专利摘要:
A pre-cast concrete form for cast-in-place beams and columns and a method of forming the same. The form includes a form body having a channel through a length thereof and a shear bonding key along the length, the channel being adapted to receive cast-in-place concrete therein to form a beam or column. The shear bonding key is integrally formed in the body and has a grooved portion and a ribbed portion for bonding the cast-in-place concrete to the form body. The form body may further include a reinforcing stirrup tie cast therein and extending into the channel, adapted to secure the form body to an opposed form body. The form body may include a plurality of shear bonding keys and reinforcing stirrup ties spaced apart along the length thereof. The method includes the steps of positioning a pre-cast concrete form having a channel extending therethrough, pouring the cast-in-place concrete into the channel of the form, and bonding the concrete to the form with a shear bonding key integrally formed along the channel of the form. This method may further include the step of securing opposed forms together with a reinforcing stirrup tie extending from the forms into the cast-in-place concrete.
公开号:US20010003234A1
申请号:US09/536,666
申请日:2000-03-27
公开日:2001-06-14
发明作者:David Van Doren
申请人:Van Doren David A.;
IPC主号:E04C3-34
专利说明:
[0001] This application is a continuation of application Ser. No. 09/107,642 filed Jun. 30, 1998, which claims the benefit of the prior filed provisional application, Ser. No. 60/051,195, filed Jun. 30, 1997. [0001] FIELD OF THE INVENTION
[0002] This invention relates to a building system including a concrete precast form used as leave-in-place formwork for constructing cast-in-place concrete columns and beams for mid-rise and high-rise buildings located in both non-seismic and severe seismic areas. [0002] BACKGROUND OF THE INVENTION
[0003] Conventionally, cast-in-place (or poured-in-place) concrete beams and columns are poured in wooden forms. After the beams and columns sufficiently cure, the wooden forms are removed and discarded, creating a large amount of wasted lumber. Furthermore, such wooden forms require extensive bracing and shoring. This method is also very time consuming, labor intensive and requires a large amount of on-site cast-in-place concrete. [0003]
[0004] Prior precast concrete leave-in-place forms have been inefficient due to the lack of shear transfer between the precast concrete of the leave-in-place form and the poured concrete therein. Without the complete composite bond and shear transfer between the precast concrete form and the cast-in-place concrete therein, the combination is inefficient and uses excessive amounts of concrete and steel reinforcing. [0004] SUMMARY OF THE INVENTION
[0005] Accordingly, a primary object of the subject invention is to provide a building system including an elongated U-shaped precast concrete leave-in-place form having shear keys spaced apart along the length of the form that provide sufficient shear transfer between the precast concrete of the form and cast-in-place concrete poured therein resulting in a truly composite structure. [0005]
[0006] Another object of the subject invention is to provide a building system including a precast concrete form which eliminates extensive forming, shoring and waste. [0006]
[0007] Still another object of the subject invention is to provide a building system including a precast concrete form that reduces the amount of cast-in-place concrete that is required. [0007]
[0008] Yet another object of the subject invention is to provide a building system including a precast concrete form that decreases construction time and is less labor intensive. [0008]
[0009] A further object of the subject invention is to provide a building system including a precast concrete form that produces a high quality precise building frame and is aesthetically pleasing during construction. [0009]
[0010] Still further object of the subject invention is to provide a building system employing precast waffle panels as flooring which provide the composite structural floor which is intimately married to the concrete beam and column structure during pouring of the cast-in-place concrete of this hybrid system. [0010]
[0011] Yet a further object of the subject invention is to provide a building system employing precast column forms that present half-column shells having reinforcing stirrup ties cast therein which extend outwardly from each form so that when two forms are joined together into a shell, the stirrup ties of each form overlap and interlock with the cast-in-place concrete to form a unified column. [0011]
[0012] Yet a further object of the subject invention is to provide a building system having columns to which the only added reinforcing required is that used to tie one column level to the next through the beam/floor section. [0012]
[0013] These objects are attained by providing a concrete form including a form body having a channel through a length thereof and a shear bonding key along the length, the channel being adapted to receive cast-in-place concrete therein to form a beam or column. The shear bonding key is integrally formed in the body and has a grooved portion and a ribbed portion for bonding the cast-in-place concrete to the form body. The form body may further include a reinforcing stirrup tie cast therein and extending into the channel, adapted to secure the form body to an opposed form body. The form body may include a plurality of shear bonding keys and reinforcing stirrup ties spaced apart along the length thereof. [0013]
[0014] Additionally, these objects may be attained by providing a method of forming a concrete cast-in-place beam or column, including the steps of positioning a pre-cast concrete form having a channel extending therethrough, pouring the cast-in-place concrete into the channel of the form, and bonding the concrete to the form with a shear bonding key integrally formed along the channel of the form. This method may further include the step of securing opposed forms together with a reinforcing stirrup tie extending from the forms into the cast-in-place concrete. [0014]
[0015] Other objects and advantages of this invention will become apparent from the following description taken in connection with the accompanying drawings, wherein is set forth by way of illustration and example, an embodiment of this invention. [0015] BRIEF DESCRIPTION OF THE DRAWINGS
[0016] FIG. 1 is a perspective view of a building frame constructed using the building system which is the subject of this invention. [0016]
[0017] FIG. 2 is a perspective view of a precast spandrel beam form of the subject building system. [0017]
[0018] FIG. 3 is a perspective view of a precast interior beam form of the subject building system. [0018]
[0019] FIG. 4 is a sectional view of a shear key of a beam form of the subject building system. [0019]
[0020] FIG. 5 is a partial perspective view of a precast concrete column form of the subject building system. [0020]
[0021] FIG. 6 is a partial perspective view of a joint between two precast interior beam forms and a precast column form. [0021]
[0022] FIG. 7 is a partial perspective view of the joint of FIG. 6 showing floor paneling installed therewith. [0022]
[0023] FIG. 8 is a partial perspective view of the joint of FIG. 7 now having reinforcing bar and dowels within the beam and column forms. [0023]
[0024] FIG. 9 is a partial perspective view of the joint of FIG. 8 showing the cast-in-place concrete beams and columns of the subject building system. [0024]
[0025] FIG. 10 is partial perspective view of the joint of FIG. 9 showing an additional cast-in-place column. [0025]
[0026] FIG. 11 is a partial perspective view of a joint between a column form and a precast spandrel beam form. [0026]
[0027] FIG. 12 is a partial perspective view of the joint of FIG. 11 but with an additional spandrel beam form. [0027]
[0028] FIG. 13 is a sectional view of a cast-in-place concrete beam mounted between two cast-in-place columns and floor paneling. [0028]
[0029] FIG. 14 is a sectional view of a cast-in-place column. [0029]
[0030] FIG. 15 is a sectional view of a cast-in-place interior beam mounted on a cast-in-place column and showing the clamp and brace support used therewith in the subject building system. [0030]
[0031] FIG. 16 is a perspective view of the clamp used with the cast-in-place columns. [0031]
[0032] FIG. 17 is a sectional view of a cast-in-place spandrel beam mounted on a cast-in-place column and showing the clamp and brace support used therewith in the subject building system. [0032]
[0033] FIG. 18 is an underside perspective view of a waffle panel floor of the type shown in perspective from above in FIGS. [0033] 7-10. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0034] A building frame [0034] 10, as in FIG. 1, is constructed of precast forms 12 and cast-in-place concrete in accordance with the present invention. Preferably, the flooring is comprised of concrete waffle panels 14 as disclosed in my U.S. Pat. No. 4,181,286.
[0035] Precast forms [0035] 12 are preferably used for the construction of mid-rise and high-rise buildings located in both non-seismic and severe seismic areas. The forms 12 in combination with cast-in-place concrete 16 form a building system that can be designed as a Special Moment-Resisting Frame (SMRF) system or a dual system (combination SMRF and shear wall system) for buildings located in severe seismic regions. A dual system is recommended for any mid to high-rise location with potential seismic activity or high wind load. In such systems, a Waffle-Crete® cast-in-place or precast shear wall system is used to provide at least 50% of the lateral load resistance and a ductile moment frame is designed to resist the remaining lateral load. Typically, the shear walls are located at the perimeter of stair and elevator cores. The system can also be designed as an ordinary Moment-Resisting Frame (OMRF) for structures in non-seismic locations.
[0036] Precast forms [0036] 12, as seen in FIGS. 2 and 3, are filled with cast-in-place concrete 16 to form a beam 20. See FIGS. 9, 10 and 13. Beams 20 can safely span a width of up to 40 feet and include exterior spandrel beams, see FIGS. 2 and 17, and interior beams, see FIGS. 3 and 9. Two opposed precast forms 12, as seen in FIG. 5, filled with cast-in-place concrete 16 form a column 22. See FIG. 14.
[0037] Precast forms [0037] 12 are elongated forms unitarily and integrally molded of concrete having a substantially U-shaped cross-section. Given their shape, each form 12 includes first and second spaced apart legs 30 and 32 extending parallel to one another and connected by bridging member 34 which extends between corresponding ends of legs 30 and 32 to present a channel 36 therebetween.
[0038] Each form [0038] 12 also includes a plurality of spaced apart shear keys 38 integrally formed on the interior surface thereof. Each key 38 preferably extends continuously from the free end of leg 30 along bridge member 34 and through second leg 32 to its free end. Shearing keys 38 are substantially Z-shaped and include a rib portion 40 that extends into the channel 36 and a groove portion 42 that extends into the form 12. See FIG. 4. Keys 38 are preferably spaced apart 151 on center.
[0039] The shear key design also provides support for the reinforced, bars used during the molding of forms [0039] 12 and later for supporting and holding the cast-in-place reinforcement bars the proper distance from the surfaces of the precast leave-in-place form 12.
[0040] Both column and beam forms [0040] 12 include reinforcing bar stirrup ties 50 molded integrally therein. See FIGS. 13 and 14. The free ends of stirrup ties 50 molded within column forms 12 extend from within legs 30 and 32 of column form 12 into channel 36. See FIG. 5. Stirrup ties 50 are spaced apart from each other and from shear keys 38. Preferably, one stirrup tie 50 is molded between each shear key 38 or as required by engineering design for stirrups. The Construction Process
[0041] The construction process begins with the production of the precast U-shaped forms [0041] 12. Shear keys 38 are integrally molded with forms 12 whether forms are to be used as beams 20 or columns 22. Reinforcing bar ties 50 are also molded integrally within forms 12. After an overnight curing period, forms 12 are demolded from plastic and aluminum molds.
[0042] Columns [0042] 22 include two forms 12 placed together to present a column shell with the free ends of one form's legs 30 and 32 contacting the free ends of the opposed form's legs 30 and 32, with the channels 36 presenting a hollow passage therethrough. See FIGS. 6-8, 11 and 14.
[0043] Forms [0043] 12 are then erected as beams 20 and columns 22 with minimal shoring and bracing. In this regard, see FIGS. 15-17 which show column clamp 60 used to secure opposed column forms 12 together as a column 22 and the brace 62 used to support the beams 20 and columns 22. More specifically, beam forms 12 can typically span twenty feet between temporary pipe column brace 62. Temporary steel angle clamp 60 is used at the top and bottom of each column 22 to provide diagonal bracing and lateral support to the system during cast-in-place concrete placement. Thus, very little concrete patching or rubbing is required.
[0044] When the precast forms [0044] 12 and waffle floor panels 14 are in place, braced and shimmed, reinforcement bars and dowels are positioned within forms 12. See FIGS. 7 and 8. The cast-in-place concrete 16 is then poured into forms 12 to create beams 20 and columns 22. See FIGS. 9 and 10. The precast forms 12 are designed to carry the weight of precast floor panels 14, associated forming dead loads during concrete placement and wet concrete.
[0045] The cast-in-place concrete [0045] 16 fills the groove portion 42 of each shear key 38, and the rib portion 40 of each shear key 38 extends into the cast-in-place concrete 16. In this way, the shear keys 38 sufficiently bond the form 12 to the cast-in-place concrete to create an integral, unitary structure, i.e., beam or column. Columns 22 additionally rely on the bonding action of stirrup ties 50 to sufficiently secure opposed forms 12 together for final hybrid column performance.
权利要求:
Claims (16)
[1" id="US-20010003234-A1-CLM-00001] 1. A concrete form, comprising:
a form body having a channel extending through a length thereof and a shear bonding member along said length,
said channel being adapted to receive cast-in-place concrete therein to form a beam or column,
said shear bonding member being integrally formed in said body and having a groove portion and a rib portion adapted to bond the cast-in-place concrete to said body form.
[2" id="US-20010003234-A1-CLM-00002] 2. A concrete form as claimed in
claim 1 wherein said form body is substantially U-shaped.
[3" id="US-20010003234-A1-CLM-00003] 3. A concrete form as claimed in
claim 1 wherein said form body further includes a tie member mounted to said body and extending into said channel, said tie member being adapted to secure said form body to another form body.
[4" id="US-20010003234-A1-CLM-00004] 4. A concrete form as claimed in
claim 3 wherein said form body includes a plurality of shear bonding members spaced apart along said length.
[5" id="US-20010003234-A1-CLM-00005] 5. A concrete form as claimed in
claim 4 wherein said form body includes a plurality of tie members.
[6" id="US-20010003234-A1-CLM-00006] 6. A concrete form as claimed in
claim 5 wherein said tie members are spaced apart from said shear bonding members.
[7" id="US-20010003234-A1-CLM-00007] 7. A building system, comprising:
a beam including cast-in-place concrete secured within a pre-cast concrete form; and
a column including cast-in-place concrete secured within opposed concrete forms;
each said form being substantially U-shaped to present a channel extending through a length thereof, and having a shear bonding member,
said bonding member being integrally pre-cast with said form, having a groove portion and a rib portion adapted to bond the cast-in-place concrete to said form body.
[8" id="US-20010003234-A1-CLM-00008] 8. A building system as claimed in
claim 7 wherein said opposed forms further each include a tie member mounted on each said form extending into said channel to secure said opposed forms together.
[9" id="US-20010003234-A1-CLM-00009] 9. A building system as claimed in
claim 7 wherein each said form includes a plurality of said bonding members spaced apart along said length thereof.
[10" id="US-20010003234-A1-CLM-00010] 10. A building system as claimed in
claim 8 wherein each said form includes a plurality of said bonding members spaced apart along said length thereof.
[11" id="US-20010003234-A1-CLM-00011] 11. A building system as claimed in
claim 10 wherein said opposed forms each include a plurality of said tie members spaced apart from said bonding members.
[12" id="US-20010003234-A1-CLM-00012] 12. A method of forming a concrete cast-in-place beam or column comprising the steps of:
positioning a pre-cast concrete form having a channel extending therethrough,
pouring cast-in-place concrete into the channel of the form,
bonding the concrete to the form with a shear bonding member integrally formed along the channel of the form, a portion of the bonding member extending into the poured concrete and another portion of the bonding member receiving the concrete therein.
[13" id="US-20010003234-A1-CLM-00013] 13. The method as claimed in
claim 12 wherein said positioning step includes positioning pre-cast concrete forms adjacent one another in an opposed relationship, and said pouring step includes pouring cast-in-place concrete into the channels of the opposed forms.
[14" id="US-20010003234-A1-CLM-00014] 14. The method as claimed in
claim 12 and further including the step of securing the opposed forms together with a tie member extending from the forms into the cast-in-place concrete.
[15" id="US-20010003234-A1-CLM-00015] 15. The method as claimed in
claim 12 wherein said bonding step includes bonding'the concrete to the form with a plurality of shear bonding members spaced apart along the channel of the form.
[16" id="US-20010003234-A1-CLM-00016] 16. The method as claimed in
claim 14 wherein said bonding step includes bonding the concrete to the forms with a plurality of shear bonding members spaced apart along the channel of each form, and said securing step includes securing the forms together with a plurality of tie members spaced apart from the shear bonding members.
类似技术:
公开号 | 公开日 | 专利标题
US6293063B2|2001-09-25|Cast-in-place hybrid building system
AU2015246120B2|2016-10-13|Open web composite shear connector construction
US4454702A|1984-06-19|Building construction and method of constructing same
US5860262A|1999-01-19|Permanent panelized mold apparatus and method for casting monolithic concrete structures in situ
US4147009A|1979-04-03|Precast panel building construction
US4604841A|1986-08-12|Continuous, precast, prestressed concrete bridge deck panel forms, precast parapets, and method of construction
US20040118080A1|2004-06-24|Reinforced concrete building system
CA2440765C|2007-08-28|Composite structural framing system
EP0418216B1|1992-12-09|Frame-work for structural walls in multy-storey buildings
KR100343960B1|2002-07-19|Steel concrete structure
KR100712354B1|2007-05-02|PC Integrating Construction Method of an Underground Parking Lot and PC Column-Beam Joint System for Long Span PC Beam therein
WO2007131115A1|2007-11-15|Composite structural framing system and method of erection
US8827235B1|2014-09-09|Concrete form for building foundation construction with form insert creating recessed sections
JP3752999B2|2006-03-08|Upper and lower integrated bridge and its construction method
KR100775359B1|2007-11-09|Concrete-mold assembly and construction method using the same
JP2010281040A|2010-12-16|Steel concrete composite floor slab, panel for constructing the steel concrete composite floor slab, and construction method for steel concrete composite floor slab
JP2959325B2|1999-10-06|Construction method of steel frame reinforced concrete structure
JP2620118B2|1997-06-11|Net formwork method for walls and floors
US20090064615A1|2009-03-12|Building Element and a Building Structure Comprising the Building Element
US1099953A|1914-06-16|Fireproof-building construction.
JPH11166294A|1999-06-22|Steel frame-contained concrete beam and floor construction method using the concrete beam
RU2184816C1|2002-07-10|Built-up-monolithic reinforced-concrete frame of many-storied building "kazan-100"
KR200166886Y1|2000-02-15|Steel concrete structure
JP2697532B2|1998-01-14|How to build an architectural frame
JPH0742721B2|1995-05-10|Reinforced concrete column / beam construction method using precast beam members
同族专利:
公开号 | 公开日
US6293063B2|2001-09-25|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US6625943B1|2001-02-27|2003-09-30|Peter S. Renner|Building interior construction system and method|
US20050115164A1|2002-04-18|2005-06-02|Han Bong K.|Construction method for src structured high rise building|
US20070113505A1|2005-11-18|2007-05-24|Polyform A.G.P. Inc.|Stackable construction panel intersection assembly|
US20080302057A1|2005-07-28|2008-12-11|Michael Muller|Method for Producing a Wall-Ceiling Reinforced Concrete Construction|
US20090301011A1|2006-05-30|2009-12-10|Johann Kollegger|Reinforced concrete ceiling and process for the manufacture thereof|
US20110271636A1|2010-05-05|2011-11-10|Kurek Nathan A|Form, system and method for forming concrete diaphragms|
US20130074430A1|2011-03-29|2013-03-28|George Morcous|Shallow Flat Soffit Precast Concrete Floor System|
US20140041328A1|2012-08-07|2014-02-13|John Siegfried Stehle|Joints Between Precast Concrete Elements|
CN104032892A|2014-05-30|2014-09-10|同济大学|Regenerated concrete segmented beam and construction method thereof|
CN104110131A|2014-04-09|2014-10-22|苏州亿都建材科技有限公司|Hollow concrete shuttering of constructional wall column|
US9074369B1|2015-03-20|2015-07-07|Naji M. A. M. Al-Failakawi|Metal reinforced concrete beam and metal reinforced buildings incorporating such beams|
US20160122996A1|2013-05-08|2016-05-05|Kt-India, Llc|Method and system for rapid construction of structurally reinforced concrete structures using prefabricated assemblies and method of making the same|
US9371648B1|2015-09-02|2016-06-21|Nikolay P. Tikhovskiy|Concrete building structure and method for modular construction of same|
USD809156S1|2013-04-25|2018-01-30|Kwikspace Guam|Modular building with bulkheads|
USD818148S1|2017-01-30|2018-05-15|Kwikspace Guam|Modular building with pillars|
USD818147S1|2017-01-30|2018-05-15|Kwikspace Guam|Modular building with pillars|
USD818607S1|2017-01-30|2018-05-22|Kwikspace Guam|Modular building with pillars|
USD818608S1|2017-01-30|2018-05-22|Kwikspace Guam|Modular building with pillars|
USD818609S1|2017-01-30|2018-05-22|Kwikspace Guam|Modular building with pillars|
US10094101B1|2017-12-29|2018-10-09|Mohammad Omar A. Jazzar|Precast concrete system with rapid assembly formwork|
US10138630B1|2017-08-02|2018-11-27|Nandy Sarda|Concrete shearwall and assemblies thereof, and related methods|
US20190048575A1|2017-08-14|2019-02-14|Yau Lee Wah Concrete Precast ProductsCompany Limited|Building frame structure having edge beam and construction method thereof|
US10260224B1|2017-12-29|2019-04-16|Mohammad Omar A. Jazzar|Simplified precast concrete system with rapid assembly formwork|
US20190127966A1|2017-11-01|2019-05-02|Marlon Howard Stewart|Permanent forms for composite construction columns and beams and method of building construction|
US20190203458A1|2017-12-29|2019-07-04|Gerry Rutledge|Structural frame for a building and method of constructing the same|
US20200232202A1|2017-09-12|2020-07-23|Iavilaer Proprietary Limited|Building construction method|
US11065782B2|2013-02-21|2021-07-20|Laing O'rourke Australia Pty Limited|Method for casting a construction element|US1470835A|1920-02-04|1923-10-16|Harlow H Hathaway|Article for producing keys in cementwork|
GB266762A|1925-02-12|1927-04-19|John William Thompson|Improvements in concrete building constructions|
FR633832A|1927-05-03|1928-02-04|Brev De Construction S A Et|Further training in the manufacture of reinforced concrete floors|
US1964816A|1931-02-24|1934-07-03|Graydon John Alpin|Building block|
GB379204A|1932-01-11|1932-08-25|Walter Pook|Improvements relating to brickwork constructions|
US2116946A|1937-07-09|1938-05-10|Charles M Huntington|Pre-cast building unit or slab and method of assembling same|
US2143616A|1937-12-17|1939-01-10|George G Adler|Column|
US2372042A|1941-10-24|1945-03-20|Ralph D Yankee|Concrete construction|
FR982407A|1943-06-16|1951-06-11||Method of construction of arches, lintels, joists and the like|
FR1341426A|1962-12-28|1963-10-25||prefabricated formwork elements|
US3792830A|1970-04-22|1974-02-19|Mesa Ind Inc|Concrete beam forms|
US4081935A|1976-07-26|1978-04-04|Johns-Manville Corporation|Building structure utilizing precast concrete elements|
US4181286A|1977-03-28|1980-01-01|Doren David A Van|Reinforced plastic mold for concrete panels|
FR2560256A1|1984-02-29|1985-08-30|Haironville Forges|Mixed floor made of concrete and steel.|
DE3728358A1|1987-08-25|1989-03-09|Mauer Blitz Bau Service Gmbh|Floor element for laying-type floors|
US4879855A|1988-04-20|1989-11-14|Berrenberg John L|Attachment and reinforcement member for molded construction forms|
US5728312A|1994-05-20|1998-03-17|Waffle-Crete International, Inc.|Mold for forming precast conctete panels|
US5809712A|1996-06-06|1998-09-22|Simanjuntak; Johan Hasiholan|System for joining precast concrete columns and slabs|US7043879B2|2002-02-11|2006-05-16|Ei-Land Corporation|Force-resisting devices and methods for structures|
US8127502B2|2002-08-06|2012-03-06|EI-Land Corp.|Building structure configured to exhibit a prescribed load-deflection relationship when a force is applied thereto|
US8082703B2|2002-02-11|2011-12-27|Ei-Land Corporation|Force-resisting devices and methods for structures|
US6920728B2|2002-09-25|2005-07-26|James M. Powers|Column and beam construction and method|
US7555800B2|2005-01-19|2009-07-07|Consolidated Systems, Inc.|Composite deck system|
US8578537B2|2005-12-30|2013-11-12|Matthew Ley|Partially prefabricated structural concrete beam|
US7637076B2|2006-03-10|2009-12-29|Vaughn Willaim B|Moment-resistant building column insert system and method|
US8468775B2|2006-03-10|2013-06-25|Willaim B. Vaughn|Moment resistant building column insert system and method|
WO2007134518A1|2006-05-18|2007-11-29|Xinfu Chen|Structure system of concrete buliding for self-heat insulation|
US7934347B2|2006-07-28|2011-05-03|Paul Brienen|Coupling beam and method of use in building construction|
CA2694101C|2007-06-22|2015-03-24|Diversakore Llc|Framing structure|
KR101157147B1|2008-09-22|2012-06-22|경희대학교 산학협력단|Composite concrete column and construction method using the same|
EP2236686A1|2009-04-03|2010-10-06|F.J. Aschwanden AG|Reinforcing element for absorbing forces in concrete slabs in the area of supporting elements|
JP5594987B2|2009-06-24|2014-09-24|三菱重工業株式会社|Method for manufacturing concrete mount, concrete mount, and connecting material|
WO2015131334A1|2014-03-04|2015-09-11|东莞市石西智能机器制造有限公司|Building structure and construction method for same|
AU2017301103B2|2016-07-26|2019-07-11|Ario Yousefi Darestani|Pre-cast concrete formwork, wall system and method of construction|
TWI634255B|2017-09-11|2018-09-01|潤弘精密工程事業股份有限公司|Method for forming a plurality of beams connected in series|
TWI662172B|2017-10-20|2019-06-11|Ruentex Engineering & Construction Co., Ltd.|Construction method for a building|
法律状态:
2005-03-24| FPAY| Fee payment|Year of fee payment: 4 |
2009-03-25| FPAY| Fee payment|Year of fee payment: 8 |
2013-05-03| REMI| Maintenance fee reminder mailed|
2013-09-25| LAPS| Lapse for failure to pay maintenance fees|
2013-10-21| STCH| Information on status: patent discontinuation|Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
2013-11-12| FP| Expired due to failure to pay maintenance fee|Effective date: 20130925 |
优先权:
申请号 | 申请日 | 专利标题
US5119597P| true| 1997-06-30|1997-06-30||
US10764298A| true| 1998-06-30|1998-06-30||
US09/536,666|US6293063B2|1997-06-30|2000-03-27|Cast-in-place hybrid building system|US09/536,666| US6293063B2|1997-06-30|2000-03-27|Cast-in-place hybrid building system|
[返回顶部]