专利摘要:
A catheter system for inserting a first guidewire in a primary vessel and a second guidewire in a branch vessel, comprising: a dual lumen catheter having a first guidewire slidably received within a first lumen; and a side sheath received within a second lumen; and a second guidewire slidably received within a lumen of the side sheath. A method of aligning a side opening in a primary stent in registry with the ostium of a branch vessel, comprising: advancing a first guidewire through a primary vessel such that a distal end of a guidewire extends past an intersection of the primary vessel and the branch vessel; advancing the primary stent over the first guidewire with a dual lumen catheter, the dual lumen catheter having a side sheath received through a second lumen, and a first guidewire received through a first lumen; advancing the side sheath through the second lumen of the dual lumen catheter such that a distal end of the side sheath is positioned at the intersection of the primary vessel and the branch vessel; and advancing a second guidewire through the side sheath and out through the side opening in the primary stent and into the branch vessel, thereby aligning the side opening in the primary stent with the ostium of the branch vessel.
公开号:US20010003161A1
申请号:US09/741,761
申请日:2000-12-18
公开日:2001-06-07
发明作者:Gil Vardi;Charles Davidson;Eric Williams
申请人:Vardi Gil M.;Davidson Charles J.;Eric Williams;
IPC主号:A61M25-0116
专利说明:
[0001] The present invention is related to U.S. patent application Ser. Nos. 08/744,022, filed Nov. 4, 1996, now abandoned; 09/007,265, filed Jan. 14, 1998; 08/935,383, filed Sep. 23, 1997; and 60/088,301, filed Jun. 5, 1998; and PCT Patent Application No. PCT/US99/00835, filed Jan. 14, 1999; the disclosures of which are incorporated herein by reference in their entirety for all purposes. [0001] TECHNICAL FIELD
[0002] The present invention relates to catheter systems for delivering stents. [0002] BACKGROUND OF THE INVENTION
[0003] A type of endoprosthesis device, commonly referred to as a stent, may be placed or implanted within a vein, artery or other tubular body organ for treating occlusions, stenoses, or aneurysms of a vessel by reinforcing the wall of the vessel or by expanding the vessel. Stents have been used to treat dissections in blood vessel walls caused by balloon angioplasty of the coronary arteries as well as peripheral arteries and to improve angioplasty results by preventing elastic recoil and remodeling of the vessel wall. Two randomized multicenter trials have recently shown a lower restenosis rate in stent treated coronary arteries compared with balloon angioplasty alone (Serruys, P W et al. New England Journal of Medicine 331: 489-495, 1994, Fischman, D L et al. New England Journal of Medicine 331:496-501, 1994). Stents have been successfully implanted in the urinary tract, the bile duct, the esophagus and the tracheo-bronchial tree to reinforce those body organs, as well as implanted into the neurovascular, peripheral vascular, coronary, cardiac, and renal systems, among others. The term “stent” as used in this Application is a device which is intraluminally implanted within bodily vessels to reinforce collapsing, dissected, partially occluded, weakened, diseased or abnormally dilated or small segments of a vessel wall. [0003]
[0004] One of the drawbacks of conventional stents is that they are generally produced in a straight tubular configuration. The use of such stents to treat diseased vessels at or near a bifurcation (branch point) of a vessel may create a risk of compromising the degree of patency of the primary vessel and/or its branches, or the bifurcation point and also limits the ability to insert a branch stent into the side branch if the result of treatment of the primary, or main, vessel is suboptimal. Suboptimal results may occur as a result of several mechanisms, such as displacing diseased tissue, plaque shifting, vessel spasm, dissection with or without intimal flaps, thrombosis, and embolism. [0004]
[0005] As described in related copending U.S. patent application Nos. 08/744,022, filed Nov. 4, 1996, now abandoned; 09/007,265, filed Jan. 14, 1998; 08/935,383, filed Sep. 23, 1997; and 60/088,301, filed Jun. 5, 1998; and PCT Patent Application WO 99/00835, filed Jan. 14, 1998; systems have been developed for deploying a primary stent in a primary vessel at the intersection of a primary vessel and a branch vessel with a branch stent extending into a branch vessel through a side opening in the primary stent. Unfortunately, several difficulties exist when attempting to position such an arrangement of a primary and branch stents at a vessel intersection. [0005]
[0006] For example, the insertion of separate guidewires into both the primary vessel and the secondary vessel is required before positioning a primary stent in a primary vessel with a branch stent projecting through a side opening in the primary stent into a branch vessel. Primary and branch stents are then advanced over the separate guidewires which have been pre-guided one after another into the respective primary and branch vessels, such that the primary stent can be deployed within the primary vessel and the branch stent can be deployed through the side opening in the primary stent into the branch vessel. Unfortunately, when attempting to guide two such separate guidewires through the primary vessel such that one enters the branch vessel, the two guidewires typically tend to wrap around one another and become entangled. Additionally, time and effort is required to individually position each of the two guidewires one after another. [0006]
[0007] An additional disadvantage of conventional stents is the difficulty in visualizing the stents during and after deployment, and in general, the fact that they are not readily imaged by low-cost and easy methods, such as x-ray or ultrasound imaging. [0007] SUMMARY OF THE INVENTION
[0008] The present invention comprises a dual lumen catheter system having a guidewire received through the first lumen. A side sheath, (or alternatively, a second catheter), is slidably receivable within the second lumen of the dual lumen catheter. As will be explained, an advantage of the present dual lumen catheter system is that it may be used for deploying a primary stent in a primary vessel and a branch stent in a branch vessel, wherein the branch stent is deployed through an opening in the side of the primary stent with the side opening being in registry with the ostium of the branch vessel. An advantage of the present dual lumen catheter system is that it avoids having to separately position first and second guidewires within the respective primary and branch vessels prior to deployment of primary and branch stents thereover. Rather, with the present invention, only a single guidewire needs to initially be placed within the primary vessel, with the present dual lumen catheter system subsequently deploying both the primary and branch stents thereover. [0008]
[0009] The present invention also sets forth methods for aligning a side opening of a primary stent in registry with the ostium of a branch vessel using the present dual lumen catheter system. In a preferred aspect of the method, a first guidewire is positioned within the primary vessel such that a distal end of the first guidewire extends past a intersection of the primary vessel and the branch vessel. A primary stent is then advanced over the guidewire with the dual lumen catheter, wherein the first guidewire is received within a first lumen of the first catheter. The second lumen of the dual lumen catheter may preferably be formed by attaching a side portion to the dual lumen catheter. [0009]
[0010] The second lumen of the dual lumen catheter is preferably formed from polyamide and lubricated on its inner surface with graphite particles to make its interior surface microscopically rough thereby reducing sliding friction when a side sheath or second catheter is passed therethrough. Accordingly, the distal end of the side sheath, (which is received through the second lumen of the dual lumen catheter), can easily be slidably positioned to a desired location at the intersection of the primary and branch vessels such that the dual lumen catheter can be positioned at a desired location to deploy the primary stent within the primary vessel. After the distal end of the side sheath is positioned at the vessel intersection, a second guidewire can then be advanced through the side sheath to pass out of the distal end of the side sheath, (passing through the side opening in the primary stent and into the branch vessel), thereby aligning the side opening of the primary stent in registry with the ostium of the branch vessel. Thereafter, the primary stent may be deployed within the primary vessel, such as by inflating a first balloon disposed over the first guidewire at a distal end of the dual lumen catheter. [0010]
[0011] The present invention also comprises a method of delivering primary and branch stents into the intersection of a primary vessel and a branch vessel such that a side opening in the primary stent is positioned in registry with the ostium of the branch vessel, and such that the branch stent extends through the side opening in the primary stent and into the branch vessel. In a preferred aspect, this is accomplished by deploying a primary stent within the primary vessel such that a side opening in the primary stent is registry with the ostium of the branch vessel with a second guidewire passing out through the side opening in the primary stent and into the branch vessel as described above. A branch stent is then subsequently advanced over the second guidewire and into the branch vessel such that the branch stent passes out through the side opening in the primary stent and into the branch vessel. The primary stent may optionally include radially expandable portions which protrude outwardly from the side opening in the primary stent and into the walls of the branch vessel, holding the side opening in registry with the ostium of the branch vessel. [0011]
[0012] To deploy the branch stent, the side sheath can be removed from the second lumen of the dual lumen catheter leaving the second guidewire in position in the branch vessel. In addition, the entire catheter system can be removed leaving the two guidewires in place such that the second catheter can be advanced over the second guidewire and into the branch vessel. As such, the second catheter can then be advanced over the second guide wire with its distal end extending into the branch vessel. A second balloon disposed over the second guidewire at a distal end of the second catheter can then be used to deploy the branch stent within the branch vessel. The branch stent may optionally comprise a contact portion at its proximal end to secure the proximal end of the branch stent to the side opening in the primary stent. [0012]
[0013] In preferred aspects of the present invention, the distal end of the side sheath is positioned at the intersection of the primary vessel and the branch vessel by viewing its position under fluoroscopy. Also, in preferred aspects, the second guidewire is inserted through the side sheath and into the branch vessel under fluoroscopic viewing. [0013]
[0014] The present invention also comprises an apparatus for aligning a side opening in a primary stent in registry with the ostium of the branch vessel, comprising a dual lumen catheter system in which a first guidewire is slidably received within a first lumen in the catheter and a side sheath is slidably received within the second lumen of the dual lumen catheter. A second guidewire is slidably received within the lumen of the side sheath. To assist in guiding the second guidewire into the branch vessel, the side sheath may preferably taper to a narrow distal end, which may be curved slightly outwardly and which preferably comprises tungsten or other suitable radiopaque material such that it may be fluoroscopically viewed. In other preferred aspects, a first balloon is disposed over the first guidewire at a distal end of the dual lumen catheter and a second balloon is disposed over the second guidewire at a distal end of a second catheter which can be received within the second lumen of the dual lumen catheter. [0014]
[0015] Applications of the present system include the cardiac, coronary, renal, peripheral vascular, gastrointestinal, pulmonary, urinary and neurovascular systems and the brain. Further advantages of the present dual lumen catheter system are that it provides an improved stent delivery apparatus, which may deliver primary and branch stents to: 1) completely cover the bifurcation point of bifurcation vessels; 2) be used to treat lesions in one branch of a bifurcation while preserving access to the other branch for future treatment; 3) allow for differential sizing of the stents in a bifurcated stent apparatus even after a primary stent is implanted; 4) treat bifurcation lesions in a bifurcated vessel where the branch vessel extends from the side of the primary vessel; and 5) be marked with, or at least partly constructed of, material which is imageable by commonly used intraluminal catheterization visualization techniques including but not limited to ultrasound or x-ray. [0015] BRIEF DESCRIPTION OF THE DRAWINGS
[0016] FIG. 1. is an illustration of a dual lumen catheter having a side sheath slidably received within a second lumen of the dual lumen catheter. [0016]
[0017] FIG. 2. is an illustration of a dual lumen catheter having a second catheter slidably received within a second lumen of the dual lumen catheter, with balloons positioned on the distal ends of both of the dual lumen catheter and the second catheter. [0017]
[0018] FIG. 3 is an illustration of a placement of first guidewire within a primary vessel. [0018]
[0019] FIG. 4 is an illustration of the dual lumen catheter and side sheath advanced over the first guidewire to a position where the side opening in the primary stent is adjacent with the mouth of the branch vessel. [0019]
[0020] FIG. 5 is an illustration of the second guidewire as it is advanced out of the distal end of the side sheath, through the side opening in the primary stent and into the branch vessel. [0020]
[0021] FIG. 6 is an illustration of a branch stent of advanced over the second guidewire and through the side opening in the primary stent and into the branch vessel by a second catheter received within the second lumen of the dual lumen catheter. [0021]
[0022] FIG. 7 is an illustration of the deployment of the branch stent by a second balloon disposed over the second guidewire. [0022]
[0023] FIG. 8 is an illustration of the fully deployed primary and branch stents with the guidewires and dual lumen catheter removed. [0023]
[0024] FIG. 9 shows an embodiment of the present invention with radially expandable portions around the side opening on the primary stent. [0024] DESCRIPTION OF THE SPECIFIC EMBODIMENTS
[0025] The present invention comprises methods of aligning a side opening in a primary stent in registry of the ostium of a branch vessel and methods for delivering primary and branch stents into an intersection of primary vessel and a branch vessel, such that the side opening in the primary stent is in registry with the ostium of the branch vessel with the branch stent extending through the side opening of the primary stent and into the branch vessel. [0025]
[0026] A novel catheter system is provided for accomplishing the preferred methods. The present catheter system comprises a dual lumen catheter having a guidewire received through its first lumen. In one aspect of the invention, a side sheath is slidably received through the second lumen of the dual lumen catheter. A second guidewire is received through the side sheath and the side sheath is positionable so as to align a side hole in a primary stent with a branch vessel. [0026]
[0027] In an alternative aspect, a second catheter is slidably received through the second lumen of the dual lumen catheter. The second catheter may optionally have a balloon disposed thereon such that first and second balloons are disposed over the dual lumen and second guidewires at the distal ends of the respective dual lumen and second catheters, for deploying the primary and branch stents respectively. [0027]
[0028] Referring to FIG. 1, a catheter system [0028] 10 is provided comprising a dual lumen catheter 12 and a side sheath 14, wherein side sheath 14 is slidably received within lumen 15 which may be formed as an extending side portion of catheter 12 such that side sheath 14 can be axially displaced with respect to catheter 12. The interior of lumen 15 is preferably lubricated to reduce sliding friction with side sheath 14. In a preferred aspect, the extending side portion of catheter 12 forming lumen 15 is fabricated of polyamide with graphite particles imbedded therein to yield a microscopically rough surface. Alternatively, the inner surface of lumen 15 may have metal powders, glass beads, Teflon powder or other inorganic fillers imbedded therein.
[0029] As will be explained, an advantage of the present dual lumen catheter [0029] 12 is that catheter 12 can be positioned at a desired location so as to align side hole 27 of primary stent 25 at the ostium of a branch vessel by positioning the distal end 16 of side sheath 14 at the ostium of the branch vessel. Specifically, in a preferred aspect method of using the present system, dual lumen catheter 12 can be positioned proximal the intersection of the primary and branch vessels to deploy a primary stent in the primary vessel with side sheath 14 positioned at the vessel intersection to deploy a second guidewire passing out through a side hole in a primary stent and into the branch vessel such that only one guidewire needs to initially be positioned within the primary vessel prior to subsequent deployment of the primary and branch stents.
[0030] As can be seen in FIG. 2, a second catheter [0030] 20 can be received in lumen 15. A balloon 11 disposed at the distal end of dual lumen catheter 10 may be used to deploy a primary stent in a primary vessel. In this aspect of the invention, side sheath 14 is preferably withdrawn over guidewire 31 after guide wire 31 is positioned in the branch vessel (FIG. 7). The second catheter 20 having a balloon 13 disposed at its distal end is then advanced over guide wire 31 with balloon 13 deploying an optional branch stent 40 as will be explained.
[0031] In a preferred aspect, the present invention is directed to aligning a side hole in a primary stent to a position in registry with the ostium of a branch vessel. This first aspect of the invention is illustrated in the sequential steps shown in FIGS. [0031] 3 to 5.
[0032] In another preferred aspect, the present invention is directed to deploying a branch stent in a branch vessel with the branch stent extending into the branch vessel through a side opening in the primary stent. This second aspect of the present invention is illustrated in the sequential steps shown in FIGS. 6 and 7. (The sequential steps shown in FIGS. 6 and 7 are accomplished after the sequential steps shown in FIGS. [0032] 3 to 5).
[0033] Referring first to FIG. 3, a first guidewire [0033] 21 is advanced through a primary vessel P in direction D such that distal end 22 of guidewire 21 extends past the intersection of a primary vessel P and a branch vessel B.
[0034] As shown in FIG. 4, dual lumen catheter [0034] 12 is then advanced in direction D over guidewire 21 such that a primary stent 25, (which is supported at a distal end of catheter 10, as shown), is oriented such that side hole 27 of stent 25 is positioned generally adjacent the mouth of branch vessel B. (Guidewire 21 is received within a lumen in catheter 10.) As can be seen, stent 25 is preferably crimped down onto side sheath 14, as shown. Preferably, distal end 16 of catheter 14 has tungsten, or other suitable radiopaque material, deposited thereon such that it can be viewed and positioned fluoroscopically. Preferably, stent 25 is initially crimped onto balloon 11 with distal end 16 of side sheath 16 projecting outwardly through side opening 27 as shown. As such, fluoroscopic positioning of distal end 16 aligns side opening 27 to branch vessel B, as dual lumen catheter 20 supporting stent 25 and side sheath 14 initially move together when stent 25 is initially crimped onto balloon 11.
[0035] As shown in FIG. 5, after distal end [0035] 16 of catheter 14 is positioned as shown, a second guidewire 31 can then be advanced out of distal end 16 of side sheath 14, passing through side opening 27 in stent 25 and into branch vessel B. As also shown in FIG. 5, balloon 11 may be partially or fully inflated expanding stent 25 so as to provide an access space for a distal end 26 of second catheter 20 to be advanced therethrough, as will be explained.
[0036] As shown in the optional step of FIG. 9, balloon [0036] 13 on catheter 14 can then be inflated to deploy radially expandable portions 29 extending laterally outward from the edges of side opening 27, such that portions 29 are pushed against the walls of branch vessel B, such that side opening 27 is positioned in registry with the ostium of branch vessel B. Further description of such radially expandable portions 29 which extend laterally outward from the edges of side opening 27 is set forth in Published PCT Patent Application WO 99/00835, filed Jan. 14, 1998, incorporated herein by reference in its entirety.
[0037] In a second aspect of the present invention, additional sequential steps, as illustrated in FIGS. 6 and 7, are instead carried out after the steps illustrated in FIGS. [0037] 3 to 5 to deploy a branch stent in a branch vessel with the branch stent extending through a side opening in the primary stent.
[0038] FIG. 6 is similar to FIG. 5, but side sheath [0038] 14 has been removed and a second catheter 20 has been advanced over guidewire 31 with a branch stent 40 disposed at distal end 26 of catheter 20. As shown in FIG. 6, distal end 26 of catheter 20 can be advanced over guidewire 31 such that stent 40 is advanced through side hole 27 in stent 25 and is positioned in branch vessel B.
[0039] As shown in FIG. 7, stent [0039] 40 can then be fully deployed within branch vessel B by inflating second balloon 13 disposed at distal end 26 of catheter 20.
[0040] Primary stent [0040] 25 can be fully deployed by inflation of balloon 11 either before, after or concurrently with branch stent 40 being deployed by inflation of balloon 13.
[0041] Lastly, as can be seen in FIG. 8, catheter system [0041] 10, (comprising catheter 12, catheter 20, and guidewires 21 and 31) can be removed after deployment of stents 25 and 40, leaving a bifurcated support at the intersection of primary vessel P and branch vessel B as shown.
[0042] As can also be seen, stent [0042] 40 may further comprise a contact portion 42 which remains disposed within side opening 27 thereby securing the proximal end of stent 40 to side opening 27 of stent 25, thereby providing a bifurcated stent arrangement covering vessel intersection I.
权利要求:
Claims (16)
[1" id="US-20010003161-A1-CLM-00001] 1. A method of aligning a side opening in a primary stent in registry with the ostium of a branch vessel, comprising:
advancing a first guidewire through a primary vessel such that a distal end of a guidewire extends past an intersection of the primary vessel and the branch vessel;
advancing the primary stent over the first guidewire with a dual lumen catheter, wherein the first guidewire is received within a first lumen of the dual lumen catheter;
positioning a side sheath received through the second lumen of the dual lumen catheter such that a distal end of the side sheath is positioned at the intersection of the primary vessel and the branch vessel; and
advancing a second guidewire through the side sheath and out through the side opening in the primary stent and into the branch vessel, thereby aligning the side opening in the primary stent with the ostium of the branch vessel.
[2" id="US-20010003161-A1-CLM-00002] 2. The method of
claim 1 , wherein,
the primary stent is at least partially deployed within the primary vessel; and
the distal end of a second catheter is then received within the at least partially deployed primary stent.
[3" id="US-20010003161-A1-CLM-00003] 3. The method of
claim 1 , further comprising:
deploying the primary stent within the primary vessel by inflating a first balloon disposed on the dual lumen catheter over the first guidewire.
[4" id="US-20010003161-A1-CLM-00004] 4. A method of delivering primary and branch stents into an intersection of a primary vessel and a branch vessel, such that a side opening in the primary stent is in registry with the ostium of the branch vessel and such that the branch stent passes through the side opening in the primary stent and into the branch vessel, comprising:
the method of
claim 1 , further comprising:
advancing a branch stent over the second guidewire and out through the side opening in the primary stent and into the branch vessel by a second catheter.
[5" id="US-20010003161-A1-CLM-00005] 5. The method of
claim 4 , further comprising:
deploying the branch stent within the branch vessel by inflating a second balloon disposed on a second catheter over the second guidewire.
[6" id="US-20010003161-A1-CLM-00006] 6. The method of
claim 1 , wherein positioning the side sheath through the second lumen of the dual lumen catheter such that the distal end of the side sheath is positioned at the intersection of the primary vessel and the branch vessel is accomplished by:
viewing the position of the distal end of the second catheter under fluoroscopy.
[7" id="US-20010003161-A1-CLM-00007] 7. The method of
claim 1 , wherein advancing a second guidewire through the side sheath and into the branch vessel is accomplished by:
viewing the position of the distal end of the second guidewire under fluoroscopy.
[8" id="US-20010003161-A1-CLM-00008] 8. A catheter system for inserting a primary guidewire in a primary vessel and a side sheath in a branch vessel, comprising:
a dual lumen catheter;
a first guidewire slidably received within a first lumen of the dual lumen catheter;
a side sheath slidably received within the second lumen of the dual lumen catheter; and
a second guidewire slidably received within a lumen of the side sheath.
[9" id="US-20010003161-A1-CLM-00009] 9. A catheter system for inserting a primary guidewire in a primary vessel and a side sheath in a branch vessel, comprising:
a dual lumen catheter;
a first guidewire slidably received within a first lumen of the dual lumen catheter;
a second catheter slidably received within the second lumen of the dual lumen catheter; and
a second guidewire slidably received within a lumen of the second catheter.
[10" id="US-20010003161-A1-CLM-00010] 10. The apparatus of claims 8 or 9, further comprising:
a first balloon disposed at a distal end of the dual lumen catheter over the first guidewire.
[11" id="US-20010003161-A1-CLM-00011] 11. The apparatus of
claim 9 , further comprising:
a second balloon disposed at a distal end of the second catheter over the second guidewire.
[12" id="US-20010003161-A1-CLM-00012] 12. The apparatus of
claim 8 , wherein,
the side sheath tapers to a narrow distal end.
[13" id="US-20010003161-A1-CLM-00013] 13. The apparatus of
claim 8 , wherein,
the distal end of the side sheath is fabricated from a fluoroscopically visible material.
[14" id="US-20010003161-A1-CLM-00014] 14. The apparatus of claims 8 or 9, wherein,
the interior surface of the second lumen is lubricated with a coating of polyamide and graphite.
[15" id="US-20010003161-A1-CLM-00015] 15. The apparatus of claims 8 or 9, wherein, the distal end of the second guidewire is fluoroscopically visible.
[16" id="US-20010003161-A1-CLM-00016] 16. A kit comprising:
an apparatus as in any of
claims 8 to
14 ; and
instructions for use setting forth a method as in any of
claims 1 to
7 .
类似技术:
公开号 | 公开日 | 专利标题
US6596020B2|2003-07-22|Method of delivering a stent with a side opening
US6692483B2|2004-02-17|Catheter with attached flexible side sheath
US9561126B2|2017-02-07|Catheter with attached flexible side sheath
US6682536B2|2004-01-27|Guidewire introducer sheath
US6884258B2|2005-04-26|Bifurcation lesion stent delivery using multiple guidewires
US8241349B2|2012-08-14|Extendible stent apparatus
US7678142B2|2010-03-16|Extendible stent apparatus
EP1267751A2|2003-01-02|Guidewire introducer sheath
US5720735A|1998-02-24|Bifurcated endovascular catheter
US20020173835A1|2002-11-21|Short sleeve stent delivery catheter and methods
AU7714500A|2001-04-24|Bifurcation stent system and method
WO1999036002A1|1999-07-22|Extendible stent apparatus
JP2003532437A|2003-11-05|Stretchable stent device
同族专利:
公开号 | 公开日
US6596020B2|2003-07-22|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
WO2002076346A1|2001-03-23|2002-10-03|Hassan Tehrani|Branched aortic arch stent graft|
WO2004000170A1|2002-06-21|2003-12-31|Heuser Richard R|Stent system|
US6695877B2|2001-02-26|2004-02-24|Scimed Life Systems|Bifurcated stent|
US20040148005A1|2002-10-17|2004-07-29|Heuser Richard R.|Stent with covering and differential dilation|
US20040167609A1|2003-02-25|2004-08-26|Majercak David C.|Stent with nested fingers for enhanced vessel coverage|
US20050027248A1|2003-07-29|2005-02-03|Terumo Kabushiki Kaisha|Catheter with expandable member|
US20050125050A1|2003-12-04|2005-06-09|Wilson Cook Medical Incorporated|Biliary stent introducer system|
US20050131524A1|2003-02-25|2005-06-16|Majercak David C.|Method for treating a bifurcated vessel|
US20050273150A1|2004-03-31|2005-12-08|Howell Douglas D|Stent introducer system|
US20050288771A1|2003-02-25|2005-12-29|Majercak David C|Novel stent for treatment of bifurcated lesions|
US20060047222A1|2003-08-27|2006-03-02|Heuser Richard R|Catheter guidewire system using concentric wires|
US20060085061A1|1996-11-04|2006-04-20|Vardi Gil M|Extendible stent apparatus and method for deploying the same|
US20060155366A1|2005-01-10|2006-07-13|Laduca Robert|Apparatus and method for deploying an implantable device within the body|
US20060155363A1|2005-01-10|2006-07-13|Laduca Robert|Apparatus and method for deploying an implantable device within the body|
US20060241740A1|1996-11-04|2006-10-26|Advanced Stent Technologies, Inc.|Extendible stent apparatus|
EP1716823A2|2005-04-29|2006-11-02|Medtronic Vascular, Inc.|Apparatus for treatment of aneurysms|
US20060271161A1|2005-05-26|2006-11-30|Boston Scientific Scimed, Inc.|Selective treatment of stent side branch petals|
US20070032855A1|1998-01-14|2007-02-08|Advanced Stent Technologies, Inc.|Extendible stent apparatus|
US20070112407A1|2005-11-14|2007-05-17|Boston Scientific Scimed, Inc.|Twisting bifurcation delivery system|
US20070112418A1|2005-11-14|2007-05-17|Boston Scientific Scimed, Inc.|Stent with spiral side-branch support designs|
US20070118205A1|1999-01-13|2007-05-24|Advanced Stent Technologies, Inc.|Stent with protruding branch portion for bifurcated vessels|
US20070150051A1|2005-01-10|2007-06-28|Duke Fiduciary, Llc|Vascular implants and methods of fabricating the same|
US20070161956A1|2003-01-27|2007-07-12|Heuser Richard R|Catheter introducer system|
US20070168020A1|2001-02-26|2007-07-19|Brucker Gregory G|Bifurcated stent and delivery system|
US20070167955A1|2005-01-10|2007-07-19|Duke Fiduciary, Llc|Apparatus and method for deploying an implantable device within the body|
US20070173920A1|1999-01-27|2007-07-26|Boston Scientific Scimed, Inc.|Bifurcation stent delivery system|
US20070203572A1|2006-01-25|2007-08-30|Heuser Richard R|Catheter system with stent apparatus for connecting adjacent blood vessels|
US20070203515A1|2006-01-25|2007-08-30|Heuser Richard R|Catheter system for connecting adjacent blood vessels|
US20070208415A1|2006-03-06|2007-09-06|Kevin Grotheim|Bifurcated stent with controlled drug delivery|
US20070213811A1|2006-03-07|2007-09-13|Boston Scientific Scimed, Inc.|Bifurcated stent with improvement securement|
US20070219611A1|2006-03-10|2007-09-20|Matthew Krever|Apparatus for treating a bifurcated region of a conduit|
US20070225796A1|2004-03-17|2007-09-27|Boston Scientific Scimed, Inc.|Bifurcated stent|
GB2437058A|2006-04-12|2007-10-17|Vortex Innovations Ltd|Kit for endovascular repair|
WO2007126292A2|2006-05-03|2007-11-08|Humed Co Ltd|Catheter|
US20080027379A1|2006-07-28|2008-01-31|Taylor Medical, Inc.|Catheter components formed of polymer with particles or fibers|
US20080033521A1|2004-01-16|2008-02-07|Erik Jorgensen|Double-Wire Non-Trapping Angioplasty Catheter|
US20080046066A1|2006-08-21|2008-02-21|Boston Scientific Scimed, Inc.|Alignment sheath apparatus and method|
US20080065019A1|2006-01-25|2008-03-13|Heuser Richard R|Catheter system for connecting adjacent blood vessels|
US20080177249A1|2007-01-22|2008-07-24|Heuser Richard R|Catheter introducer system|
US20080234813A1|2007-03-20|2008-09-25|Heuser Richard R|Percutaneous Interventional Cardiology System for Treating Valvular Disease|
US20080243232A1|2007-03-28|2008-10-02|Boston Scientific Scimed, Inc.|Bifurcation stent and balloon assemblies|
US20090012429A1|2004-08-25|2009-01-08|Heuser Richard R|Catheter guidewire system using concentric wires|
US20090043373A1|2007-02-09|2009-02-12|Duke Fiduciary, Llc|Vascular implants and methods of fabricating the same|
US20090112249A1|2007-10-19|2009-04-30|Coherex Medical, Inc.|Medical device for modification of left atrial appendage and related systems and methods|
WO2009120021A2|2008-03-27|2009-10-01|Industry-Academic Cooperation Foundation, Yonsei University|Carina modification catheter|
US20090306758A1|2008-06-10|2009-12-10|Boston Scientific Scimed, Inc.|Bifurcation Catheter Assembly With Dynamic Side Branch Lumen|
US7678142B2|1996-11-04|2010-03-16|Boston Scientific Scimed, Inc.|Extendible stent apparatus|
US7731741B2|2005-09-08|2010-06-08|Boston Scientific Scimed, Inc.|Inflatable bifurcation stent|
US20100228285A1|2009-01-08|2010-09-09|Coherex Medical, Inc.|Medical device for modification of left atrial appendage and related systems and methods|
US7799064B2|2001-02-26|2010-09-21|Boston Scientific Scimed, Inc.|Bifurcated stent and delivery system|
US20100241218A1|2009-03-23|2010-09-23|Medtronic Vascular, Inc.|Branch Vessel Prosthesis With a Roll-Up Sealing Assembly|
US7815675B2|1996-11-04|2010-10-19|Boston Scientific Scimed, Inc.|Stent with protruding branch portion for bifurcated vessels|
US20100268319A1|2009-04-17|2010-10-21|Medtronic Vascular, Inc.|Mobile External Coupling for Branch Vessel Connection|
US7833266B2|2007-11-28|2010-11-16|Boston Scientific Scimed, Inc.|Bifurcated stent with drug wells for specific ostial, carina, and side branch treatment|
US7833264B2|2006-03-06|2010-11-16|Boston Scientific Scimed, Inc.|Bifurcated stent|
US7842082B2|2006-11-16|2010-11-30|Boston Scientific Scimed, Inc.|Bifurcated stent|
US20100324587A1|2009-06-17|2010-12-23|Coherex Medical, Inc.|Medical device for modification of left atrial appendage and related systems and methods|
US20100324664A1|2006-10-18|2010-12-23|Asher Holzer|Bifurcated Stent Assemblies|
US20110046709A1|2009-08-18|2011-02-24|Abbott Cardiovascular Systems, Inc.|Methods for implanting a stent using a guide catheter|
US7922758B2|2006-06-23|2011-04-12|Boston Scientific Scimed, Inc.|Nesting twisting hinge points in a bifurcated petal geometry|
US7951191B2|2006-10-10|2011-05-31|Boston Scientific Scimed, Inc.|Bifurcated stent with entire circumferential petal|
US7951192B2|2001-09-24|2011-05-31|Boston Scientific Scimed, Inc.|Stent with protruding branch portion for bifurcated vessels|
US7959669B2|2007-09-12|2011-06-14|Boston Scientific Scimed, Inc.|Bifurcated stent with open ended side branch support|
US7959668B2|2007-01-16|2011-06-14|Boston Scientific Scimed, Inc.|Bifurcated stent|
US7972372B2|2003-04-14|2011-07-05|Tryton Medical, Inc.|Kit for treating vascular bifurcations|
US8016878B2|2005-12-22|2011-09-13|Boston Scientific Scimed, Inc.|Bifurcation stent pattern|
US8038706B2|2005-09-08|2011-10-18|Boston Scientific Scimed, Inc.|Crown stent assembly|
US8043366B2|2005-09-08|2011-10-25|Boston Scientific Scimed, Inc.|Overlapping stent|
US20110282427A1|2008-09-25|2011-11-17|Advanced Bifurcation Systems, Inc.|Partially crimped stent|
US20110307044A1|2008-09-25|2011-12-15|Advanced Bifurcation Systems, Inc.|Methods and systems for ostial stenting of a bifurcation|
US20110307045A1|2008-09-25|2011-12-15|Advanced Bifurcation Systems, Inc.|Methods and systems for treating a bifurcation with provisional side branch stenting|
US20120109279A1|2010-11-02|2012-05-03|Endologix, Inc.|Apparatus and method of placement of a graft or graft system|
US8206429B2|2006-11-02|2012-06-26|Boston Scientific Scimed, Inc.|Adjustable bifurcation catheter incorporating electroactive polymer and methods of making and using the same|
US8216267B2|2006-09-12|2012-07-10|Boston Scientific Scimed, Inc.|Multilayer balloon for bifurcated stent delivery and methods of making and using the same|
AU2007305387B2|2006-09-28|2012-08-09|Cook Medical Technologies Llc|Endovascular delivery device|
US8277501B2|2007-12-21|2012-10-02|Boston Scientific Scimed, Inc.|Bi-stable bifurcated stent petal geometry|
US8298280B2|2003-08-21|2012-10-30|Boston Scientific Scimed, Inc.|Stent with protruding branch portion for bifurcated vessels|
US8317855B2|2005-05-26|2012-11-27|Boston Scientific Scimed, Inc.|Crimpable and expandable side branch cell|
US8343211B2|2005-12-14|2013-01-01|Boston Scientific Scimed, Inc.|Connectors for bifurcated stent|
US8435284B2|2005-12-14|2013-05-07|Boston Scientific Scimed, Inc.|Telescoping bifurcated stent|
US8449905B2|2001-10-22|2013-05-28|Covidien Lp|Liquid and low melting coatings for stents|
US8480728B2|2005-05-26|2013-07-09|Boston Scientific Scimed, Inc.|Stent side branch deployment initiation geometry|
US8545418B2|2004-08-25|2013-10-01|Richard R. Heuser|Systems and methods for ablation of occlusions within blood vessels|
US8647376B2|2007-03-30|2014-02-11|Boston Scientific Scimed, Inc.|Balloon fold design for deployment of bifurcated stent petal architecture|
US8808347B2|2008-09-25|2014-08-19|Advanced Bifurcation Systems, Inc.|Stent alignment during treatment of a bifurcation|
US20140277068A1|2013-03-14|2014-09-18|Boston Scientific Scimed, Inc.|Systems, apparatus and methods for treating blood vessels|
US20140277367A1|2013-03-15|2014-09-18|Altura Medical, Inc.|Endograft device delivery systems and associated methods|
US8932340B2|2008-05-29|2015-01-13|Boston Scientific Scimed, Inc.|Bifurcated stent and delivery system|
US8979917B2|2008-09-25|2015-03-17|Advanced Bifurcation Systems, Inc.|System and methods for treating a bifurcation|
US20150127084A1|2013-11-05|2015-05-07|Hameem Unnabi Changezi|Bifurcated Stent and Delivery System|
EP2344068A4|2008-09-25|2015-09-23|Advanced Bifurcation Systems Inc|Partially crimped stent|
US9254210B2|2011-02-08|2016-02-09|Advanced Bifurcation Systems, Inc.|Multi-stent and multi-balloon apparatus for treating bifurcations and methods of use|
CN105407836A|2013-05-23|2016-03-16|恩都思潘有限公司|Ascending aorta stent-graft system|
US20160096006A1|2014-10-03|2016-04-07|W. L. Gore & Associates, Inc.|Removable covers for drug eluting medical devices|
US9351716B2|2009-06-17|2016-05-31|Coherex Medical, Inc.|Medical device and delivery system for modification of left atrial appendage and methods thereof|
US9364356B2|2011-02-08|2016-06-14|Advanced Bifurcation System, Inc.|System and methods for treating a bifurcation with a fully crimped stent|
US9427340B2|2004-12-14|2016-08-30|Boston Scientific Scimed, Inc.|Stent with protruding branch portion for bifurcated vessels|
EP2549950A4|2010-03-24|2017-05-10|Advanced Bifurcation Systems, Inc.|Methods and systems for ostial stenting of a bifurcation|
US9649115B2|2009-06-17|2017-05-16|Coherex Medical, Inc.|Medical device for modification of left atrial appendage and related systems and methods|
US9693781B2|2009-06-17|2017-07-04|Coherex Medical, Inc.|Medical device for modification of left atrial appendage and related systems and methods|
US9993360B2|2013-01-08|2018-06-12|Endospan Ltd.|Minimization of stent-graft migration during implantation|
US10064628B2|2009-06-17|2018-09-04|Coherex Medical, Inc.|Medical device for modification of left atrial appendage and related systems and methods|
US10105249B2|2005-01-10|2018-10-23|Taheri Laduca Llc|Apparatus and method for deploying an implantable device within the body|
US10219922B2|2011-08-12|2019-03-05|W. L. Gore & Associates, Inc.|Devices and methods for approximating the cross-sectional profile of vasculature having branches|
CN109561958A|2016-05-26|2019-04-02|瑞士资本工程公司|Vascular medical device and system|
US10245166B2|2008-02-22|2019-04-02|Endologix, Inc.|Apparatus and method of placement of a graft or graft system|
US10485684B2|2014-12-18|2019-11-26|Endospan Ltd.|Endovascular stent-graft with fatigue-resistant lateral tube|
US10603196B2|2009-04-28|2020-03-31|Endologix, Inc.|Fenestrated prosthesis|
US10603197B2|2013-11-19|2020-03-31|Endospan Ltd.|Stent system with radial-expansion locking|
US10631969B2|2009-06-17|2020-04-28|Coherex Medical, Inc.|Medical device for modification of left atrial appendage and related systems and methods|
US11045302B2|2016-05-26|2021-06-29|Swiss Capital—Engineering AG|Vascular medical device, system and method|
US11129737B2|2015-06-30|2021-09-28|Endologix Llc|Locking assembly for coupling guidewire to delivery system|US1596754A|1923-10-30|1926-08-17|Judson D Moschelle|Reenforced tubing|
US3872893A|1972-05-01|1975-03-25|Fred T Roberts & Company|Self-reinforced plastic hose and method for molding same|
IN144765B|1975-02-12|1978-07-01|Rasmussen O B||
US4410476A|1980-10-20|1983-10-18|The United States Of America As Represented By The Secretary Of The Navy|Method for making radially compliant line array hose|
CA1194662A|1983-07-12|1985-10-08|Lupke, Manfred A. A.|Producing double-walled helically wound thermoplastic pipe|
US4552554A|1984-06-25|1985-11-12|Medi-Tech Incorporated|Introducing catheter|
US4681570A|1985-12-26|1987-07-21|Dalton Michael J|Peritoneal catheter|
US5350395A|1986-04-15|1994-09-27|Yock Paul G|Angioplasty apparatus facilitating rapid exchanges|
US4900314A|1988-02-01|1990-02-13|Fbk International Corporation|Collapse-resistant tubing for medical use|
US5217440A|1989-10-06|1993-06-08|C. R. Bard, Inc.|Multilaminate coiled film catheter construction|
DE3935256C1|1989-10-23|1991-01-03|Bauerfeind, Peter, Dr., 8264 Waldkraiburg, De||
US5122125A|1990-04-25|1992-06-16|Ashridge A.G.|Catheter for angioplasty with soft centering tip|
US5054501A|1990-05-16|1991-10-08|Brigham & Women's Hospital|Steerable guide wire for cannulation of tubular or vascular organs|
US5147317A|1990-06-04|1992-09-15|C.R. Bard, Inc.|Low friction varied radiopacity guidewire|
US5244619A|1991-05-03|1993-09-14|Burnham Warren R|Method of making catheter with irregular inner and/or outer surfaces to reduce travelling friction|
US5417208A|1993-10-12|1995-05-23|Arrow International Investment Corp.|Electrode-carrying catheter and method of making same|
US5404887A|1993-11-04|1995-04-11|Scimed Life Systems, Inc.|Guide wire having an unsmooth exterior surface|
US5445624A|1994-01-21|1995-08-29|Exonix Research Corporation|Catheter with progressively compliant tip|
US5489271A|1994-03-29|1996-02-06|Boston Scientific Corporation|Convertible catheter|
US5458605A|1994-04-04|1995-10-17|Advanced Cardiovascular Systems, Inc.|Coiled reinforced retractable sleeve for stent delivery catheter|
FR2733682B1|1995-05-04|1997-10-31|Dibie Alain|ENDOPROSTHESIS FOR THE TREATMENT OF STENOSIS ON BIFURCATIONS OF BLOOD VESSELS AND LAYING EQUIPMENT THEREFOR|
US5762631A|1995-07-14|1998-06-09|Localmed, Inc.|Method and system for reduced friction introduction of coaxial catheters|
AUPN775296A0|1996-01-25|1996-02-22|Endogad Research Pty Limited|Directional catheter|
UA58485C2|1996-05-03|2003-08-15|Медінол Лтд.|Method for manufacture of bifurcated stent and bifurcated stent |
US6251133B1|1996-05-03|2001-06-26|Medinol Ltd.|Bifurcated stent with improved side branch aperture and method of making same|
US5851464A|1996-05-13|1998-12-22|Cordis Corporation|Method of making a fuseless soft tip catheter|
US5669932A|1996-05-29|1997-09-23|Isostent, Inc.|Means for accurately positioning an expandable stent|
US5676697A|1996-07-29|1997-10-14|Cardiovascular Dynamics, Inc.|Two-piece, bifurcated intraluminal graft for repair of aneurysm|
US5749825A|1996-09-18|1998-05-12|Isostent, Inc.|Means method for treatment of stenosed arterial bifurcations|
US5720735A|1997-02-12|1998-02-24|Dorros; Gerald|Bifurcated endovascular catheter|
US6096073A|1997-02-25|2000-08-01|Scimed Life Systems, Inc.|Method of deploying a stent at a lesion site located at a bifurcation in a parent vessel|
US6099497A|1998-03-05|2000-08-08|Scimed Life Systems, Inc.|Dilatation and stent delivery system for bifurcation lesions|
US6261273B1|1998-05-07|2001-07-17|Carlos E. Ruiz|Access system for branched vessels amd methods of use|
US6217527B1|1998-09-30|2001-04-17|Lumend, Inc.|Methods and apparatus for crossing vascular occlusions|
US6221080B1|1999-12-10|2001-04-24|John A. Power|Bifurcation lesion stenting catheter|
US6254593B1|1999-12-10|2001-07-03|Advanced Cardiovascular Systems, Inc.|Bifurcated stent delivery system having retractable sheath|US7238197B2|2000-05-30|2007-07-03|Devax, Inc.|Endoprosthesis deployment system for treating vascular bifurcations|
US8728143B2|1996-06-06|2014-05-20|Biosensors International Group, Ltd.|Endoprosthesis deployment system for treating vascular bifurcations|
US7686846B2|1996-06-06|2010-03-30|Devax, Inc.|Bifurcation stent and method of positioning in a body lumen|
US6692483B2|1996-11-04|2004-02-17|Advanced Stent Technologies, Inc.|Catheter with attached flexible side sheath|
US7591846B2|1996-11-04|2009-09-22|Boston Scientific Scimed, Inc.|Methods for deploying stents in bifurcations|
US8211167B2|1999-12-06|2012-07-03|Boston Scientific Scimed, Inc.|Method of using a catheter with attached flexible side sheath|
US20060293695A1|1999-07-20|2006-12-28|Ricci Donald R|Bifurcated stent delivery system and method of use|
US6290673B1|1999-05-20|2001-09-18|Conor Medsystems, Inc.|Expandable medical device delivery system and method|
US8617231B2|2001-05-18|2013-12-31|Boston Scientific Scimed, Inc.|Dual guidewire exchange catheter system|
US7387639B2|1999-06-04|2008-06-17|Advanced Stent Technologies, Inc.|Short sleeve stent delivery catheter and methods|
US20040097996A1|1999-10-05|2004-05-20|Omnisonics Medical Technologies, Inc.|Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode|
US20060069423A1|1999-11-22|2006-03-30|Fischell David R|Means and method for treating an intimal dissection after stent implantation|
US20120089220A1|2000-02-18|2012-04-12|E.V.R. Endovascular Researches S.A.|Microcatheter|
EP1418863B1|2001-08-23|2008-11-12|Darrell C. Gumm|Rotating stent delivery system for side branch access and protection|
US20060253480A1|2002-04-06|2006-11-09|Staples Peter E|Collaborative design process for a design team, outside suppliers, and outside manufacturers|
US8388628B2|2003-04-24|2013-03-05|Medtronic, Inc.|Expandable sheath for delivering instruments and agents into a body lumen and methods for use|
EP2074968B1|2002-11-08|2016-01-27|Jacques Seguin|Endoprosthesis for vascular bifurcation|
US7314480B2|2003-02-27|2008-01-01|Boston Scientific Scimed, Inc.|Rotating balloon expandable sheath bifurcation delivery|
CA2518890C|2003-04-03|2012-06-05|William A. Cook Australia Pty. Ltd.|Branch stent graft deployment and method|
US8083791B2|2003-04-14|2011-12-27|Tryton Medical, Inc.|Method of treating a lumenal bifurcation|
US7758630B2|2003-04-14|2010-07-20|Tryton Medical, Inc.|Helical ostium support for treating vascular bifurcations|
US8109987B2|2003-04-14|2012-02-07|Tryton Medical, Inc.|Method of treating a lumenal bifurcation|
US7731747B2|2003-04-14|2010-06-08|Tryton Medical, Inc.|Vascular bifurcation prosthesis with multiple thin fronds|
US7993350B2|2004-10-04|2011-08-09|Medtronic, Inc.|Shapeable or steerable guide sheaths and methods for making and using them|
AU2004284893A1|2003-11-03|2005-05-12|B-Balloon Ltd.|Treatment of vascular bifurcations|
US7686841B2|2003-12-29|2010-03-30|Boston Scientific Scimed, Inc.|Rotating balloon expandable sheath bifurcation delivery system|
US7922753B2|2004-01-13|2011-04-12|Boston Scientific Scimed, Inc.|Bifurcated stent delivery system|
US7794414B2|2004-02-09|2010-09-14|Emigrant Bank, N.A.|Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes|
US8012192B2|2004-02-18|2011-09-06|Boston Scientific Scimed, Inc.|Multi-stent delivery system|
US7744619B2|2004-02-24|2010-06-29|Boston Scientific Scimed, Inc.|Rotatable catheter assembly|
US7922740B2|2004-02-24|2011-04-12|Boston Scientific Scimed, Inc.|Rotatable catheter assembly|
US20050273149A1|2004-06-08|2005-12-08|Tran Thomas T|Bifurcated stent delivery system|
US20060047335A1|2004-08-26|2006-03-02|Israel Henry M|Catheter with deflector|
US7691137B2|2004-09-28|2010-04-06|Boston Scientific Scimed, Inc.|Rotatable sheath, assembly and method of manufacture of same|
US7717953B2|2004-10-13|2010-05-18|Tryton Medical, Inc.|Delivery system for placement of prosthesis at luminal OS|
JP4979591B2|2005-01-10|2012-07-18|トライレムメディカル,インコーポレイテッド|Stent having a self-expandable portion|
US9101500B2|2005-01-10|2015-08-11|Trireme Medical, Inc.|Stent with self-deployable portion having wings of different lengths|
US7922754B2|2005-04-18|2011-04-12|Trireme Medical, Inc.|Apparatus and methods for delivering prostheses to luminal bifurcations|
US20060259009A1|2005-05-12|2006-11-16|Medtronic Vascular, Inc.|Guidewire loader for bifurcated vessel|
WO2006127920A1|2005-05-24|2006-11-30|Abbott Laboratories|Bifurcation stent delivery catheter assembly and method|
US8608789B2|2005-05-24|2013-12-17|Trireme Medical, Inc.|Delivery system for bifurcation stents|
WO2007034488A2|2005-09-21|2007-03-29|B-Balloon Ltd.|Bifurcated balloon and stent|
US7776079B2|2005-10-31|2010-08-17|Boston Scientific Scimed, Inc.|Conical balloon for deployment into side branch|
US20070208302A1|2006-01-26|2007-09-06|Webster Mark W|Deflection control catheters, support catheters and methods of use|
US8821561B2|2006-02-22|2014-09-02|Boston Scientific Scimed, Inc.|Marker arrangement for bifurcation catheter|
US8926679B2|2006-03-03|2015-01-06|Boston Scientific Scimed, Inc.|Bifurcated stent system balloon folds|
US20080147174A1|2006-12-11|2008-06-19|Trireme Medical, Inc.|Apparatus and method of using markers to position stents in bifurcations|
US8936567B2|2007-11-14|2015-01-20|Boston Scientific Scimed, Inc.|Balloon bifurcated lumen treatment|
JP5504173B2|2007-12-31|2014-05-28|ボストンサイエンティフィックサイムド,インコーポレイテッド|Catheter assembly for vascular bifurcation treatment|
US8333003B2|2008-05-19|2012-12-18|Boston Scientific Scimed, Inc.|Bifurcation stent crimping systems and methods|
US8377108B2|2008-06-02|2013-02-19|Boston Scientific Scimed, Inc.|Staggered two balloon bifurcation catheter assembly and methods|
EP2300093B1|2008-06-05|2016-04-20|Boston Scientific Scimed, Inc.|Deflatable bifurcated device|
US20100016937A1|2008-07-18|2010-01-21|Yousef Alkhatib|Twisting Bifurcation Delivery System|
US20100030192A1|2008-08-01|2010-02-04|Boston Scientific Scimed, Inc.|Catheter shaft bond arrangements and methods|
US8133199B2|2008-08-27|2012-03-13|Boston Scientific Scimed, Inc.|Electroactive polymer activation system for a medical device|
US8366763B2|2009-07-02|2013-02-05|Tryton Medical, Inc.|Ostium support for treating vascular bifurcations|
EP2642946A4|2010-11-24|2016-07-20|Tryton Medical Inc|Support for treating vascular bifurcations|
WO2013162724A1|2012-04-26|2013-10-31|Tryton Medical, Inc.|Support for treating vascular bifurcations|
法律状态:
2003-07-02| STCF| Information on status: patent grant|Free format text: PATENTED CASE |
2006-12-18| FPAY| Fee payment|Year of fee payment: 4 |
2010-12-28| FPAY| Fee payment|Year of fee payment: 8 |
2011-03-11| AS| Assignment|Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ADVANCED STENT TECHNOLOGIES, INC.;REEL/FRAME:025937/0361 Effective date: 20110224 |
2014-12-31| FPAY| Fee payment|Year of fee payment: 12 |
优先权:
申请号 | 申请日 | 专利标题
US74400296A| true| 1996-11-04|1996-11-04||
US09/007,265|US6210429B1|1996-11-04|1998-01-14|Extendible stent apparatus|
US8830198P| true| 1998-06-05|1998-06-05||
PCT/US1999/000835|WO1999036002A1|1996-11-04|1999-01-13|Extendible stent apparatus|
US32599699A| true| 1999-06-04|1999-06-04||
US09/741,761|US6596020B2|1996-11-04|2000-12-18|Method of delivering a stent with a side opening|US09/741,761| US6596020B2|1996-11-04|2000-12-18|Method of delivering a stent with a side opening|
US10/320,719| US7591846B2|1996-11-04|2002-12-17|Methods for deploying stents in bifurcations|
US12/555,501| US8771342B2|1996-11-04|2009-09-08|Methods for deploying stents in bifurcations|
[返回顶部]