a third embodiment of the circuit according to the invention. [0027] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0028] With reference to the drawings, an electronic memory circuit [0028] 1 including a matrix of EEPROM memory cells 2 will now be described. The structure 1 is realized as a semiconductor integrated circuit, incorporating, for example, thousands of cells 2. In FIG. 6 only a portion of such circuit is indicated. The matrix according to the invention includes a plurality of rows 3, comprising the word lines WL1, WLm and a plurality of columns 4 comprising bit lines of the matrix. [0029] The columns [0029] 4 also comprise control gate lines CG. Groups of eight lines of bit, BL0, BL1 . . . BL7 are grouped in a byte 9 a. For each byte 9 a, a memory cell 2 is connected to each bit line Bli. Each EEPROM cell 2 comprises a MOS transistor 2 a connected in series to a selection transistor 5, as would readily be appreciated by those skilled in the art. In particular each selection transistor comprises a source region 6 a and a drain region 7 of N-type formed in a substrate 20 of P-type. [0030] As is typical, such region [0030] 7 also comprises a contact region 7 a realized with an implantation of N+ type dopant. A gate region 5 a, insulated from the substrate 20, by the oxide layer 13 is between the source region 6 a and the drain region 7. The gate region 5 a comprises two superimposed regions of polysilicon 5 b, 5 c realized respectively in a first and second layer of polysilicon 14, 17 by the interposition of the intermediate dielectric layer 16; the two regions 5 b, 5 c are then electrically short-circuited outside the cell. [0031] The floating gate transistor [0031] 2 a comprises a source region 6 and a drain region 8, coincident with the source region 6 a of the selection transistor 5. In each floating gate transistor 2 a, between the source region 6 and the drain region 8, the channel region is provided, onto which a floating gate region 11 is arranged, formed by the first layer of polysilicon 14 and insulated from the substrate by a layer of gate oxide 13 that has a thinner portion referenced as the tunnel oxide 10. [0032] The drain region [0032] 8 is realized in the substrate by an N-type dopant implantation. Corresponding to this drain region 8, an implanted N+ type region 9 is realized, that extends below the tunnel region 10. The source region 6 of the cell 2 is realized by an implantation of N-type dopant in the substrate 2. Advantageously, such region is common to pairs of cells 2 belonging to the same byte 9 a. Advantageously, the source region 6 and the implanted N+ type region 9 may be realized with a same implantation of dopant of N+ type. The source regions 6 of all cells 2 belonging to the same byte 9 a form an only line of source. The source lines are then connected to a common metallization line S. Advantageously, the source lines of each byte column 9 a are in contact with a respective source line Si (FIG. 19). [0033] A control gate region [0033] 12 is coupled capacitively to the floating gate region 11 by an intermediate layer of dielectric material, the interpoly, and is realized with the second layer 17 of polysilicon. According to the invention, for each pair of cells, the control gate region 12 is physically and electrically connected and completely covers the common source region 6. The control gate line CG is connected by an enabling transistor T to the control gate regions 12 of the pairs of cells. This enabling switch T is realized by a MOS transistor, as would be appreciated by the skilled artisan. As shown in FIG. 6, pairs of cells belonging to the same byte 9 a are addressed by two adjacent word lines WLm, WLm+1. [0034] Another embodiment of the invention is shown in FIG. 20, wherein each byte [0034] 9 b comprises four lines of bits BL0/4 , BL1/5, BL2/6, BL3/7. For each byte 9, each bit line BLi is connected to two cells having the source region in common, such cells, as well, being addressed by two adjacent word lines WLm, WLm+1. Advantageously, such an embodiment is even more compact. [0035] More in particular, the process steps that lead to the realization of a matrix of cells according to the invention are described hereinbelow. The cells [0035] 2 of the matrix 1 are realized with MOS technology from a P-doped semiconductor substrate 20. The process for making the circuit according to the invention includes: the formation of active areas; the implantation of N+ and/or N doped regions 6, 9; and the formation of oxides 10, 16 of different thickness. [0036] According to the invention, a first layer [0036] 14 of polysilicon is deposited as shown in FIG. 9, and is selectively removed by a photolithographic process that uses a mask 15 to make the source region 6. The intermediate oxide layer 16 is then formed on the entire surface of the substrate 20 as shown in FIG. 10. A second layer 17 of polysilicon is deposited (FIG. 11) and then selectively removed in order to form the control gate 12 of the pairs of cells 2 that have the source region 6 in common and the gate region of the selection transistor. In this process step, the floating gate regions 11 of the floating gate transistors 2 a are also defined. [0037] The process concludes with the following conventional steps to attain: the implantation of the N-doped source and drain regions [0037] 7, 8 (FIG. 13); spacers 18 (FIG. 14); the N-channel and P-channel transistors of the circuitry associated to the structure 1; and intermediate dielectrics. Respective first and a second contacts 19, 21 are then opened, covered by a first layer 20 and a second layer 22 of metallization, respectively, thereby forming the bit lines BL. [0038] In FIGS. 17 and 18, a detailed illustration is made of the realization of these contacts in the drain region of the selection transistor and of the bit lines BL. Nothing prevents, however, the forming of such bit lines with the first metallic layer. [0038] [0039] As shown in FIG. 6, the structure is of particularly reduced dimensions. It is worth noting that in the prior art (FIG. 1), an enabling transistor T′ of the Control Gate line CG′ is provided for each word line WL′i. In virtue of the symmetry of the matrix both in X- and Y-direction, in the semiconductor portion A of FIG. 1, four enabling transistors T′ are provided. [0039] [0040] Conversely, in the embodiment according to the present invention, only one enabling transistor for every two WL lines is required. The circuit according to the invention may be therefore rendered compact, occupying a smaller area than the area of a conventional cell, in particular along the X direction, should the same technology be used. The circuit according to the invention, realized according to the above described process substantially resolves the technical problem and achieves several advantages, which are highlighted below. [0040] [0041] The provision of only one control gate region avoids holes on the substrate surface wherein the source region of the EEPROM memory cells is realized. Furthermore, the structural architecture of the memory cell according to the invention saves a step in the decoding process of the memory. [0041] [0042] Of course many modifications and variations may be carried out on the herein described and illustrated memory cells, all falling within the scope of the invention, as defined in the following claims. [0042]
权利要求:
Claims (7) [1" id="US-20010007536-A1-CLM-00001] 1. Electronic memory circuit comprising a matrix of EEPROM memory cells, each incorporating: a MOS floating gate transistor (2 a) and a selection transistor (5), the matrix of the type comprising a plurality of rows (3) and columns (4), each row (3) being provided with a word line (WL) and each column (4) comprising a bit line (BL) organized in line groups so as to group said matrix cells in bytes (9 a), each of which has a control gate line (CG) associated, characterized in that a pair of cells (2) having a common source region (6), each cell (2) being arranged symmetrically with respect to said common source region (6), has a common control gate region (12). [2" id="US-20010007536-A1-CLM-00002] 2. Electronic circuit according to claim 1 , characterized in that the pairs of cells (2), having the source region (6) in common, belong to the same byte (9 a). [3" id="US-20010007536-A1-CLM-00003] 3. Electronic circuit according to claim 2 , characterized in that the common control gate regions (12) of the pairs of cells belonging to the same byte are connected to the same control gate line (CG). [4" id="US-20010007536-A1-CLM-00004] 4. Electronic circuit according to claim 3 , characterized in that an enabling transistor (T) addresses the common control gate line. [5" id="US-20010007536-A1-CLM-00005] 5. Electronic circuit according to claim 4 , characterized in that said enabling transistor (T) is a MOS transistor. [6" id="US-20010007536-A1-CLM-00006] 6. Electronic circuit according to claim 1 , characterized in that the common control gate region (12) covers the common source region (6). [7" id="US-20010007536-A1-CLM-00007] 7. Process for manufacturing an electronic memory circuit, comprising a matrix of EEPROM memory cells. comprising the steps of: formation of active areas; implantation of strongly doped regions (9); formation of layers (10, 13) of oxide of different thickness; implantation of a common source region (6); selective deposition of a first layer (14) of polysilicon; selective removal of said first layer from the common source region (6); deposition of an intermediate dielectric layer; deposition of a second layer (17) of polysilicon; realization of only one control gate region (12) for pairs of cells having the source region (6) in common.
类似技术:
公开号 | 公开日 | 专利标题 US7601590B2|2009-10-13|Electronic memory circuit and related manufacturing method US6788573B2|2004-09-07|Non-volatile semiconductor memory and method of operating the same EP0555039B1|1998-09-23|Alternate source virtual ground flash EPROM cell array US5399891A|1995-03-21|Floating gate or flash EPROM transistor array having contactless source and drain diffusions US6114724A|2000-09-05|Nonvolatile semiconductor memory cell with select gate US5402372A|1995-03-28|High density EEPROM cell array with improved access time and method of manufacture US5677867A|1997-10-14|Memory with isolatable expandable bit lines JP3150362B2|2001-03-26|EPROM virtual ground array US7120063B1|2006-10-10|Flash memory cell and methods for programming and erasing US5986931A|1999-11-16|Low voltage single CMOS electrically erasable read-only memory US4783766A|1988-11-08|Block electrically erasable EEPROM EP0623959A2|1994-11-09|EEPROM cell US6130838A|2000-10-10|Structure nonvolatile semiconductor memory cell array and method for fabricating same US6498739B2|2002-12-24|Applications for non-volatile memory cells US5303187A|1994-04-12|Non-volatile semiconductor memory cell US7045853B2|2006-05-16|Semiconductor memory element, semiconductor device and control method thereof US6031771A|2000-02-29|Memory redundancy circuit using single polysilicon floating gate transistors as redundancy elements US6215700B1|2001-04-10|PMOS avalanche programmed floating gate memory cell structure US6696723B2|2004-02-24|Electrically erasable, programmable, non-volatile memory device compatible with a CMOS/SOI production process EP0946988B1|2006-02-22|Memory redundancy circuit using single polysilicon floating gate transistors as redundancy elements US7217964B1|2007-05-15|Method and apparatus for coupling to a source line in a memory device US5982671A|1999-11-09|Flash memory cell array and method of programming, erasing and reading the same US6459615B1|2002-10-01|Non-volatile memory cell array with shared erase device US20210104279A1|2021-04-08|Single-gate multiple-time programming non-volatile memory array and operating method thereof US5394357A|1995-02-28|Non-volatile semiconductor memory device
同族专利:
公开号 | 公开日 ITMI981769D0|1998-07-30| US7601590B2|2009-10-13| US6215688B1|2001-04-10| IT1301880B1|2000-07-07| US20050122778A1|2005-06-09| ITMI981769A1|2000-01-30| US6852596B2|2005-02-08|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 FR2834583A1|2002-01-04|2003-07-11|Samsung Electronics Co Ltd|Nonvolatile memory device, e.g. electrically erasable programmable read-only memory device, includes channel region between base patterns, and source and drain regions separated from the channel region by the base patterns| US20060262600A1|2002-05-10|2006-11-23|Riichiro Shirota|Non-Volatile semiconductor memory device|US4380057A|1980-10-27|1983-04-12|International Business Machines Corporation|Electrically alterable double dense memory| US4379343A|1980-11-28|1983-04-05|Hughes Aircraft Company|Electrically erasable programmable read-only memory cell having a shared diffusion| JPS61256673A|1985-05-08|1986-11-14|Fujitsu Ltd|Semiconductor device| US5066992A|1989-06-23|1991-11-19|Atmel Corporation|Programmable and erasable MOS memory device| US5471423A|1993-05-17|1995-11-28|Nippon Steel Corporation|Non-volatile semiconductor memory device| DE69305986T2|1993-07-29|1997-03-06|Sgs Thomson Microelectronics|Circuit structure for memory matrix and corresponding manufacturing processes| JPH08316438A|1995-05-15|1996-11-29|Toshiba Corp|Nonvolatile semiconductor storage device| US5646886A|1995-05-24|1997-07-08|National Semiconductor Corporation|Flash memory having segmented array for improved operation| JP2838993B2|1995-11-29|1998-12-16|日本電気株式会社|Nonvolatile semiconductor memory device| US5981340A|1997-09-29|1999-11-09|Motorola, Inc.|Method of building an EPROM cell without drain disturb and reduced select gate resistance| US5986934A|1997-11-24|1999-11-16|Winbond Electronics Corp.I|Semiconductor memory array with buried drain lines and methods therefor| IT1301880B1|1998-07-30|2000-07-07|St Microelectronics Srl|ELECTRONIC MEMORY CIRCUIT AND CORRESPONDING MANUFACTURING METHOD| EP0996161A1|1998-10-20|2000-04-26|STMicroelectronics S.r.l.|EEPROM with common control gate and common source for two cells| US5982669A|1998-11-04|1999-11-09|National Semiconductor Corporation|EPROM and flash memory cells with source-side injection|IT1301880B1|1998-07-30|2000-07-07|St Microelectronics Srl|ELECTRONIC MEMORY CIRCUIT AND CORRESPONDING MANUFACTURING METHOD| US6313500B1|1999-01-12|2001-11-06|Agere Systems Guardian Corp.|Split gate memory cell| KR100355662B1|2001-08-25|2002-10-11|최웅림|Semiconductor Non-volatile Memory/Array and Method of Operating the same| KR100670504B1|2005-09-14|2007-01-16|매그나칩 반도체 유한회사|Nonvolatile memory device and method for manufacturing the same| US8320191B2|2007-08-30|2012-11-27|Infineon Technologies Ag|Memory cell arrangement, method for controlling a memory cell, memory array and electronic device| US20090114951A1|2007-11-07|2009-05-07|Atmel Corporation|Memory device| US8890230B2|2012-07-15|2014-11-18|United Microelectronics Corp.|Semiconductor device| CN103579362B|2012-07-30|2018-03-27|联华电子股份有限公司|Semiconductor device and preparation method thereof|
法律状态:
2008-07-29| FPAY| Fee payment|Year of fee payment: 4 | 2012-07-11| FPAY| Fee payment|Year of fee payment: 8 | 2016-09-16| REMI| Maintenance fee reminder mailed| 2017-02-08| LAPS| Lapse for failure to pay maintenance fees| 2017-03-06| STCH| Information on status: patent discontinuation|Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 | 2017-03-28| FP| Expired due to failure to pay maintenance fee|Effective date: 20170208 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 ITMI98001769||1998-07-30|| IT98MI001769|IT1301880B1|1998-07-30|1998-07-30|ELECTRONIC MEMORY CIRCUIT AND CORRESPONDING MANUFACTURING METHOD| US09/364,766|US6215688B1|1998-07-30|1999-07-30|Electronic memory circuit and related manufacturing method| US09/779,956|US6852596B2|1998-07-30|2001-02-09|Electronic memory circuit and related manufacturing method|US09/779,956| US6852596B2|1998-07-30|2001-02-09|Electronic memory circuit and related manufacturing method| US11/033,776| US7601590B2|1998-07-30|2005-01-12|Electronic memory circuit and related manufacturing method| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|