专利摘要:
An improved shaft seal assembly is disclosed having a stator including a main body and axial and radial projections therefrom. The rotor is radially extended and encompasses the axial and radial projections from said stator. The passageway formed between the radial projection of the stator and the rotor results in an axial passageway having its opening facing rearwardly from the rotor and away from the source of impinging coolant and/or contaminant. The dimension of interface gap between the rotor and the radial projection from the stator, which the access to the shaft of any impinging material, is fixed at a predetermined value and does not vary with the relative movement between the rotor and the stator. The novel seal assembly of this invention thus provides improved rejection or warding off of contaminates from ingress into the labyrinths and ultimately restrained from attacking the bearing environment.
公开号:US20010002742A1
申请号:US09/139,499
申请日:1998-08-25
公开日:2001-06-07
发明作者:David C. Orlowski
申请人:Harsha H Vicent;
IPC主号:F16J15-4478
专利说明:
[0001] This invention relates generally to shaft sealing devices for use with rotating equipment. Adequate maintenance of rotating equipment is difficult to obtain because of extreme equipment duty cycles, the lessening of service factors, design and the lack of spare rotating equipment in many processing plants. This is especially true of machine tool spindles, wet end paper machine rolls, aluminum rolling mills and steam quench pumps and other equipment utilizing extreme contamination affecting lubrication. [0001]
[0002] Various forms of shaft sealing devices have been utilized to try to protect the integrity of the bearing environment, including rubber lip seals, clearance labyrinth seals, and attraction magnetic seals. Lip seals or O-ring shaft seals can quickly wear out and fail and are also known to permit excessive amounts of moisture and other contaminants to immigrate into oil reservoir of the operating equipment even before failure had the interface between the rotor and the stator exposed to the contaminates or lubricants at the radial extremity of the seal. [0002]
[0003] Labyrinth-type seals involving closely related stator and rotor rings, which do not contact each other but define labyrinth passages between them have been devised and utilized and are illustrated in Orlowski, U.S. Pat. Nos. 4,706,968; 4,989,883; 5,069,461; and the additional patents to Orlowski cited therein. As described in Orlowski U.S. Pat. Nos. 4,989,883 and 5,069,461, improvements in labyrinth seals are disclosed including the utilization of various forms of O-ring seals to improve the static sealing action when the shaft is at rest and non-contact dynamic sealing action is provided when the shaft is rotating. [0003]
[0004] An improvement over these labyrinth seals and o-ring seals is described in U.S. Pat. No. 5,378,000. There the isolator or seal provides a sealing ring inserted in recesses in the rotor and the stator to lock together the rotor and stator in an axial direction. This actual lock up of rotor and stator dramatically reduces the possibility of migration of rotor from stator. The resultant is a reduced radial interface gap variation from that which had existed previously between the rotor and the stator. [0004]
[0005] An objective of the present invention is to provide an improvement to seals or bearing isolators to prevent leakage of lubricant and entry of contaminants by encompassing the stator within the rotor to create an axial directed interface at the radial extremity of the rotor. Prior art seals traditionally had the interface between the rotor and the stator exposed radially to the contaminants or lubricants at the radial extremity of the seal. [0005]
[0006] The projection of an axial portion of the stator into the rotor has been expanded radially. This projection or protruding member of the stator into the rotor has been expanded radially beyond the diameter of the major portion or body of the stator. [0006]
[0007] The rotor and the recess in the rotor, which previously surrounded the stator projection or insertion, is also extended radially beyond the major portion of the stator. The rotor now encompasses the stator, or a substantial portion of the stator projection, in such a manner that the interface presented to the ingress of the lubricant or contaminates is facing axially and rearwardly. The axial facing interface presents a limited access to the internal of the seal and a constant dimensional interface between the rotor and the stator regardless of any axial movement of the rotor with respect to the stator. [0007]
[0008] A groove may be machined into the stator to accentuate the novel radial extension of the rotor and the stator. This groove improves the ability of the seal to prevent contaminates from entering the axial interface gap between the rotor and the stator. [0008]
[0009] This novel improvement i.e. the encapsulation of the stator by the rotor enables the interface gap between the accessible portions of the stator and the rotor to be of a predetermined dimension. The improvement also means that there is no fluctuation or variation in the interface gap resulting from any relative axial movement between the rotor and the stator. [0009]
[0010] This novel seal or bearing isolator will operate to vastly improve the rejection or ingress of contaminants into the interface gap between the rotor and stator. The entrance to the interface gap is facing or directed away from the normal flow of contaminants i.e. along the axis of the shaft toward the housing. The interface gap can be machined to extremely close tolerances because there is no movement radially between the rotor and the stator and any axial movement does not affect the interface. [0010]
[0011] Other objects, advantages embodiments of the invention will become apparent upon the reading the following detailed description and upon reference to drawings and the prior art patents. [0011] BRIEF DESCRIPTION OF THE DRAWINGS
[0012] FIG. 1 is a sectional view showing the sealing structure of the prior art with a shaft. [0012]
[0013] FIG. 2 is a sectional view showing the improved sealing structure of this invention with a shaft. [0013] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION
[0014] FIG. 1 shows the prior art having the most control over the relative axial movement between rotor and stator. The prior art essentially had the interfacing gap opening radially into the lubrication or contaminant substantially as shown in FIG. 1. [0014]
[0015] The novelty of this invention is as shown in FIG. 2 and as described herein. The invention can also be utilized on seals or bearing isolators using only labyrinths as shown in much of the prior art referenced. [0015]
[0016] It should be noted, as shown in FIG. 2, that the location of the gap with respect to rotor and stator surfaces and the direction of the opening interface gap are both important to this invention. [0016]
[0017] In FIG. 1, axial movement of the rotor [0017] 13 relative to the stator 14 will change the size of the radial interface gaps 20 and 21. Radial interface gap 21 is also receptive to contaminants, especially in extreme conditions presented to the surfaces 13 a and 14 a of the rotor 13 and the stator 14 regardless of the dimension of the interface gap 21.
[0018] As shown in FIG. 2 this invention extends the rotor [0018] 13 radially well beyond the major diameter of the stator 14. This permits the rotor 13 to encompass the also radially extended projection 19 of the stator 14. It is important that this radial extension of the rotor 13 extends beyond the basic radial dimension of stator 14. This requires a departure from the prior art wherein the rotor 13 was radially co-extensive with the major diameter of the stator 14.
[0019] The interface gap [0019] 21 between the rotor 13 and stator 14 that is exposed to the contamination or lubricants is now fixed in dimension and independent of any relative axial movement between the rotor 13 and the stator 14. The interface gap 20 is still subject to variation in dimension by any relative movement between the rotor 13 and the stator 14. This relative movement is not significant to the operation in as much as only a small amount of contaminates have been able to enter the labyrinth because of size and location of the interface gap. The removal of the interface gap 21 from variations is more important in seals where the stator 13 and the rotor 14 are not restrained from relative movement.
[0020] The orientation of the opening of the interface gap of [0020] 21 is important regardless of relative movement between the rotor and stator. The interface gap 21 being axially oriented to control entrance of contaminates is novel and important. The opening of the interface gap 21 is now facing rearwardly toward the housing and away from the contaminates stream. The contaminate or cooling stream will normally be directed along the axis of the shaft 10 and toward the housing 11.
[0021] A groove [0021] 22 may be cut in stator 14. This groove 22 enhances and accentuates the benefits of the radial extension of the rotor 13 and the stator 14 with the resultant orientation and independence of interface gap 21.
[0022] This seal may be made from any machinable metal such as bronze or stainless steel or machineable plastics such as Teflon® or other machinable plastics. [0022]
[0023] Variations and other aspects of the preferred embodiment will occur to those versed in the art all without departure from the spirit and scope of the invention. [0023]
权利要求:
Claims (17)
[1" id="US-20010002742-A1-CLM-00001] 1. A seal for sealing a rotating shaft entering a housing comprising:
a. a stator surrounding a shaft and affixed to a housing, said stator having a main body and a projection extending both axially and radially beyond said main body;
b. a rotor surrounding said shaft and rotatively connected to said shaft;
c. said rotor and said stator abutting each other on said shaft;
d. said rotor encompassing said projection of said stator.
[2" id="US-20010002742-A1-CLM-00002] 2. A seal, according to
claim 1 wherein said rotor axially and radially extends beyond said projection on said stator.
[3" id="US-20010002742-A1-CLM-00003] 3. A seal, according to
claim 1 , wherein the space between said rotor and said stator projection forms passages.
[4" id="US-20010002742-A1-CLM-00004] 4. A seal, according to
claim 3 , wherein said passages include an axial passage opening to the space between said housing and radial extension of the rotor and stator.
[5" id="US-20010002742-A1-CLM-00005] 5. A seal, in accordance to
claim 3 , wherein dimension of said axial passage is constant.
[6" id="US-20010002742-A1-CLM-00006] 6. A seal, in accordance to
claim 5 , wherein the dimension of said axial passage is predetermined.
[7" id="US-20010002742-A1-CLM-00007] 7. A seal, in accordance to
claim 4 , wherein said opening of said axial passage faces the stator.
[8" id="US-20010002742-A1-CLM-00008] 8. A seal, in accordance to
claim 4 , wherein said opening of said axial passage faces away from said coolant, said rotor and towards said housing.
[9" id="US-20010002742-A1-CLM-00009] 9. A seal, according to
claim 1 , wherein there is at least one labyrinth formed between the main body of said stator and said rotor.
[10" id="US-20010002742-A1-CLM-00010] 10. A seal, according to
claim 1 , wherein said rotor and said stator are restrained from relative axial movement between each other.
[11" id="US-20010002742-A1-CLM-00011] 11. A seal, according to
claim 1 , wherein a groove is formed in said main body of said stator, said groove augmenting the radial extension of said projection from said stator.
[12" id="US-20010002742-A1-CLM-00012] 12. A seal, according to
claim 1 , wherein a groove formed in said body of said stator, augments the axial extension of said projection of said body of said stator.
[13" id="US-20010002742-A1-CLM-00013] 13. A seal, according to
claim 2 , wherein said main body of said stator surrounds a portion of said rotor.
[14" id="US-20010002742-A1-CLM-00014] 14. A seal, according to
claim 3 , wherein the radius of the radial internal surface of the rotor encompassing said stator is greater than the radius of the exterior surface of said radial projection of said stator.
[15" id="US-20010002742-A1-CLM-00015] 15. A method of sealing a shaft exit a housing, the method comprising:
a. fixing a stator having a main body and a projection extending both radially and axially beyond the main body of said stator to the housing concentrically about the shaft;
b. mounting a rotor sealed on the shaft in close relation to the housing for rotation with the shaft;
c. the rotor encompassing the radially extremity of the radial projection of the stator and having overlapping radially spaced surfaces forming an axial passage between the surfaces of the rotor and the stator extension;
d. the opening of said axial passage faced away from said rotor and toward the body of said stator.
[16" id="US-20010002742-A1-CLM-00016] 16. The method of
claim 15 , including at least one labyrinth between the rotor and the main body of the stator.
[17" id="US-20010002742-A1-CLM-00017] 17. The method of
claim 15 , including the steps of rotatively connecting the stator to the rotor to prevent relative axial movement between the stator and the rotor.
类似技术:
公开号 | 公开日 | 专利标题
US6419233B2|2002-07-16|Shaft seal assembly
EP0304160B1|1994-01-05|Seal assembly
US6234489B1|2001-05-22|Bearing isolator
US4565378A|1986-01-21|Shaft seal with lip lifting in response to shaft rotation and gas pressure
CA2035013C|1994-06-28|Static and dynamic shaft seal assembly
US7521827B2|2009-04-21|Motor ground seal
EP0737821B1|2001-11-07|Bearing seal
US4497495A|1985-02-05|Unitized wheel bearing seal with multiple lips
EP0243406B1|1993-09-29|Sealing method for bearing assemblies
US5558491A|1996-09-24|Unitized product seal for pumps
GB2270724A|1994-03-23|Machine tools
US6367807B1|2002-04-09|Labyrinth seal assembly
US10113644B2|2018-10-30|Self-lubricating and draining, contacting face, rotating shaft seal
GB2261037A|1993-05-05|Rolling bearing seal
US5046868A|1991-09-10|Bearing wiper seal
US4418920A|1983-12-06|Fluid seal for engine crankshaft applications
JPH0921397A|1997-01-21|Bearing seal device for water pump
EP0995917B1|2002-04-10|Sealing assembly for two mechanical members connected for relative rotation, in particular for two rings of a rolling bearing
Kent1984|Operation and application of all rubber axial face seals
Bloch1993|Bearing seals ward off failures
Otto1978|Sealing Considerations for Tapered Roller Bearings
GB2276681A|1994-10-05|Sealing arrangements
CA2001408A1|1990-05-03|Bearing wiper seal
同族专利:
公开号 | 公开日
AT454580T|2010-01-15|
DK1053421T3|2010-04-26|
ZA200001985B|2000-11-01|
AU5580399A|2000-03-14|
US6419233B2|2002-07-16|
CA2306834C|2006-05-09|
AU740388B2|2001-11-01|
CY1110908T1|2015-06-10|
ES2338617T3|2010-05-10|
DE69941893D1|2010-02-25|
JP3827950B2|2006-09-27|
EP1053421B8|2010-03-10|
EP1053421B1|2010-01-06|
WO2000011380A1|2000-03-02|
CA2306834A1|2000-03-02|
JP2002523700A|2002-07-30|
EP1053421A4|2004-03-24|
EP1053421A1|2000-11-22|
BR9906898A|2002-01-15|
PT1053421E|2010-03-04|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US20040070150A1|2002-09-30|2004-04-15|Elizabeth Chitren|Unitizing element and method for assembling a seal|
US20080001362A1|2002-09-30|2008-01-03|Garlock Sealing Technologies|Split bearing isolator and a method for assembling seal|
US20090096627A1|2006-09-07|2009-04-16|Orlowski David C|Bearing Monitoring Method|
US20110109047A1|2009-11-11|2011-05-12|Garlock Sealing Technologies, Llc|Flooded bearing isolator|
CN102192331A|2010-03-16|2011-09-21|上海市离心机械研究所有限公司|Axial and radial combined sealing device and assembling method thereof|
CN103291641A|2013-05-16|2013-09-11|安徽三环水泵有限责任公司|Mining special multistage centrifugal pump|
US20140064936A1|2011-01-28|2014-03-06|Aktiebolaget Skf|Reinforced seal for rotary shafts|
US20140361490A1|2011-12-19|2014-12-11|Aktiebolaget Skf|Pressure Resistant Static and Dynamic Seal Assembly and Method|
US20140374993A1|2011-12-19|2014-12-25|Aktiebolaget Skf|Pressure Resistant Static and Dynamic Seal Assembly and Method|
US9140366B2|2014-01-10|2015-09-22|Flowserve Management Company|Bearing isolator seal for rotating shaft|
JP2016512870A|2013-03-17|2016-05-09|パウル ミュラー ゲーエムベーハー ウント コンパニー カーゲー ウンターネーメンスベタイリグンゲン|Sealing element|
US9587743B2|2012-02-10|2017-03-07|Orion Engineered Seals, Llc|Labyrinth seal|
US10203036B2|2015-06-18|2019-02-12|Inpro/Seal Llc|Shaft seal assembly|
US10704692B1|2017-04-26|2020-07-07|Garlock Sealing Technologies, Llc|Flooded metallic bearing isolator|
US10753478B2|2016-11-07|2020-08-25|Garlock Sealing Technologies, Llc|Bearing isolator for extreme conditions|US2014859A|1934-03-03|1935-09-17|Jr David Mitchell|Bearing seal|
AT286034B|1968-11-25|1970-11-25|Binder Co Ag|Device for sealing a bearing|
US4466620B1|1982-12-27|1988-03-15|||
US4484754A|1984-01-31|1984-11-27|Ballard Michael J|Ring seal with overlapping flanges for contaminant trapping|
IT1187539B|1985-02-28|1987-12-23|Danieli Off Mecc|LABYRINTH SEAL|
JPS6250378U|1985-09-17|1987-03-28|||
US4706968A|1986-12-01|1987-11-17|Orlowski David C|Sealing rings with complimentary ring members|
JPS63112625U|1987-01-16|1988-07-20|||
US4743034A|1987-03-27|1988-05-10|Durametallic Corporation|Labyrinth bearing protector seal|
US5024451A|1990-07-05|1991-06-18|Garlock Inc.|Multi-position labyrinth seal ring|
US5378000A|1992-10-19|1995-01-03|Inpro Companies, Inc.|Shaft seal assembly|
US5967524A|1993-05-21|1999-10-19|Jm Clipper Corporation|Hybrid seal device|
US5522601A|1994-01-18|1996-06-04|Goulds Pumps, Incorporated|Locking labyrinth sealing assembly|
JPH09196186A|1996-01-19|1997-07-29|Japan Energy Corp|Labyrinth seal device|
US5904356A|1996-09-11|1999-05-18|Mundy; David R.|Labyrinth seal with contaminant purging passageway for bearing housings|
US6062568A|1997-07-10|2000-05-16|Orlowski; David C.|Bearing isolator with air purge|
US6234489B1|1999-02-05|2001-05-22|Isotech Of Illinois, Inc.|Bearing isolator|AU2003211184B2|1998-07-06|2007-09-13|Skf Australia Pty Ltd|Axle box sealing system|
AU784026B2|1999-07-06|2006-01-19|Skf Australia Pty Ltd|Axle box sealing system|
US6726214B2|1998-11-25|2004-04-27|Jm Clipper Corporation|Wrap-around severe splash seal|
US7052014B1|1999-02-04|2006-05-30|Orlowski David C|Snap together bearing isolator|
US6834859B2|2002-01-31|2004-12-28|Garlock Sealing Technologies Llc|Labyrinth grease hub seal|
US20040227299A1|2003-05-12|2004-11-18|Brian Simmons|Magnetic bearing isolator|
JP5512927B2|2004-07-12|2014-06-04|エイイーエスエンジニアリングリミテッド|Isolator seal|
US9831739B2|2012-06-18|2017-11-28|Inpro/Seal Llc|Explosion-proof current diverting device|
US20110204734A1|2005-06-25|2011-08-25|Orlowski David C|Motor Grounding Seal|
US8604653B2|2005-06-25|2013-12-10|Inpro/Seal, LLC|Current diverter ring|
US7521827B2|2005-06-25|2009-04-21|Isotech Of Illinois, Inc.|Motor ground seal|
GB0516151D0|2005-08-05|2005-09-14|Aes Eng Ltd|Non-contacting bearing protector with integral vortices barrier system|
US8421286B2|2008-07-03|2013-04-16|Nidec Motor Corporation|Kit and method for attaching a grounding ring to an electrical motor|
US20130228977A1|2010-12-01|2013-09-05|Parker-Hannifin Corporation|Bearing isolator|
TW201338356A|2011-12-08|2013-09-16|Inpro Seal Llc|Current diverter ring|
TWI600257B|2012-06-18|2017-09-21|英普羅密封有限責任公司|Current diverter ring|
CN106233048B|2013-10-10|2019-03-12|Whw集团公司|Shaft seal assembly with pollution detection system|
US9709172B2|2013-12-02|2017-07-18|Farrel Corporation|Rotor shaft seal assembly|
US9917491B2|2014-03-07|2018-03-13|Nidec Motor Corporation|Ground ring and enclosure in an electric motor|
US10927961B2|2015-04-21|2021-02-23|Inpro/Seal Llc|Shaft seal assembly|
MX2017013421A|2015-04-21|2018-01-11|Inpro/Seal Llc|Shaft seal assembly.|
法律状态:
1999-01-19| AS| Assignment|Owner name: INPRO COMPANIES, INC., ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ORLOWSKI, DAVID C.;REEL/FRAME:009699/0861 Effective date: 19980825 |
1999-05-13| AS| Assignment|Owner name: ISOTECH OF ILLINOIS, INC., ILLINOIS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE RECEIVING PARTY PREVIOUSLY RECORDED ON REEL 9699 FRAME 0861;ASSIGNOR:ORLOWSKI, DAVID C.;REEL/FRAME:010115/0864 Effective date: 19980825 |
2002-06-27| STCF| Information on status: patent grant|Free format text: PATENTED CASE |
2005-09-14| FPAY| Fee payment|Year of fee payment: 4 |
2010-01-07| AS| Assignment|Owner name: WAUKESHA ACQUISITION, LLC, WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:INPRO/SEAL CO.;ISOTECH OF ILLINOIS, INC.;COJEN HOLDINGS, L.L.C.;REEL/FRAME:023741/0832 Effective date: 20091229 Owner name: WAUKESHA ACQUISITION, LLC,WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:INPRO/SEAL CO.;ISOTECH OF ILLINOIS, INC.;COJEN HOLDINGS, L.L.C.;REEL/FRAME:023741/0832 Effective date: 20091229 |
2010-02-22| REMI| Maintenance fee reminder mailed|
2010-03-19| AS| Assignment|Owner name: INPRO/SEAL LLC,ILLINOIS Free format text: CHANGE OF NAME;ASSIGNOR:WAUKESHA ACQUISITION, LLC;REEL/FRAME:024103/0684 Effective date: 20100216 Owner name: INPRO/SEAL LLC, ILLINOIS Free format text: CHANGE OF NAME;ASSIGNOR:WAUKESHA ACQUISITION, LLC;REEL/FRAME:024103/0684 Effective date: 20100216 |
2010-04-01| FPAY| Fee payment|Year of fee payment: 8 |
2010-04-01| SULP| Surcharge for late payment|Year of fee payment: 7 |
2014-01-16| FPAY| Fee payment|Year of fee payment: 12 |
优先权:
申请号 | 申请日 | 专利标题
US09/139,499|US6419233B2|1998-08-25|1998-08-25|Shaft seal assembly|US09/139,499| US6419233B2|1998-08-25|1998-08-25|Shaft seal assembly|
BR9906898-2A| BR9906898A|1998-08-25|1999-08-24|Improved shaft seal assembly|
DK99942419.5T| DK1053421T3|1998-08-25|1999-08-24|Improved shaft seal assembly|
DE69941893T| DE69941893D1|1998-08-25|1999-08-24|SHAFT SEAL|
CA002306834A| CA2306834C|1998-08-25|1999-08-24|Improved shaft seal assembly|
PT99942419T| PT1053421E|1998-08-25|1999-08-24|Improved shaft seal assembly|
JP2000566600A| JP3827950B2|1998-08-25|1999-08-24|Shaft sealing device|
PCT/US1999/019155| WO2000011380A1|1998-08-25|1999-08-24|Improved shaft seal assembly|
ES99942419T| ES2338617T3|1998-08-25|1999-08-24|ASSEMBLY OF BOARD FOR IMPROVED TREE.|
AT99942419T| AT454580T|1998-08-25|1999-08-24|SHAFT SEAL|
AU55803/99A| AU740388B2|1998-08-25|1999-08-24|Improved shaft seal assembly|
EP99942419A| EP1053421B8|1998-08-25|1999-08-24|Improved shaft seal assembly|
ZA200001985A| ZA200001985B|1998-08-25|2000-04-19|Improved shaft seal assembly.|
CY20101100290T| CY1110908T1|1998-08-25|2010-03-29|ASSEMBLING OF IMPROVED SHAPE SEAL|
[返回顶部]