专利摘要:
An interconnection contact structure assembly including an electronic component having a surface and a conductive contact carried by the electronic component and accessible at the surface. The contact structure includes an internal flexible elongate member having first and second ends and with the first end forming a first intimate bond to the surface of said conductive contact terminal without the use of a separate bonding material. An electrically conductive shell is provided and is formed of at least one layer of a conductive material enveloping the elongate member and forming a second intimate bond with at lease a portion of the conductive contact terminal immediately adjacent the first intimate bond.
公开号:US20010002624A1
申请号:US09/295,269
申请日:1999-04-20
公开日:2001-06-07
发明作者:Igor Y. Khandros;Gaetan L. Mathieu
申请人:Igor Y. Khandros;Gaetan L. Mathieu;
IPC主号:H05K7-1069
专利说明:
[0001] This application is a continuation-in-part of application Ser. No. 08/152,812 filed on Nov. 16, 1993. This invention relates to an interconnection contact structure, interposer, semiconductor assembly and package using the same and method for fabricating the same. [0001]
[0002] Heretofore many types of interconnections which have been provided for use with the semiconductor devices have suffered from one or more disadvantages limiting their broad application in the semiconductor industry. There is therefore need for new and improved interconnection contact structure which overcomes such disadvantages so that it will be particularly useful in semiconductor assemblies and packages and which can be broadly used throughout the semiconductor industry. [0002]
[0003] In general, it is an object of the present invention to provide a contact structure, interposer, a semiconductor assembly and package using the same and a method for fabricating the same which makes it possible to use contact structures and particularly resilient contact structures attached directly to active silicon devices. [0003]
[0004] Another object of the invention is to provide a structure, interposer, assembly and method which makes it possible to utilize under chip capacitors to save in real estate. [0004]
[0005] Another object of the invention is to provide a structure, interposer, assembly and method of the above character which can be utilized for providing more than one substrate precursor populated with card ready silicon on both sides which optionally can be interconnected with resilient contacts. [0005]
[0006] Additional objects and features of the invention will appear from the following description in which the preferred embodiments are set forth in the accompanying drawings. [0006]
[0007] FIG. 1 is a partial isometric view of a “skeleton and muscle” contact structure incorporating the present invention which is in the form of a freestanding pin. [0007]
[0008] FIG. 2 is a partial isometric view similar to FIG. 1 but showing a resilient contact structure with a bend therein. [0008]
[0009] FIG. 3 is side elevational view in section showing a contact structure with multiple bends and with a multiple layer shell. [0009]
[0010] FIG. 4 is a side elevational view in section of another embodiment of a contact structure incorporating the present invention in which the shell is provided with protrusions. [0010]
[0011] FIG. 5 is a side elevational view in section showing another embodiment of a contact structure incorporating the present invention in which the bend portion of the contact structure is shorted together by an electrically conducting filled compliant elastomeric layer. [0011]
[0012] FIG. 6 is an isometric view in section of another contact structure incorporating the present invention utilized in conjunction with plated-through holes in a printed circuit board. [0012]
[0013] FIG. 7 is an isometric view in section of another embodiment of the contact structure incorporating the present invention utilized in conjunction with plated-through holes in a printed circuit board in which a resilient contact structure is provided on one side of the printed circuit board and in which the other side is provided with a contact structure that need not be resilient. [0013]
[0014] FIG. 8 is a side elevational view in section of another contact structure incorporating the present invention and in which a plurality of stems of the type described in FIG. 1 have been bridged together by a solder layer to form a solder column structure. [0014]
[0015] FIG. 9 is a side elevational isometric view in section of a contact structure incorporating the present invention in which two redundant resilient compliant contact structures are provided per contact terminal. [0015]
[0016] FIG. 10 is a side elevational isometric view in section of another contact structure incorporating the present invention in which three resilient contact structures are bridged together by a solder layer at the uppermost and lowermost extremities while leaving the intermediate bend portions free of the solder so that a compliant solder column is provided. [0016]
[0017] FIG. 11 is a side elevational view in section of another embodiment of a contact structure incorporating the present invention in which the contact structure extends over an edge of the substrate to form a probe contact. [0017]
[0018] FIG. 12 is a side elevational view in section or another contact structure incorporating the present invention which shows use of a shielded contact probe. [0018]
[0019] FIG. 13 is an isometric view partially in section of another contact structure incorporating the present invention in which contact structures can originate on one side of a contact carrier substrate such as a printed circuit board and have one of the contacts extend through a hole to the other side and having the other contact structure extending from the same side. [0019]
[0020] FIG. 14 is a combination side elevational and isometric view in section of another embodiment of the contact structure incorporating the present invention in which the probe is provided with a distal extremity which has a topography to minimize contact resistance when it is in engagement with another contact terminal. [0020]
[0021] FIG. 15 is a view similar to FIG. 15 but showing use of a cantilevered contact. [0021]
[0022] FIG. 16 is an isometric view partially in section of a contact structure incorporating the present invention in which the contact structures are formed into loops. [0022]
[0023] FIG. 17 is a view similar to FIG. 16 but showing two loops per contact and a solder layer bridged the loops to form a solder column. [0023]
[0024] FIG. 18 is an isometric view partially in section showing a contact structure incorporating the present invention in which the contact structures are arranged to form a fence which can serve as a dam for a massive solder column as for example one utilized as a thermal interconnect. [0024]
[0025] FIG. 19 is an isometric view partially in section showing an interposer incorporating the present invention. [0025]
[0026] FIG. 20 is an isometric view partially in section showing a double-sided interposer. [0026]
[0027] FIG. 21 is an isometric view partially in section or another interposer incorporating the present invention with resilient contact structures on one side and solderable contacts provided on the other side. [0027]
[0028] FIG. 22 is an isometric view partially in section showing another embodiment of an interposer incorporating the present invention utilizing double-sided resilient compliant contact structures and standoffs. [0028]
[0029] FIG. 23 is an isometric view partially in section of an active semiconductor assembly incorporating the present invention. [0029]
[0030] FIG. 24 is an isometric view partially in section showing staggered contact structures with alignment pins. [0030]
[0031] FIG. 25 is a side elevational view in section of a semiconductor package incorporating the present invention showing a double-sided flip chip attachment. [0031]
[0032] FIG. 26 is a side elevational view in section of a semiconductor package incorporating the present invention. [0032]
[0033] FIG. 27 is a side elevational view in section of another embodiment of a semiconductor package incorporating the present invention utilizing demountable contact structures. [0033]
[0034] FIG. 28 is a side elevational view in section of another semiconductor package incorporating the present invention which utilizing resilient contact structures demountably interconnected and plated through holes. [0034]
[0035] FIG. 29 is a side elevational view in section of another semiconductor package assembly incorporating the present invention utilizing latching springs. [0035]
[0036] FIG. 30 is a side elevational view in section of another semiconductor package incorporating the present invention utilizing alignment pins. [0036]
[0037] FIG. 31 is a side elevational view in section of another semiconductor package incorporating the present invention carrying a below-the-surface capacitor. [0037]
[0038] FIG. 32 is a side elevational view in section or another semiconductor package incorporating the present invention showing the mounting of a plurality of capacitors. [0038]
[0039] FIG. 33 is a side elevational view in section of another semiconductor package incorporating the present invention utilizing a decoupling capacitor. [0039]
[0040] FIG. 34 is a side elevational view in section of another semiconductor package incorporating the present invention utilizing a motherboard. [0040]
[0041] FIG. 35 is a side elevational view in section of another semiconductor package incorporating the present invention utilizing an interposer. [0041]
[0042] FIG. 36 is an isometric view partially in section of a semiconductor package incorporating the present invention utilizing an interconnection substrate. [0042]
[0043] FIG. 37 is a side elevational view of a semiconductor package incorporating four layers of semiconductor devices in the form of double-sided precursors. [0043]
[0044] FIG. 38 is a side elevational view in section of a semiconductor package incorporating the present invention showing vertically stacked silicon chips. [0044]
[0045] In general the contact structure of the present invention is for use with a device which incorporates an electronic component having a surface and a conductive contact pad thereon accessible from the surface of the electronic component and also having a surface. A conductive flexible elongate element is provided which has first and second ends. Means is provided for bonding the first end to the contact pad to form a first intimate bond with the second end being free. A conductive shell envelops the flexible elongate element and at least a portion of the surface of the contact pad immediately adjacent the means bonding the first end to the contact pad to provide a second intimate bond so that the bond strength between the contact pad and the conductive shell is greater than the bond strength between the contact pad and the flexible elongate element. [0045]
[0046] More particularly as shown in the drawings, the contact Structure [0046] 101 in FIG. 1 is for use for making contact to an electronic component 102 which for example can be an active or passive semiconductor device of a plastic laminate, ceramic or silicon package carrying one or more semiconductor devices. It also can be an interconnection component such as a connector. Alternatively, it can be a production, test or burn-in socket for a semiconductor package or semiconductor device. In any event the electronic component 102, which also can be called a support structure, is utilized for carrying the contact structures 101. The electronic component is provided with one or more conductive contact pads 103 which typically lie in a plane on a surface 104 or accessible from or through the surface 104 of the electronic component 102 with the pads 103 being positioned at various locations and lying in various planes at various angles. The pads 103 can be peripherally positioned at the perimeter of the electronic component 102. They also can be placed in an area array, near an edge or in a central line pad-out or a combination of the above well known to those skilled in the art. Typically each pad 103 has an electrical function dedicated to it. In certain applications, the contact pads 103 may in fact lie in different planes, or overlie the edge of a component. The contact pads 103 can be of any desired geometry. For example they can be circular or rectangular in plan and have exposed surfaces 105. The pads 103 by way of example can have any dimension, but typically ranging from 2 to 50 mils.
[0047] The contact structure [0047] 101 consists of an elongate element 106 which typically is flexible because of its small diameter, the flexibility intended for ease of shaping, and has first and second ends 107 and 108. It also can be called a core wire or “skeleton”. The elongate element 106 is formed of a suitable conductive material such as gold, aluminum or copper with small amounts of other metals to obtain desired physical properties as for example beryllium, cadmium, silicon and magnesium. In addition, metals or alloys such as metals of the platinum group, can be utilized. Alternatively, lead, tin, indium or their alloys can be used to form the elongate element. The elongate element 106 can have a diameter ranging from 0.25 to 10 mils with a preferred diameter of 0.5 to 3 mils. The elongate element 106 can have any desired length but typically it would have a length commensurate with its use in connection with the small geometry semiconductor devices and packaging would range from 10 mils to 500 mils.
[0048] Means is provided for forming a first intimate bond between the first end [0048] 107 of the conductive elongate element 106 and one of the contact pads 103. Any suitable means can be utilized for making this connection. For example, a wire bond utilizing a capillary tube (not shown) having the elongate element 106 extending therethrough and typically having a ball provided on the first end is brought into engagement with the pad 103 whereby upon the application of pressure and temperature or ultrasonic energy, a wire bond, typically a ball-type bond 111 is formed connecting the first end 107 of the elongate element 106 to the pad 103. After the desired wire bond 111 has been formed, the capillary tube can be raised to permit a desired length of the elongate element 106 to extend from the capillary tube and a cut can be made by locally melting the wire to sever the elongate element 106 and to cause a ball 112 to be formed on the second end 108 of the elongate element 106 and also to provide a corresponding ball on the remaining length of elongate element 106 in the capillary tube so that the next contact structure can be made utilizing the same wire bonding machine with the next pad if it is desired to make a ball-type bond connection. Alternatively, wedge-type bonds can be utilized.
[0049] In accordance with the present invention, a conductive shell [0049] 116 which also can be called “muscle” which covers the “skeleton”, is formed over the elongate element 106 and completely surrounds the same as well as the surface area 105 of the contact pad 103 which immediately surrounds the wire bond 111 and preferably extends over the contact pad 103 to form a second intimate bond to the contact pad 103 by direct adhesion to the entire exposed surface of the contact pad. Thus, the contact structure 101 is anchored to the contact paid 103 by the first and second intimate bonds. The shell 116 in addition to having conductive properties also has other mechanical properties desired for the composite contact structure 101 as hereinafter explained.
[0050] The shell [0050] 116 is formed of a material to provide desired mechanical properties for the contact structure. The material of the shell should principally be of a material which has a high yield strength with at least thirty thousand pounds per square inch. In connection with the present contact structure, the adhesion strength between the contact structure 101 and the contact pad 103 is principally or predominantly due, i.e., more than 50%, to the adhesion between the shell 116 and the contact pad 103. The shell 116 typically has a wall thickness ranging from 0.20 mils to 20 mils and preferably has a wall thickness of 0.25 to 10 mils. The shell 116 in accordance with the present invention adheres to the elongate element or skeleton 106 along its length and to the surface or the pad 103 to provide in effect a unitary structure. Typically the hardness of the elongate element or skeleton 106 is less than that of the material on the shell. When it is desired to have a contact structure which deforms plastically, the shell 116 can be formed of a conductive material such as copper or solder, exemplified by lead-tin solder. When it is desired to have the shell 116 have spring properties, nickel, iron, cobalt or an alloy thereof can be used. Other materials which would render desirable properties to the shell 166 in certain applications are copper, nickel, cobalt, tin, boron, phosphorous, chromium, tungsten, molybdenum, bismuth, indium, cesium, antimony, gold, silver, rhodium, palladium, platinum, ruthenium and their alloys. Typically, the top layer comprising the shell, if it is required, consists of gold, silver, metals or alloys of metals of the platinum group or various solder alloys. Certain materials, as for example nickel, when electroplated under certain bath conditions, onto the elongate element 106 will form internal compressive stresses to increase the stress required to deform or break a resulting contact structure 101. Certain materials such as nickel can provide a tensile strength in excess of 80,000 lbs. per square inch.
[0051] The shell or “muscle” [0051] 116 made of one or more of the materials listed above typically can be formed onto the flexible elongate element or “skeleton” by the use of a conventional aqueous plating technique. The shell 116 also can be provided by enveloping the elongate element 106 using physical or chemical vapor deposition techniques utilized in conventional thin film processes and can include decomposition processes using gaseous, liquid or solid precursors as well as evaporating or sputtering.
[0052] Thus it can be seen that the final properties desired for the contact structure [0052] 101 can be readily designed into the contact structure 101 comprising the skeleton 106 and the muscle 116 while achieving the desired conductivity and other physical properties as for example a desired pull strength or adhesion for the first and second intimate bonds formed with the contact pad 103. The shell or muscle 116 which completely envelops the flexible elongate element or skeleton 106 overlies the contact pad 103 to form the second adhesive bond therewith.
[0053] In connection with the foregoing description, a single contact structure [0053] 101 has been described. However it should be appreciated that many hundreds of contact structures 101 can be created at the same time during the plating or deposition process on a single electronic component or a plurality of such electronic components.
[0054] As can be seen, the shell [0054] 116 has a substantial uniform thickness throughout its length and in overlying the contact pad 103. The thickness of the shell can alternatively vary by adjusting the nature of the layers comprising the shell or by varying deposition parameters. The uppermost free extremity of the contact structure or pin 101 is only slightly larger to reflect the shape of the ball 112 typically provided on the second or free end of the elongate element 106 below the shell 116. It should be appreciated that if desired, the ball 112 provided on the second end of the elongate element 106 can be eliminated if desired by using means cutting the continuous wire other than by the use of a melting technique. Thus the second end would be in the form of a substantially cylindrical member having the same diameter as the diameter of the elongate element 106.
[0055] When it is desired to provide resiliency in a contact structure, the contact structure [0055] 121 shown in FIG. 2 can be utilized. The contact structure 121 consists of a flexible elongate conductive element 122 which can be formed of the same conductive materials as the elongate element 106 shown in FIG. 1. It is provided with first and second ends 123 and 124 with a ball-type bond 126 formed on the first end 123 and adhered to the pad 103 in the same manner as the ball bond 111. While the elongate conductive element 122 is being discharged through the capillary of the wire bonder, a cantilever or cantilever portion 122 a forms a bend. Thus, there is provided a bend which forms at least one cantilevered portion. Such a cantilevered portion can give resilient capabilities to the contact structure 121 as hereinafter provided. After the bend 122 a has been formed, a tip 127 is provided on the second end 124 by an appropriate severing operation. A shell 131 is thereafter formed on the elongate conductive element 122 in the same manner as the shell 116 hereinbefore described to encompass the elongate conductive element 122 and being adherent to and overlying the contact pad 103. It can be appreciated that a variety of shapes other than the exact one depicted in FIG. 2 can be utilized.
[0056] In order to impart additional strength to the contract structure [0056] 121, the shell 131 principally is formed of a material which will impart high yield strengthening properties, as for example a strong, conductive, hard material to a thickness as hereinbefore described in connection with FIG. 1. Such a conductive material can be selected from the group of nickel, cobalt, iron, phosphorous, boron, copper, tungsten, molybdenum, rhodium, chromium, ruthenium, lead, tin and their alloys.
[0057] In the contact structure [0057] 121 it can be seen that the elongate conductive element 122 defines the trajectory or shape of the contact structure 121 wherein the shell 131 defines the mechanical and physical properties of the contact structure as for example the springiness or resilience of the contact structure as well as the ability to provide a low resistance spring-loaded contact through a noble top layer. It can be seen by viewing FIG. 2 that as the second or free end of the contact structure 121 is moved upwardly and downwardly, the cantilever or bend 122 a can readily accommodate the changes in position of the second free end and will spring back and provide a substantially constant yieldable force within the range of a given-design attempting to return the second end of the contact structure 121 to its original position. The spring shape can be designed to respond in a resilient manner to a force directed at any angle relative to the surface of electronic components 102.
[0058] Another contact structure [0058] 136 incorporating the present invention is shown in FIG. 3 in which a flexible elongate conductive element 137 has been provided which has two bends, 137 a and 137 b formed therein and with a ball bond 138 at one end and a ball 139 at the other end. As can be seen, the bends 137 a and 137 b face in opposite directions. A shell 141 of the type hereinbefore described has been provided. However, it is formed of a first or inner layer 142 and a second or outer layer 143. By way of example, the first or inner layer 142 could be in the form of a coating of nickel or a nickel alloy of a suitable thickness as for example 1 to 3 mils to provide the desired springiness and/or yield strength for the contact structure. Assuming that it is desired to provide a particular outer surface for the contact structure 136, the second or outer layer 143 can be formed of gold or other suitable conductive material. In certain applications it may be desired to utilize the first or inner layer 142 as a barrier layer as for example to utilize the contact structure 136 with a solder contact to prevent the interaction of gold with solder. In such applications it may be desired to coat the flexible elongate conductive element 137 with a thin layer or copper or nickel followed by 1 to 1.5 mils of solder such as a lead-tin alloy. Thus it can be seen that by forming the shell of more than two layers, it is possible to obtain additional desirable features for the contact structure. It also should be appreciated that if desired, additional layers can be provided as a part of the shell in certain applications.
[0059] Another contact structure [0059] 146 incorporating the present invention is shown in FIG. 4 in which a flexible elongate conductive element 147 is provided with an outwardly facing bend 147 a in which a shell 148 has been provided which envelops the flexible elongate conductive member 147. However in this case, the shell 148 has been formed in such a manner so as to provide microprotrusions 149 on the outer surface thereof spaced longitudinally along the length of the shell. These protrusions or irregularities can be created in a number of ways as for example by adjusting the processing conditions in the plating bath to cause sharp nodules to be formed in the shell 148.
[0060] Another contact structure incorporating the present invention is a contact structure [0060] 151 shown in FIG. 5 which consists of a flexible elongate element 152 having a shell 153 thereon which is provided with a cantilever portion in the form of a U-shaped bend 152 a. To reduce the electrical inductance which is created during the conduction of electrical current in the contact structure 151, the bend 152 is imbedded in an electrically conductive compliant polymer mass 154 of a suitable type such as silicon rubber filled with silver particles. The compliant electrically conductive elastomer 154 does not substantially restrain movement of the resilient portion 152 a of the contact structure 151. The conductivity of the material 154 typically can range from 10−2 to 10−6 ohm centimeters.
[0061] In FIG. 6, contact structures [0061] 155 similar to the type shown in FIG. 2 are utilized in connection with an electronic component in the form of a conventional printed circuit board 156. The printed circuit board 156 is provided with conventional vertical via conductors in the form of plated-through holes 157 in which a plating structure 158 extends through the holes 157 and forms annular rings 159 provided on the opposite surfaces of the board 156 so that electrical contact can be made from one side of the board 156 to the other side of the board. As shown, a contact structure 155 is provided on each side of the printed circuit board 156 and is in contact with the plating structure 158 forming the rings 159 which functions as a contact pad. Thus, the contact structure 155 serves to form an electrical connection between contact pads on two electronic components facing each side of the circuit board 156 provided on opposite sides of the plated-through hole 157. It can be seen that the shell 131 provided as a part of the contact structure 155 also extends through the plated-through hole 157 and is disposed on the annular plating 158 provided on both sides of the plated through hole 157. Such a construction can be readily manufactured merely by flipping the printed circuit board 156 from one side to the other during the process of attachment of the flexible elongate elements of the contact structure 155. As hereinafter described, this type of construction can be utilized in connection with an interposer. By utilizing the contact structures 155, compliance capabilities are provided on opposite sides of the printed circuit board making possible face-to-face connections between matching pads on electronic components by an interposer carrying the contact structures shown in FIG. 6.
[0062] When compliance is only required on one side, a construction such as that shown in FIG. 7 can be utilized. In this embodiment, the contact structure [0062] 161 provided on one side as for example the bottom side as viewed in FIG. 7 consists of a flexible elongate element 162 which has a first bond 163 in the form of a ball bond secured to the metallization 158. The contact structure 161 forms a loop which extends across the hole 157 and is bonded to the other side of the ring 159 by suitable means such as a second bond 164 in the form of a wedge bond of is a type well known to those skilled in the art and use of wire bonding machines utilized in the semiconductor industry. The flexible elongate element 162 is covered by a shell 166 of a material of a type hereinbefore described. It also should be appreciated that since compliance is not needed on the lower side of the electronic component 156 that the contact structure 161 can be replaced by a straight pin-like contact structure 101 as shown in FIG. 1.
[0063] In FIG. 8 there is shown another embodiment of a contact structure [0063] 171 incorporating the present invention which i6 used to form a solder column. The contact structure 171 is a composite contact structure and is comprised of three “skeleton” structures 106 of the type shown in FIG. 1 which are spaced substantially 120° apart and which are mounted on a single contact pad 103. After the three “skeleton” structures 106 have been made, a first continuous shell layer 172 is deposited onto elongate “skeletons” 106 and the conductive pad 103 to form contact structures like contact structures 101. This structure is then completed into a solder post by placing solder layer 174 therebetween. The solder can be of a suitable type such as an alloy of lead and tin which bridges between the pin-like contact structures and the coated surface of terminal 103 to form the solder post contact structure 171. Depending on the use of the solder post, the solder post can be various sizes as for example it can have a diameter range from 10 to 50 mils with a typical diameter being from 10 to 20 mils. These solder posts can have a suitable height as for example 10 to 200 mils with a typical height of 20-150 mils. As explained hereinbefore, the balls 112 of the contact structures 101 can be eliminated if desired by the use of a non-melting severing operation.
[0064] In FIG. 9 there is shown a composite contact structure [0064] 176 which is provided with two contact structures 177 mounted on a single pad 103 with cantilevered portions 177 a and 177 b facing in opposite directions to provide two redundant resilient compliant contact structures 177 for each contact pad.
[0065] Another composite contact structure [0065] 181 is shown in FIG. 10 in which solder 182 is provided for bridging the upper and lower extremities of the contact structures 177 but not bridging the portions of the contact structures 121 having bends 177 a and 177 b therein so that compliance is still retained. With such an arrangement, it also should be appreciated that three of such contact structures 177 can be provided spaced 120° apart with solder 182 therebetween and that the contact structures 177 do not have to be resilient in order to form a solderable contact.
[0066] Another embodiment of a contact structure incorporating the present invention is shown in FIG. 11 in which a probe-like contact structure [0066] 186 is shown. It consists of a flexible elongate element 187 which has one end secured to the contact pad 103. The flexible elongate element 187 is provided with a bent cantilevered portion 187 a. Another portion 187 b extends downwardly over one edge of the electronic component 102, or alternatively through a feed-through hole of the type hereinbefore described and is bonded by suitable means such as a wedge bond to a sacrificial metal layer 188 as for example an aluminum layer which is secured to the component 102 by a thick photoresist 189 which serves as a standoff. After that step has been completed, the aluminum layer 188 can be sacrificed by etching it away with a suitable etch such as sodium hydroxide. The flexible elongate element 187 can then be coated in the manner hereinbefore described with a shell 190 formed of a nickel cobalt alloy or other suitable material as hereinbefore described to provide a free standing spring-like contact structure 186 which has its curved distal extremity disposed in a position below the component 102. The material utilized in the shell 190 makes it possible to control the deflection characteristics of the free extremity of the probe contact structure. Alternatively, the shell 190 can be completed first after which the sacrificial layer 188 can be etched away. Alternatively, it should also be appreciated that the bond of the elongate member to the terminal 103 can be of a wedge type and the bond to the sacrificial structure 188 can be a ball-type bond.
[0067] In FIG. 12 there is shown another probing contact structure [0067] 191 which is provided with a flexible elongate element 192 that is bonded by a bond 193 to the contact pad 103. As in the previous embodiment, the flexible elongate element 192 is provided with a cantilever or bend 192 a and a portion 192 b. The portion 192 b extends over the edge 194 or through a hole provided in the component 102. A shell 195 is provided over the flexible elongate element 192. Additional layers are provided over the shell 194 and consist of a layer 196 formed of a dielectric material which is followed by a metal layer 197. If layer 197 is grounded, there is provided a probe contact structure 191 which provides a shielded contact with controlled impedance. Thus it is possible to use a probe contact structure 191 in systems where shielding is desirable or necessary to improve electrical performance of the probing structure. As shown in FIG. 12, the distalmost extremity of the probe contact structure 191 can be left free of the dielectric layer 196 and the metal layer 197 so that direct contact can be made with another contact pad or another structure.
[0068] In FIG. 13 there is shown another embodiment of a contact structure [0068] 201 incorporating the present invention in which the electronic component 202 in the form of printed circuit board can be utilized as an interposer as hereinafter described. As in the previous embodiments, it is provided with a hole 203 having plating surrounding the hole 203 to provide contact pads 204. The contact structure 201 is of the type hereinbefore described which has a portion 206 that extends upwardly on one side of the electronic component 202 and another portion 207 that extends downwardly through the hole 203 to the other side of the electronic component 202. The portion 207 is temporarily bonded to a sacrificial substrate (not shown) which is removed by etching as hereinbefore described. With such a construction, it can be seen that electrical connections can be made from both sides of the electronic component 202.
[0069] Another embodiment of a contact structure [0069] 211 incorporating the present invention is shown in FIG. 14 in which a sacrificial aluminum layer 212 is utilized during construction. In the area where it is desired to form a contact pad on the aluminum layer 212, a plurality of negative projections or holes 213 are formed in the surface of the aluminum layer 212. As shown, these negative projections or holes 213 can be in the form of inverted pyramids ending in apexes. The negative projections or holes 213 in the aluminum are then filled with a conducting material 214 such as gold or rhodium 214. This is followed by a nickel layer 216 and a layer of gold 217. A flexible elongate conductive element 218 formed of a suitable material such as gold or aluminum is then bonded to the gold layer 217 by suitable means such as a bond 219. The flexible elongate element 218 extends through a curve or bend 218 and then goes over one side of the electronic component 102 and extends over the top of the contact pad 103 and is bonded thereto in a suitable manner such as by a bond 220. Thereafter a shell 221 formed of a spring alloy material of the type hereinbefore described is deposited over the flexible elongate element 218 and extends over the contact pad 103 and over the gold layer 217 to complete the contact structure. By an appropriate combination of the properties of the shell 221 and the trajectory of the bond or curve 218, the desired resilience can be obtained.
[0070] During this plating procedure, the sacrificial aluminum layer [0070] 212 can be covered with a suitable resist in a manner well known to those skilled in the art. After the contact structure has been completed, the resist then can be removed and the sacrificial aluminum layer 212 can be dissolved in the manner hereinbefore described to provide a contact pad 224 at the free end of the contact structure 211. In this manner it can be seen that a contact pad can be constructed with a controlled geometry as for example one having a plurality of sharp points which can apply high local pressure forces to contact another pad as for example an aluminum pad on a semiconductor device to break any oxide present on the aluminum pad and to make good electrical contact therewith by causing deformation of the aluminum pad around the sharp points. These high contact forces can be created while applying a relatively low overall force on the contact pad 224.
[0071] Still another contact structure incorporating the present invention is shown in FIG. 15 which shows a contact pad [0071] 227 carried by the free end of the contact structure 226. The contact pad 227 has a depending mechanically shaped probe 228 carries at one end of a rectangular contact pad 227. The contact pad 227 is constructed in a manner similar to the contact pad 224 and by way of example can be provided with a nickel or rhodium tip or probe 228 and a layer 229 also formed of nickel or rhodium. The layer 229 is covered with another isolation layer 231 of a nickel alloy which is covered with a gold layer 232. A flexible elongate element 236 of a conductive material is connected to the pad 103 by a bond 237 and extends over the edge of the semiconductor structure 102 through a cantilever or bend 236 a and is bonded to the gold layer 232 in a suitable manner such as by a bond 238. The flexible elongate element 236 as well as the bonds 237 and 238 are overplated with a shell 239. The shell 239 is of a strong alloy of the type as hereinbefore described and extends over the pad 103 and over the entire gold layer 232. With this type of a contact structure 226, it can be seen that a cantilevered probe 228 is provided which enhances the ability to control the deflection versus load behavior of the contact structure 226.
[0072] Another contact structure [0072] 241 incorporating the present invention is shown in FIG. 16. The contact structure as shown is bent into a loop. This is accomplished by taking a flexible elongate element 242 of a conductive material and bonding it to one side of the contact pad 103 in a suitable manner such as by ball bond 243 and then forming the flexible elongate element into an upside down loop 242 a which is generally in the form of a “U” and then attaching the other end of flexible elongate element to the other side of the contact pad 243 by suitable means such as a wedge bond 244. A shell 246 can then be formed on the flexible elongate element 242 in the manner hereinbefore described which is deposited over the bonds 244 and 246 and over the edges of the contact pad 103. In this way it is possible to provide a relatively rigid contact structure 241. It should be appreciated that if desired, more than one of the looped contact structures 241 can be provided on a pad 103. For example, two of such structures can be provided which are spaced apart on the same contact pad 103.
[0073] Another contact structure [0073] 251 incorporating the present invention is shown in FIG. 17 and is comprised of two of the contact structures 241 hereinbefore described in conjunction with FIG. 17 which have been spaced apart and mounted on the same pad 103 and in which a solder layer 252 is formed over the contact structures 241 and bridges the U-shaped spaces provided between the contact structures 241. In addition as shown, the solder can bridge the two separate contact structures 241 to provide a unitary solder bump 253. It should be appreciated that if desired, the two contact structure 241 can be spaced far enough apart so that the solder will not bridge between the two contact structure 241 but will only bridge between the bridge formed in each of the contact structures 241 to provide separate solder bumps on a pad 103.
[0074] Still another contact structure [0074] 256 is shown in FIG. 18 in which a large contact pad 103 is provided on the semiconductor component 102 or other electronic component and in which a plurality of contact structures 241 of the type hereinbefore described are placed around the outer perimeter of the pad 103. The bonding of the internal elongate element or skeleton is started with a ball bond 243 and successive loops are made with wedge bonds 244 therebetween to in effect form a rectangular fence closing a volume. The internal elongate element is then overcoated with a shell (not shown) of the type hereinbefore described. The rectangular fence then can be filled with solder (not shown) to provide a freestanding solder contact or a bump which can serve as a heat sink where that is desired.
[0075] An interposer [0075] 301 is shown in FIG. 19 and consists of a substrate 302 having first and second planar surfaces 303 and 304. The substrate 302 can have a suitable thickness as for example ranging from 5 to 200 mils and preferably has a thickness of 20 to 100 mils. The substrate 302 can be formed of a suitable material such as a molded plastic which serves as an insulator and is provided with a plurality of spaced apart holes 306 extending through the first surface 303 and a plurality of spaced apart holes 307 extending through the second surface 304. The holes 306 and 307 can have any desired geometry in cross section as for example circular. As shown, the holes 306 and 307 are eccentric. Thus each of the holes 306 and 307 is provided with a straight sided wall portion 308 which extends perpendicular to the surface through which it extends and can include an inclined wall, portion 309 which is inclined inwardly and downwardly into the hole. As can be seen from FIG. 19, the holes 306 and 307 are arranged in pairs in which the holes in each pair are offset slightly with respect to each other and are interconnected by passage 311 extending between the same so that in effect there is provided a single hole extending through the substrate 302 with one portion of the hole on one side being offset with respect to the portion extending through the other side of the substrate. Thus in effect there is provided a composite hole 312 which can be plated in a conventional manner as for example as utilized with printed circuit boards for providing a plated through holes which have a plating 313 formed of a material such as copper optionally overcoated with gold. Because of the offset provided between each pair of holes 306 and 307 there is provided a planar shoulder 306 in the bottom of each of the holes 306 and 307 on which the plating 313 is provided. The shoulders 316 with the plating 313 thereon form areas to which compliant contact structures 121 of the type hereinbefore described and as shown in FIG. 2 can be formed. The material forming the shells 131 of such contact structures also extends over the plating 313 provided for plating through the composite hole 312 to form an excellent bond between the contact structure 121 and the plating 313.
[0076] It can be seen from FIG. 19 that the contact structures have a suitable length such that their free ends extend beyond the planar surfaces [0076] 303 and 304 on opposite sides of the substrate 302 so they can make contact with electronic components as hereinafter described. The free ends of the interconnect structures 121 can be spaced a suitable distance apart as for example 10 to 200 mils and preferably between 20 and 100 mils. The substrate 302 can be formed of various types of plastics. For example they also can be polyetherimide, polysulfone or liquid crystal polymer based plastic molded materials.
[0077] In the arrangement shown in FIG. 19, the pairs of electrodes are electrically isolated from each other. However, it is apparent that the pairs of electrodes can be interconnected if that is desired merely by placing conductive portions of the plating [0077] 313 on the sides or surfaces 303 and 304 to make the appropriate interconnections. For example, the common plated portions on the surfaces 303 and 304 can represent power and ground planes which make appropriate interconnections to power and ground contacts.
[0078] In FIG. 20 there is shown a double-sided interposer [0078] 321 which consists of a plastic substrate 322 in the form of a thin plastic sheet formed of a suitable material such as a polyimide. A plurality of spaced apart holes 323 can be drilled or molded into the substrate 322. The substrate also can be in the form of a reinforced epoxy laminate such as an epoxy reinforced with fiberglass and the holes 323 drilled therethrough. Plating 324 of a type hereinbefore described is used for plating through the holes 323 and for providing metallization 326 on the top side and metallization 327 on the bottom side of the substrate 322 as shown in FIG. 20. However in connection with the present invention, it can be seen that if desired the metallization 327 provided on the bottom side of the substrate 322 can be eliminated if desired. A contact Structure 201 like that disclosed in FIG. 13 can be mounted on the conductive layer 326 adjacent the plated-through hole 323. This contact structure 201 includes a contact structure 121 which extends resiliently from the one side of the substrate 322 whereas the other contact structure 201 extends through the hole 323 and beyond the other side so a probe type contact is available from that side. It can be seen that if desired, circuitry can be provided on the substrate 322 and connected to the contact structures 121 and 201. In addition, pins (not shown) can be provided in the substrate 322 for registering the interposer 321 with other electronic components as hereinafter described.
[0079] Another interposer [0079] 331 incorporating the present invention shown in FIG. 21 in which resilient contact structures 121 are provided on one side of a substrate 332 and solderable contacts 334 are provided on the opposite side. Plated-through holes or vertical via conductors 336 are provided in the substrate 332. Standoffs 161 of the type hereinbefore described in conjunction with FIG. 7 are provided on the opposite side of the substrate 332 and are connected to the plating 337 upon which the contact structures 121 and the standoffs 161 are mounted. Thus it can be seen that the interposer 331 provides the capability of making spring contacts from one side of the interposer and solder standoffs or solderable contacts from the other side of the interposer.
[0080] In FIG. 22 there i[0080] 6 shown interposer 341 which is provided with double-sided resilient contact structures 121 which are disposed on opposite sides of a substrate 342 having plated through holes 343 therein and the standoffs 346. The standoffs 346 are loop-shaped and are mounted on the metallization 347 carried by the substrate 342 and can be positioned anywhere on the substrate 342. As can be seen from FIG. 22, the standoffs 346 have a height which is less than the height of the contact structure 121 so that in the event there is undue pressure applied by the electronic component making contact to the contact structure 121, compressive inward movement against the yieldable force of the contact structure 121 will be arrested by the standoffs 346. The standoffs 346 can be made in the same way as the contact structures 121 hereinbefore described with a skeleton covered by a shell. However, it should be appreciated that the bonds at both ends of the flexible elongate element internal of the standoffs can be wedge bonded if desired.
[0081] In FIG. 23 there is shown an active semiconductor device assembly [0081] 351 incorporating the present invention. Assembly 351 consists of a semiconductor device 352 in the form of a silicon body which is constructed in a manner well known to those skilled in the art and has internal metallization layers and internal connections. It is provided with a top aluminum alloy metallization 353 which is covered by a passivation layer 354. A plurality of contact structures 355 of the type hereinbefore described extend through holes 356 provided in the passivation layer 354 and make contact with the aluminum metallization 353. As can be seen in FIG. 23, the uppermost tip of the contact structures 355 are aligned in two rows with alternate contact structures 355 in each row being offset from the uppermost tip of the other contact structures 355 to provide a staggered arrangement making possible three dimensional fan-outs. The spacing between the aluminum pads on the semiconductor device 352 may be a certain distance apart as represented by the letter D which by way of example can be 5 mils. The staggered free extremities of the contact structures 355 can be a much greater distance apart represented by mD as shown in FIG. 23 which by way of example could be 10 mils or 15 mils. This different spacing for the free ends is readily achieved by providing different offsets for the free ends of the contact structures 355. Thus one set of contact structures 355 consisting of alternate contact structures 355 can be provided with a larger bend than the other contact structures 121 in the row so that the free ends of the contact structures 121 are offset by a desired amount. In this way, it can be seen that there can be a relatively close geometries provided on a semiconductor device with larger pad separations being possible for interconnection to another device.
[0082] If desired, an optional encapsulant [0082] 357 (see FIG. 23) can be provided which extends over the base of the contact structures 355 and which extends over the surface of the semiconductor device 352 overlying the passivation layer 354. Also, if desired, encapsulant 357 additionally can be provided on the lower extremities of the contact structures 355 as shown in FIG. 23 which serves to envelop the lower portion of the cantilever of the contact structure 355. If desired, all of the contact structure 355 can be provided with such additional encapsulant 357. The applied encapsulant 357 assists in preventing or at least limiting handling damage to semiconductor devices during assembly operations.
[0083] A semiconductor device assembly [0083] 366 incorporating another embodiment of the invention is shown in FIG. 24 and consists of an active semiconductor device 367 which is provided with aluminum metallization forming contact pads or areas 368. By way of example, the active semiconductor device can be a memory chip or microprocessor. Most of the surface of the semiconductor device 367 is covered by a passivation layer 369. Holes or openings 371 are formed in the passivation layer 369 in a manner welt known to those skilled in the art as for example by utilizing a photoresist and a suitable etch. After the holes 371 have been formed, a continuous shorting layer (not shown) is deposited over the passivation layer 369 and over the aluminum alloy contact pads 368. This is followed by a photoresist layer (not shown) after which holes (not shown) are formed in the photoresist which are in registration with the holes 371 and are of a greater diameter by 0.5 to 5 mils and preferably 1-3 mils. Thereafter, metallization 376 in the form of a suitable material such as a layer of nickel followed by a layer of gold is formed in the holes 371 and into the larger holes formed in the photoresist after which the photoresist is stripped in a conventional manner so that there remains the metallization 376, and the shorting layer is etched away, other than in the areas underneath the metallization 376. As shown in FIG. 24 the metallization is deposited to a thickness of 1-3 mils and provides an annular overhang portion 376 a.
[0084] Contact structures [0084] 381 similar to the contact structures 121 are provided in the cup-shaped metallization 376 as shown with the flexible elongate member or skeleton 382 being ball-bonded to the cup shaped metallization 376 and with the shell 383 extending over the top of the annular overhang 376 to in effect provide a larger diameter cap. Alternatively, the contact structures 381 can be constructed in the holes 371 by bonding the skeletons in the holes followed by deposition of the shell or muscle, after which the photoresist can be stripped and the shorting metal layer is etched away.
[0085] As shown in FIG. 24, the contact structures [0085] 381 can have different configurations with some having larger bends and others having smaller bends with those with larger bends having longer cantilevered portions. Every other one of the contact structures 381 extend in an opposite direction so that the free standing ends have a pitch or spacing between adjacent free standing ends identified as mD which is different from the pitch or dimension D between adjacent contact structures 381 at the caps 376. It can be seen that by providing different angulation for the contact structures 381 as well as providing different shapes, the free standing ends can be disposed in a plane which is parallel to the plane of the active semiconductor device 367 but in which the spacing between the free ends can be significantly different from the spacing between individual contact structures at the bases of the contact structures to provide the desired spacing or pitches at the free standing ends. In other words, it can be seen from the semiconductor device assembly in FIG. 24 that it is possible to place contacts on a semiconductor device at a certain pitch whereas the same pitch or different pitches can be provided at the free upstanding ends of the contact structures provided thereon.
[0086] It is also shown in FIG. 24 in order to facilitate alignment of the semiconductor device assembly [0086] 366 with other electronic components as for example printed circuit boards and the like, alignment pins 386 can be provided which can be formed at the same time that the contact structures 381 are formed. Thus, although in FIG. 24 a single alignment pin 386 is shown, it should be appreciated that a plurality of such alignment pins can be provided on a semiconductor device assembly 366. In order to facilitate the formation of such alignment pins 386 when the metallization 376 i6 provided on the passivation layer 369, pads 387 of the metallization disposed in appropriate places are provided, typically placed on the passivation layer 369. The alignment pins 386 are then formed of a skeleton 388 and a shell 389 at the same time that the other contact structures 381 are formed. Thus it can be seen that it is very easy to provide the desired number of alignment pins in conjunction with the contact structures 381 without any substantial increase in cost of the completed semiconductor device assembly 366.
[0087] The active semiconductor devices [0087] 367 are typically made in a wafer form as for example 8″ in diameter and with the wafers having a thickness ranging from 15 to 30 mils preferably from 15 to 25 mils although there is the capability of providing semiconductor device assemblies as thin as 10 mils. With the construction shown in FIG. 24, it is impossible to provide resilient contact structures 381 which can overhang the edge or outer boundary of such individual chip on a wafer so that it is possible to make contact to the semiconductor devices in the wafer prior to die cutting a wafer. This die cutting or dicing operation is typically described as singulation in which the wafer is cut into single semiconductor devices. In connection with the design of the semiconductor device assembly 366, it is desirable that the contact structures 381 be positioned in a manner shown in FIG. 23 so that a minimum surface area is required for die cutting to provide the desired singulation. Typically these regions in which the cutting is to take place are called scribe streets. By alternating the contact structures 381 provided on those pads to provide the offsets as shown in FIG. 24 it is possible to obtain increased pitches for making interconnections to other electronic components.
[0088] Thus it can be seen that the process of the present invention can be utilized with semiconductor devices in wafer form as well as with single semiconductor devices. Also with the arrangement shown in FIG. 24 it can be seen that interconnections can be made with the contact structures [0088] 381 at the same time that the alignment pins 386 are being utilized to achieve the proper alignment for the contact structures and the electronic component being mated therewith.
[0089] A semiconductor device assembly [0089] 366 of the type shown in FIG. 24 is capable of being tested at its full functional speed by yieldably urging the tips of the contact structures 381 into compressive engagement with matching contact terminals provided on a test substrate (not shown). Such testing can be carried out without the need of special probes carried by a test substrate. In order to ensure excellent contact between the contact terminals on the test substrate, the conductive shell 383 can be provided with an outer layer of a noble metal such as gold, rhodium or silver by providing a similar material on the contact pads of the test substrate, a low contact resistance is obtained. Heretofore it has been necessary for test probes to engage typically aluminum contacts which have a propensity to oxidize, resulting in high contact resistance.
[0090] The construction shown in FIG. 24, in addition to facilitating test procedures, can also be utilized for burn-in testing of the semiconductor device. Thus, in the same manner, the semiconductor device assembly [0090] 367 can have its contact structures 381 yieldably engage matching contact pads provided on a burn-in test substrate (not shown) which can be formed of the same material as the contact pads provided on the test substrate. The device 367 when in contact with the burn-in test substrate can be exercised during prolonged periods while being exposed to alternately high and low temperatures. In connection with such burn-in testing, it should be appreciated that multiple semiconductor devices 367 can be used to populate a burn-in board or substrate capable of receiving a plurality of such semiconductor devices 367 and retained in engagement therewith by spring clips of the types hereinafter described in connection with FIGS. 26 and 27. Registration of the semiconductor device assembly 367 with the test burn-in substrates can be facilitated by the use of the registration or alignment pins 386. The fan-out capabilities provided with the semiconductor structures 381 arranged in the manner shown in FIG. 24 makes it possible to have a fine pitch for the contact pads on the semiconductor device assembly 367 with a coarser pitch for the tips of the contact structures 381. This makes it possible to simplify the registration of such semiconductor devices with coarser and possibly a standard pitch for the contact pads on the test and burn-in substrates, making it possible to reduce the cost of such test and burn-in substrates.
[0091] After the testing and burn-in procedures have been performed on the semiconductor devices [0091] 367 and the performance of the devices has been validated, they can be removed from the test and/or burn-in substrates by removing the spring clips and thereafter bringing the free ends of the contact structures 381 into engagement with matching patterns of contact pads provided on an interconnection substrate of the type hereinafter described to provide a permanent interconnection. The fan-out capabilities of the contact structures 381 shown in FIG. 24 also make it possible to utilize a pitch on the contact pads carried by the interconnection substrate which differs from the pitch of the contact pads on the semiconductor device 367. The registration pins 386 can also aid in making the desired registration and simplifies making the permanent interconnections.
[0092] A semiconductor package assembly [0092] 401 is shown in FIG. 25. Mounted within the package assembly 401 is a printed circuit (PC) board 411 which carries circuitry which includes contact pads 412 on one side of the printed circuit board 411 and additional contact pads 413 on the other side of the PC board. Semiconductor devices 416 and 417 are provided on opposite sides of the printed circuit board and carry resilient contact structures 418 that are mounted thereon in a manner hereinbefore described to provide a double-sided flip chip attachment to the circuit board 411 with solderable terminals. The resilient contact structures 418 are bonded to the contact pads 412 and 413 by passing the assembly through a suitable furnace to cause the solder carried by the resilient contact structures 418 to form a solder joint with the contact pads 412 and 413. This process can be further assisted by the use of reflowable solder paste applied to contact pads 412 and 413, as is well known to those skilled in the art of surface mount assembly technologies. An encapsulant 419 formed of a suitable insulating material is disposed between the printed circuit board 411 and the semiconductor devices 416 and 417 to complete the package.
[0093] Another semiconductor package assembly [0093] 421 incorporating the present invention is shown in FIG. 26 and includes a laminated printed circuit board 423 carrying pads 424 and 426 on opposite sides of the same. Semiconductor devices 427 and 428 are disposed on opposite sides of the PC board 423 and carry contact structures 429 of the type hereinbefore described. The contact structures 429 can be yieldably urged into engagement with the contact pads 424 and 426 by spring-like clips 431 which are secured to the printed circuit board and which snap over the edges of the semiconductor devices 427 and 428. These spring-like clips 431 can be dispersed around the perimeter of the semiconductor devices as for example for a rectangular semiconductor device at least four of such spring-like clips 431 can be provided with two on each of two opposite sides. The spring clips 431 as shown are bonded to contact pads 432 carried by the printed circuit board 423. Each of the clips 431 is provided with a flexible elongate element or skeleton 433 of the type hereinbefore described which is bonded in a suitable manner as for example by a ball bond to the pads 433. The skeleton 433 is provided with two bends 433 a and 433 b to form the spring-like clip which extends over one side of the semiconductor device as shown in FIG. 27. A shell 434 provides a suitable reinforcement or muscle for the clips 431 and augments the spring-like or clip-like characteristics of the bends 433 a and 433 b to retain the semiconductor devices 427 and 428 in place. With such an arrangement, it can be seen that the semiconductor devices 427 and 428 with their contact structures 429 are retained in intimate contact with the contact pads 424 and 426. This arrangement permits registration of contact structures 429 with the contact pads 424 and 426. When it is desired to remove the semiconductor devices 427 and 428, it is only necessary to push the spring clips 431 outwardly to release the semiconductor devices 427 and 428 carrying with them the contact structures 429 which become disengaged from the contact pads 424 and 426.
[0094] A solder coating can be provided either on the free ends of the contact structures or on the contact pads to be engaged thereby and by then passing the assembly through a furnace, the solder forms a joint mass which intimately encompasses the free ends of the contact structures and the surfaces of the pads leaving only an optional thin coating on the lengths of the contact structures to thereby provide a connection which is compliant in three directions, X, Y and Z directions. [0094]
[0095] An alternative semiconductor package assembly [0095] 441 is shown in FIG. 27 and consists of a PC board 442 or other suitable substrate which carries contact pads 443 and 444 that are spaced apart on one surface of the PC board 442. Contact structures 446 are mounted on the pads 443 and are comprised of a skeleton 447 and shell 448 construction in the manner shown to provide a resilient contact structure. Spring clips 451 of the type shown in FIG. 26 are secured to the pads 444. As shown in FIG. 27 a semiconductor device 452 is clamped between the uppermost extremities of the contact structures 446 and removably engages metallized cup-shaped terminals 453 carried by the semiconductor device 452 of a type hereinbefore described. In this construction it can be seen that the semiconductor device 452 is demountable by merely pushing aside the spring clips 451 because there is no solder interconnection between the distal or free extremities of the contact structures 446 and the contact terminals 453 carried by the semiconductor device 452. It should be appreciated with the arrangement shown in FIG. 27 that if desired, the contact structures 446 can be mounted in the wells 453 carried by the semiconductor device 452 and that the free ends of the contact structures 446 removably engage the pads 443 carried by the printed circuit board and to thereby achieve substantially the same results as achieved by the arrangement shown in FIG. 27. It should be appreciated that in place of spring clips 451, external spring elements (not shown) can be used to spring load the contact structures 446 against metallized wells 453.
[0096] Another semiconductor package [0096] 461 is shown in FIG. 28 which is particularly suited for use with printed circuit boards 462 having vertical via conductors or plated-through holes 463 extending therethrough. A semiconductor device 466 is provided which carries resilient contact structures 467 of a type hereinbefore described. The contact structures 467 as shown are provided with a plurality of bends 467 a and 467 b particularly at their free ends which bends are such so that they subtend a diameter which is greater than the diameter of the plated through holes 463 provided in the printed circuit board. Thus as shown in FIG. 28, when the semiconductor device is positioned so that the contact structures 467 are in registration with the plated through holes, the contact structures 467 can be pushed into the plated through holes to form spring-loaded fits between the contact structures 467 and the walls of the plated-through holes 463 to retain the semiconductor device 466 in a demountable or removably mounted position on the PC board 462 and making electrical contact with the plated-through holes so that contact can be made from the printed circuit board to the outside world.
[0097] Still another semiconductor package assembly [0097] 471 incorporating the present invention is shown in FIG. 29 in which there is provided a PC board 472 having a plurality of spaced apart holes 473 provided therein. Spaced apart contact pads 476 are provided on opposite sides of the PC board. Semiconductor devices 477 and 478 are provided on opposite sides and carry contact structures 481 of the type hereinbefore described which are of a resilient type and have free ends which are adapted to engage the contact pads 476. Spring clips 486 of the type also hereinbefore described are mounted on the semiconductor device in a manner hereinbefore described and are positioned on the semiconductor device so that they are in registration with the holes 473 provided in the printed circuit board 472. As shown, the semiconductor devices 477 and 478 can be clipped to the PC board 472 by having the spring clips 486 extend through the holes 473 and having portions 486 a engaging the opposite sides of the printed circuit board as shown in FIG. 29. In this connection, a solder connection can optionally be formed between the free ends of the contact structures 481 and the contact pads 476. Alternatively as hereinbefore described, the free ends can be formed so that they can make a removable resilient contact with the pads 476. Such a construction can be readily made by providing free ends which are adapted to frictionally engage the contact pads 476 through spring loading.
[0098] Another semiconductor package assembly [0098] 491 is shown in FIG. 30 incorporating another embodiment of the invention in which a PC board 492 is provided having spaced apart holes 493 extending therethrough. Semiconductor devices 494 and 496 of the type hereinbefore described are provided and have mounted thereon contact structures 497. Similarly alignment pins 498 of the type hereinbefore described are mounted on the semiconductor devices 494 and 496.
[0099] In assembling the semiconductor package assembly [0099] 491, the semiconductor device 496 which can be in the form of a semiconductor chip which can be placed on a carrier (not shown) for automated handling after which the chips are selected and brought over the top with the holes 493 in registration with the alignment pins 498. Thereafter as shown, the upper extremities of the alignment pins 498 are bent over to retain the printed circuit board in engagement with the semiconductor device 496. This intermediate assembly of the semiconductor device 496 and printed circuit 492 is flipped. Thereafter, the second semiconductor device 494 is brought over the top of the printed circuit board 492 and turned upside down so that the alignment pins 498 are in alignment with other holes 493 in a printed circuit board and then moved into the holes 493 to cause the contact structures 497 carried thereby to move into engagement with the contact pads 499 on the printed circuit board. In order to additionally assist retaining the parts in an aligned condition, an adhesive 501 of a suitable type, with an appropriate solvent which shrinks upon curing due to solvent evaporation can be optionally placed between the printed circuit board 492 and the semiconductor devices 494. It can be seen that if desired when an adhesive is used, the free extremities of the alignment pins 498 carried by the semiconductor device 496 need not be bent over as shown.
[0100] Another semiconductor package assembly [0100] 506 incorporating the present invention as shown in FIG. 31 consists of a printed circuit board 507 which is provided with a large plated through opening or hole 508. A capacitor 511 is disposed in the large plated through hole 508 and consists of first and second electrode plates 512 and 513 separated by dielectric material 514. The free extension 512 a of the plate 512 is bonded to the portion 508 a of the plating for the plated through hole 508 and the free extension 513 a of the other plate 513 is bonded to the plating portion 508 b of the plating for the plated through hole 508. In this way it can be seen that the capacitor 511 is suspended in the plated through hole 508. A plurality of contact pads 516 are provided on the upper and lower surfaces of the substrate or the PC board 507 and are spaced apart from the plated through hole 508. Another contact pad 517 is provided on the printed circuit board and is in contact with the portion 508 b of the plated through hole 508. Semiconductor devices 521 and 522 are provided and are of a type hereinbefore described and carry contact structures 523 of the type hereinbefore described which are soldered to the contact pads 516 and the contact pads 517 as shown.
[0101] Another semiconductor device assembly [0101] 526 incorporating the present invention is shown in FIG. 32 and consists of a PC board 527 which carries a plurality of spaced apart contact pads 528 on opposite sides of the same which are bonded to contact structures 529 of the resilient type hereinbefore described which are mounted on semiconductor devices 531 and 532. Capacitors 511 of the type hereinbefore described are disposed on opposite sides of the printed circuit board 527. The capacitors 511 are provided with plates 512 and 513 which are bonded to contact pads 533 provided on opposite sides of the printed circuit board 527. Thus it can be seen that the capacitors 511 are disposed in the spaces between the semiconductor devices 531 and 532 and opposite sides of the printed circuit board 527. There is adequate space for such capacitors as needed in connection with the semiconductor devices 531 and 532. It can be seen by adjusting the height of the resilient contact structures 529 that adequate space can be provided for the capacitors 511 and between the printed circuit board and the printed circuit board 527 and the semiconductor devices 531 and 532.
[0102] Another semiconductor device assembly [0102] 536 incorporating the present invention is shown in FIG. 33 and as shown therein consists of a multilayer printed circuit board or substrate 537 which is provided with first and second surfaces 538 and 539. A rectangular recess of 541 is provided in the PC board 537 which opens through the first surface 538. A plurality of spaced apart steps 542 are provided accessible through the side having a surface 539 thereon and are at various elevations with respect to the surface 539 so as in effect to form depressions or recesses surface 539. As shown, the printed circuit board 537 is provided with at least three different levels of metallization identified as 546. It is also provided with a plurality of vertical via conductors or vertical vias 549 which as shown extend in directions perpendicular to the surfaces 538 and 539 and make various interconnections as shown in FIG. 33. The vertical vias 559 can be formed of a suitable material such as molybdenum or tungsten in a ceramic substrate or in the form of plated-through holes in laminated printed circuit boards. A plurality of contact pads 551 are provided in the side carrying the second surface 539 and as shown are disposed on the steps 542 as well as on the surface 539 and are thereby directly connected to several levels of metallization. Resilient contact structures 552 of the type hereinbefore described are bonded to each of the contact pads 551 and are of various lengths as shown in FIG. 33 so that their free extremities substantially lie in a single plane which is generally parallel to the surface 539 and the surfaces of the steps 542.
[0103] A through-hole decoupling capacitor [0103] 556 is provided which is comprised of multiple capacitors formed by a plurality of parallel conducting plates 557 disposed in a dielectric material 558 of a type well known to those skilled in the art. The plates 557 are connected to vertical vias 559. The vertical vias 559 on one side are connected to contact pads 561 which are disposed within the recess 541 and make contact with the vertical vias 549 carried by the printed circuit board 537.
[0104] As can be seen in FIG. 33, the upper surface of the decoupling capacitor [0104] 556 just extends slightly above the surface 538 of the printed circuit board 537. Metallization is provided on the surface 538 of the printed circuit board and provides contact pads 562. Additional contact pads 563 are provided on the decoupling capacitor 556 which are in contact with the vertical vias 559. A semiconductor device or chip 566 is provided which has a plurality of contact pads 567. Resilient contact structures 568 of the type herein described are mounted on the contact pads 562 and 563 with the uppermost points of the contacts 568 terminating substantially in common horizontal plane so that the free ends of the contact structures 568 are bonded to the contact pads 567 on the integrated semiconductor device 566. Thus it can be seen that the resilient contact structures 568 readily accommodate the disparity in the levels of the planar surfaces of the decoupling capacitor 556 and the surface 538 of the printed circuit board 537. This makes it possible to bond the planar surface of a chip 566 to surfaces which may not be planar as shown in FIG. 33.
[0105] This type of construction makes it possible to provide very low inductance coupling to the decoupling capacitor [0105] 556 which is a very important parameter defining the performance of a microprocessor. As explained previously, all of the contacts on the other side of the printed circuit board 537 do not originate in the same plane which facilitates making direct connections to the contact pads on the different planes as shown. This makes it possible to reduce the number of vias and conductors required for interconnections within the substrate.
[0106] Although the final outside packaging for the semiconductor package assembly [0106] 536 is not shown, it can be readily appreciated by those skilled in the art, packaging of the type hereinbefore described can be utilized.
[0107] Alternatively, the under chip [0107] 566 which is shown in FIG. 33 can be encapsulated (not shown) in a suitable polymer or epoxy based compound.
[0108] It should be appreciated that if desired, the printed circuit board [0108] 537 can be on a larger scale 80 that it can accommodate several semiconductor face-down connected chips on the surface 538 by utilizing the same principles which are shown in FIG. 33. Thus flip chips 566 can be provided adjacent to each other arranged in rows extending in both the X and the Y directions as desired.
[0109] Another semiconductor package assembly [0109] 571 incorporating the present invention is shown in FIG. 34 and as shown therein is in a form of a composite structure which by way of example can include a semiconductor package assembly 536 of the type hereinbefore described in conjunction with FIG. 33 showing the way that it can be mounted on another printed circuit board 576 which can be characterized as a motherboard or an integration substrate. As shown, the motherboard 576 is provided with first and second surfaces 577 and 578 provided by solder layers 579, often called solder masks, disposed on opposite sides of the motherboard 576. The motherboard also has multiple layers of metallization 581 and a plurality of spaced-apart vertical plated-through holes 583 extending perpendicular to the surfaces 577 and 578. The plated-through holes 583 are provided with contact surfaces 586 which are accessible through openings 587 provided in the surface 577. They are also provided with contact surfaces 591 accessible through holes 592 in the layer 579 which extend through to the surface 578. As shown in FIG. 34, the contact surfaces 586 are engaged by the free extremities of the resilient contact structures 552 and are bonded thereto by suitable means such as a solder or an electrically conductive epoxy to complete the assembly.
[0110] It should be appreciated that with a large motherboard a plurality of semiconductor package assemblies [0110] 536 of the type shown in FIG. 33 can be mounted on the same other printed circuit board or integration substrate. Similarly, semiconductor package assemblies 536 can be counted on the other side of the mother printed circuit board which are prepared in a manner similar to that hereinbefore described.
[0111] In connection with mounting the semiconductor package assembly [0111] 536 on a mother circuit board, rather than the direct solder contacts shown in FIG. 34, it should be appreciated that if desired, the contact structures 552 can be in the form of demountable contact structures such as-the contact structures 467 shown in FIG. 28 to make electrical and spring-loaded contact with the conductive terminals connected to plated-through holes 583 provided in the motherboard. Thus in this manner, spring loaded fits can be provided between the motherboard 576 and the semiconductor package assembly 536. Such a construction is desirable because it makes it possible to replace a semiconductor package in the field. Thus, for example by utilizing such spring loaded contacts, the semiconductor package assembly 536 can be removed and replaced by another one of greater capabilities. For example, a microprocessor in a notebook computer could be upgraded in this manner. In this case, a methodology for the use of integrated resilient contacts includes burn-in and tect of the assembly 536 by engaging the resilient contacts against pads on an appropriate test or burn-in substrate and then spring loading the component to the board 576 as heretofore described.
[0112] Another composite semiconductor package assembly [0112] 601 incorporating the present invention is shown in FIG. 35 end shows a printed circuit board 537 with the semiconductor device 566 mounted thereon and with a mother printed circuit board 576 of the type hereinbefore described with an interposer 602 of the type shown in FIG. 21 being utilized between the printed circuit board 537 and the mother printed circuit board 576 with solder 603 being utilized for bonding the contact structures 161 of the interposer 602 to the contact surfaces 586. Similarly, the contact structures 121 of the interposer 602 are yieldably retained in engagement with the contact pads 551 and are retained in engagement therewith by suitable means such as through bolts 606 provided with nuts 607 extending through the printed circuit board 537 and through the mother circuit board 576 and through the interposer 602 to form a composite assembly in which the compression on the contact structures 121 is maintained to provide good electrical contact with the contact pads 551 carried by the printed circuit board 537.
[0113] In place of the bolts [0113] 606 it should be appreciated that other fastening means can be utilized as for example spring clips to retain the compression on the contact structures 121 and to fasten the printed circuit boards together as hereinbefore described. Rather than the interposer 602 being formed as an interposer of the type shown in FIG. 21, an interposer of the type shown in FIG. 20 can be utilized with removable electrode contacts being formed on both sides of the interposer and by having the contact structures 121 yieldably engage the contact pads 551 and having the contact structures 201 yieldably engage the surfaces 586. With such a construction it can be seen that changes can be readily made in a composite semiconductor package assembly merely by removing the bolts and replacing certain other components as well as the interposer if desired. The interposer is demountable to facilitate such changes.
[0114] Another semiconductor package assembly incorporating the present invention is shown in FIG. 36. The assembly [0114] 611 discloses the manner in which packing of silicon on cards can be obtained and consists of an interconnection substrate 612 formed of a suitable insulating material which is provided with first and second surfaces 613 and 614. Such an interconnecting substrate can be of the type of the printed circuit boards hereinbefore described and for example can contain a plurality of levels of metallization (not shown) as well as through-hole conductors or via conductors 616 which are in contact with contact pads 617 provided on the surfaces 613 and 614.
[0115] Semiconductor devices in the form of face-down mounted chips [0115] 621 are provided which are adapted to be disposed on opposite sides of the interconnection substrate 612. As described in connection with the previous semiconductor devices, these devices are provided with a plurality of contact pads 622 which have a resilient contact structures 626 of the type hereinbefore described mounted thereon and which are turned upside down to make electrical contact to the contact pads 617 provided on the interconnection substrate 612. The space between the flip chips 621 and the interconnection substrate 612 can be filled with a suitable encapsulant 631 as shown.
[0116] All of the electrical connections are provided within the various flip chips can be brought out to a plurality of contacts [0116] 636 provided on one edge of the assembly 611 as shown in FIG. 36 serve as precursors and so that the semiconductor package assembly 611 can be fitted into conventional sockets for example as provided in a desktop computer and the like. With such a construction, it can be seen that silicon chips can be face down mounted on both sides of the interconnection substrate 612.
[0117] Another semiconductor package assembly [0117] 651 incorporating the present invention is shown in FIG. 37 and shows the manner in which the semiconductor package assembly 611 shown in FIG. 36 can be vertically stacked with the device semiconductor package assembly 611 being described as a double stacked card. As shown in FIG. 37 two of these double-sided silicon precursors have been mounted vertically with respect to each other with additional contact structures 652 having interconnections between the two interconnection substrates 612 of the precursors 611. The entire assembly can be optionally encapsulated with a polymeric or epoxy material for added rigidity and protection.
[0118] Another semiconductor package assembly [0118] 661 incorporating the present invention is shown in FIG. 38. It shows an assembly 661 in which a substrate 662 of the type hereinbefore described can be provided, as for example a printed circuit board made of a plastic/laminate or ceramic or silicon with the substrate 662 lying in a plane. A plurality of silicon chips or semiconductor devices 663 are stacked vertically in spaced-apart positions on the substrate 662 and extend in a direction generally perpendicular to the plane of the substrate 662. The substrate 662 is provided with a planar surface 666 which has contact pads 667 connected to circuitry in the substrate 662. Similarly, the silicon chips 663 are provided with parallel spaced-apart surfaces 668 and 669 with contacts 671 being exposed through the surface 668. Contact structures 672 of the type hereinbefore described are provided for making contacts between the contacts 671 of the silicon semiconductor devices 663 and the pads 667 carried by the substrate 662. Thus as shown, a contact structure 672 is provided for each of the silicon chips 663. The contact structures 672 can be of a resilient type and are provided with bends 672 a.
[0119] Additional contact structures [0119] 676 have been provided of the resilient type and are provided with first and second bends 676 a and 676 b. The bends 676 a and 676 b are sized in such a manner so that when a contact structure 676 is secured to another pad 678 provided on the surface 666 of the substrate 662, they will engage opposite surfaces of the silicon chip 663 to resiliently support the chip 663 in their vertical positions with respect to the substrate 662.
[0120] In connection with the foregoing, it should be appreciated that in place of the single contact structure [0120] 676 between each pair of silicon chips, it is possible to provide two separate resilient contact structures with one facing in one direction and the other in the opposite direction to provide the same support as is provided by the single resilient contact structure.
[0121] From the foregoing it can be seen that the semiconductor package assembly [0121] 661 shown in FIG. 38 lends itself to mass production techniques as for example for stacking memory chips.
[0122] In connection with the description of the interconnecting contact structures, interposers and semiconductor assemblies and packages, the methods utilized in fabricating the same have been generally described. The flexible elongate elements, as for example, [0122] 106 serving as the skeletons for the contact structures and used as interconnects can be formed utilizing automated wire bonding equipment which is designed to enable bonding of wires using ultrasonic, thermal or compression energy or a combination thereof utilizing such equipment to provide a wire having a continuous feed end and then intimately bonding the feed end to a contact pad or terminal by a combination of thermacompression or ultrasonic energy and thereafter forming from the bonded free end a pin or item which protrudes from the terminal and has a first item end. If desired, the second stem end can be bonded to the same contact pad or terminal or to a different contact pad or terminal. The pin or item can then be severed at the second stem end to define a skeleton. Thereafter, a conductive material is deposited on the skeleton to form a shell as hereinbefore described and on an immediately adjacent area of the contact pad or terminal. This procedure can be replicated to provide additional contact structures.
[0123] These are basic steps in the present method for forming the contact structures for making interconnections as hereinbefore described, which also can be characterized is forming protuberant conductive contacts. These contact structures or protuberant conductive contacts can be incorporated into and utilized in conjunction with many conventional semiconductor processes for fabricating semiconductor wafers. As hereinbefore explained, chip passivation utilizing oxide, nitride or polymer dielectric layers can be provided. In addition, shorting layers of s suitable material such as an aluminum, copper, titanium, tungsten, gold or a combination thereof can be utilized. Such a shorting layer makes it possible to use wire bonding equipment which uses high voltage discharge for the severing operations. The shorting layer, optionally electrically grounded, prevents possible damage to the active semiconductor device. Typically, such a shorting layer can be provided and overcoated with a resist and then the skeletons are mounted on the contact pads, defined by the openings in the resist. The skeletons then are overplated with a conductive material to form the shell or muscle, after which the resist and shorting layer can be removed as hereinbefore described. The wafers can Thereafter, the diced chips then be singulated or diced. can be optionally coated with a protective polymer which extends over the region in which the bonds are made to the contact pad. [0123]
[0124] In connection with such a method, the openings in the resist can be made of a larger size than that of the contact pads. Thereafter, metal can be plated up through the opening in the resist to provide a larger size contact pad or well. The resist and the shorting layer can then be removed, except underneath the larger area contact pad provided. [0124]
[0125] By providing such a larger area for the contact pad, there is a greater surface to promote adhesion to the contact structures fabricated in accordance with the present invention. Such augmented contact pads can be of any desired shape, such as circular, oval, rectangular and the like. The plated-up metal contact pads have an additional advantage in that they serve to hermetically seal the typically aluminum contact pads from the atmosphere. [0125]
[0126] Heretofore a method was described in which a contact pad was provided for the free end of a contact structure on which a sacrificial layer was removed after the deposition of the overcoating muscle layer or shell. It should be appreciated that if desired the sacrificial structure can be removed prior to deposition of the overcoating or shell and then the overcoating or shell being formed thereon with CVD, electroless plating or electroplating with a shorting layer for contact. [0126]
[0127] Also heretofore described was a method for the fabrication of a probe-like contact structure with the use of a sacrificial member such as aluminum or copper. Such a method also can be utilized for the gang transfer of a plurality of contacts onto a package prior to placing the semiconductor chip in the package. In the event of the failure of a package, the expense of the semiconductor chip will be saved with the only resulting loss being in the package and the contacts therein. Thus in accordance with the present invention, the plurality of contacts can be formed on a transfer/sacrificial substrate according to any method heretofore and thereafter gang attached to the package after which the transfer/sacrificial substrate can be removed. The attachment of a plurality of contacts on a sacrificial substrate carrier can be readily accomplished by utilizing a software data file to create the required pattern on the transfer substrate without the use of special molds. [0127]
[0128] By the use of resilient contact structures carried by semiconductor devices as hereinbefore disclosed and using the same to make yieldable and disengageable contacts with contact pads carried by test and burn-in substrates, testing and burn-in can be readily accomplished to ascertain that desired performance characteristics have been met and thereafter the same semiconductor device can be removed from the test and burn-in substrates and without change incorporated into permanent packaging as hereinbefore described by placing multiple semiconductor devices on a common substrate and thereby avoiding the need for first level semiconductor packaging. Thus, in accordance with the present invention, the active semiconductor device can be tested when it is unpackaged and also after it has been packaged into permanent package assembly. [0128]
[0129] From the foregoing, it can be seen that there has been provided a contact structure for making interconnections with interposers, semiconductor assemblies and packages using the same and a method for fabricating the same. As hereinbefore described, the contact structure has great versatility and can be utilized in many different applications in the semiconductor industry to facilitate mass production of semiconductor assemblies and packages. The contact structures provide increased reliability and high structural integrity making the semiconductor assemblies and packages incorporating the same capable of being utilized in rather adverse environments. Because of the versatility and resiliency of the contact structures of the present invention, it is possible to use the same in many different semiconductor assemblies and package configurations with the contacts being made at different elevations and with different pitches. The contact structure can be utilized in many different configurations for the pads permitting the mounting of semiconductor chips on SIMM and other cards. The contact structures and methods herein disclosed make it possible to fabricate card-ready devices with directly mounted resilient contacts. The method is suitable for mounting contact semiconductor devices either in wafer or singulated form. The equipment utilized for performing the method utilizes micromechanical hardware which is similar to conventional wire bonders already in use in the industry. [0129]
权利要求:
Claims (86)
[1" id="US-20010002624-A1-CLM-00001] 1. An interconnection contact structure assembly comprising an electronic component having a surface, a conductive contact terminal carried by the electronic component and accessible through the surface, an internal flexible elongate member having first and second ends and with paid first end forming a first intimate bond to the surface of said conductive contact terminal without the use of a separate bonding material and an electrically conductive shell formed of at least one layer of a conductive material with said at least one layer enveloping the elongate member and forming a second intimate bond with at least a portion of the conductive contact terminal immediately adjacent the first intimate bond.
[2" id="US-20010002624-A1-CLM-00002] 2. A structure as in
claim 1 wherein the strengths of the first and second intimate bonds as measured by pull, shear and/or bend can be characterized as being greater for the second intimate bond than the first intimate bond.
[3" id="US-20010002624-A1-CLM-00003] 3. A structure as in
claim 2 wherein the strength of the second intimate bond is at least twice that of the first intimate bond.
[4" id="US-20010002624-A1-CLM-00004] 4. A structure as in
claim 1 wherein said at least one layer is compressively stressed.
[5" id="US-20010002624-A1-CLM-00005] 5. A structure as in
claim 1 wherein said internal flexible elongate member and said at least one layer of the shell are formed to provide a cantilever to impart a resilient characteristic to the interconnection contact structure.
[6" id="US-20010002624-A1-CLM-00006] 6. A structure as in
claim 1 wherein said shell has an outer layer and wherein said outer layer is a solder alloy.
[7" id="US-20010002624-A1-CLM-00007] 7. A contact structure for use as an interconnect with an assembly which incorporates a semiconductor device, the assembly including an electronic component which includes a surface having at least one conductive contact pad thereon, said contact pad having a surface, said contact structure comprising at least one conductive flexible elongate element having first and second ends, means bonding the first end to the surface of the contact pad to form a first intimate bond, a shell substantially enveloping the flexible elongate element-and at least a portion of the surface of the conductive contact pad immediately adjacent the means bonding the first end of the flexible elongate element to the contact pad to provide a second intimate bond so that the strength of the second intimate bond is greater than that of the first intimate bond.
[8" id="US-20010002624-A1-CLM-00008] 8. A structure as in
claim 7 wherein said shell is formed of at least one layer of a conductive material.
[9" id="US-20010002624-A1-CLM-00009] 9. A structure as in
claim 8 wherein said flexible elongate element is provided with at least one cantilever forming a bend.
[10" id="US-20010002624-A1-CLM-00010] 10. A structure as in
claim 9 wherein said conductive shell has a high-yield strength.
[11" id="US-20010002624-A1-CLM-00011] 11. A structure as in
claim 10 wherein said conductive material of said shell is principally formed of s material selected from the group of nickel, cobalt, iron, phosphorous, boron, copper, tungsten, molybdenum, rhodium, chromium, ruthenium, silver, palladium and their alloys.
[12" id="US-20010002624-A1-CLM-00012] 12. A structure as in
claim 8 wherein said shell includes a layer which provides internal compressive stresses.
[13" id="US-20010002624-A1-CLM-00013] 13. A structure as in
claim 7 wherein said second and is a free end.
[14" id="US-20010002624-A1-CLM-00014] 14. A structure as in
claim 13 wherein said free end has a ball-like configuration.
[15" id="US-20010002624-A1-CLM-00015] 15. A structure as in
claim 7 together with an outer conductive layer adherent to the shell of a conductive material, said outer conductive layer being formed of a material to which good electrical connections can be made.
[16" id="US-20010002624-A1-CLM-00016] 16. A structure as in
claim 7 wherein said shell has an exterior surface, said exterior surface having micro protrusions formed therein.
[17" id="US-20010002624-A1-CLM-00017] 17. A structure as in
claim 9 together with a conductive flexible material mass extending from said surface of the contact pads and over the bend to minimize the inductive characteristics of the bend while permitting flexure of the bend.
[18" id="US-20010002624-A1-CLM-00018] 18. A structure as in
claim 13 wherein said free end extends above the surface of the electronic component.
[19" id="US-20010002624-A1-CLM-00019] 19. A structure as in
claim 13 wherein said free end extends down below the surface of the electronic component.
[20" id="US-20010002624-A1-CLM-00020] 20. A structure as in
claim 7 together with a layer of dielectric material disposed on the shell and an additional layer of conductive material disposed on the dielectric material to provide a shielded contact structure.
[21" id="US-20010002624-A1-CLM-00021] 21. A structure as in
claim 10 wherein said second end is free so that the second end can serve as a resilient probe contact to resiliently engage the contact terminal.
[22" id="US-20010002624-A1-CLM-00022] 22. A contact structure as in
claim 21 wherein said contact structure includes a depending portion serving as an electrical contact.
[23" id="US-20010002624-A1-CLM-00023] 23. A contact structure as in
claim 13 wherein said free end is provided with a contact pad carried by the free end and having at least one layer with a plurality of spaced apart protrusions.
[24" id="US-20010002624-A1-CLM-00024] 24. A structure as in
claim 23 wherein said layer having protrusions is formed of a hard conductive material.
[25" id="US-20010002624-A1-CLM-00025] 25. A structure as in
claim 24 wherein said hard conductive material is selected from the group nickel, cobalt, rhodium, iron, chromium, tungsten, molybdenum, carbon and their alloys.
[26" id="US-20010002624-A1-CLM-00026] 26. A structure as in
claim 10 wherein said probe and is provided with a cantilevered portion adjacent the free end.
[27" id="US-20010002624-A1-CLM-00027] 27. A structure as in
claim 7 together with means bonding the second end to the same conductive contact pad to which the first end is bonded and solder enveloping said contact structure and serving to form a solder bump.
[28" id="US-20010002624-A1-CLM-00028] 28. A structure as in
claim 27 wherein said shell has an exterior layer which is formed principally of a solder material.
[29" id="US-20010002624-A1-CLM-00029] 29. A structure as in
claim 7 wherein said flexible elongate element is formed into loops extending over the contact pad and enclosing a planar surface area therebetween with the shell being formed on the flexible elongate element and solder means secured to the shell of the flexible elongate element and forming a solder bump covering the enclosed planar area.
[30" id="US-20010002624-A1-CLM-00030] 30. An interposer for use in a semiconductor assembly, a substrate formed of an insulating material having first and second spaced apart surfaces and having s plurality of spaced apart contact pads on at least one of said surfaces and a plurality of contact structures mounted on the contact pads on said at least one of the surfaces, each of said contact structures including at least one flexible elongate element having first and second ends, means bonding the first ends to a contact pad and having a shell of conductive material formed on the flexible elongate elements and bonded to the contact pad, the second end being free and extending above the substrate.
[31" id="US-20010002624-A1-CLM-00031] 31. An interposer as in
claim 30 wherein said substrate is provided with holes extending through the substrate together with additional flexible elongate elements occured to the contact pads and extending through the holes and a shell formed of a conductive material on the additional flexible elongate elements.
[32" id="US-20010002624-A1-CLM-00032] 32. An interposer as in
claim 31 wherein said flexible elongate element is formed with a bend therein having a cantilever portion and wherein said shell is formed of a material having a high yield strength of at least thirty thousand pounds per square inch.
[33" id="US-20010002624-A1-CLM-00033] 33. An interposer as in
claim 31 wherein said holes have portions which are offset with respect to each other extending through the first and second surfaces and providing shoulders which are recessed with respect to the first and second surfaces together with contact pads disposed on said shoulders and wherein said contact structures are secured to the contact pads disposed on the shoulders and have free ends which extend outwardly through the holes beyond the first and second surfaces to provide free ends which lie in the spaced parallel planes.
[34" id="US-20010002624-A1-CLM-00034] 34. An interposer as in
claim 31 wherein said holes having conductors extending therethrough.
[35" id="US-20010002624-A1-CLM-00035] 35. An interposer as in
claim 31 wherein said holes are in the form of plated-through holes and wherein said contact structures are disposed on contact pads on one of the first and second surfaces together with additional contact structures extending across the plated-through holes and being bonded to contact pads on the other side of the substrate, said additional contact structures including flexible elongate elements and a shell formed on the flexible elongate elements.
[36" id="US-20010002624-A1-CLM-00036] 36. An interposer as in
claim 35 wherein said additional contact structures are substantially loop-shaped in elevation together with solder formed on the additional contact structure to provide a solder bump.
[37" id="US-20010002624-A1-CLM-00037] 37. A semiconductor device assembly comprising an active semiconductor device having surface with contact pads formed thereon and a plurality of contact structures mounted on the contact pads, each of said contact structures including a flexible elongate element having first and second ends, means bonding the first end to the contact pad with the second end being free and a shell formed on the flexible elongate element and formed of a conductive material which extends over the flexible elongate element and at least a portion of the contact pad to which it is secured, said flexible elongate element having a cantilever portion forming a bend therein, said contact pads being spaced apart at predetermined distances, the free second ends of said contact structures being spaced apart at greater distances than the spacing between the first ends of the flexible elongate elements bonded to the contact structures.
[38" id="US-20010002624-A1-CLM-00038] 38. An assembly as in
claim 37 wherein the second free ends are staggered with respect to the first ends of the flexible elongate elements.
[39" id="US-20010002624-A1-CLM-00039] 39. A semiconductor assembly as in
claim 37 together with registration pins secured to and mounted on the surface of the semiconductor device, said registration pins being formed of a flexible elongate element and a shell formed on the flexible elongate element.
[40" id="US-20010002624-A1-CLM-00040] 40. An assembly as in
claim 39 wherein said flexible elongate element and said shell of the registration pins being formed of the same materials as the contact structures.
[41" id="US-20010002624-A1-CLM-00041] 41. A semiconductor package assembly comprising a substrate formed of an insulating material having first and second surfaces and having contact pads disposed on at least one of the first and second surfaces, at least one active semiconductor device having a first surface and having contact pads and interconnecting resilient contact structures having first and second ends and having the first ends adapted to be bonded to either the pads carried by one surface of the substrate or to the contact pads of the semiconductor device to form bonds therewith and having the second ends adapted to make contact with the contact pads of the semiconductor device or the contact pads carried by one surface of the substrate free of bonds, said interconnecting contact structures each being comprised of a flexible elongate element having a cantilevered portion forming a bend therein and a shell of a conductive material having a high yield strength of at least thirty thousand pounds per square inch disposed on the flexible elongate element and serving to provide spring characteristics to the interconnecting contact structures to resiliently secure the active silicon device to the substrate.
[42" id="US-20010002624-A1-CLM-00042] 42. An assembly as in
claim 41 together with at least one additional active semiconductor device having contact pads and means connecting the contact pads with the at least one additional active semiconductor device to the contact pads in the other surface of the substrate.
[43" id="US-20010002624-A1-CLM-00043] 43. An assembly as in
claim 42 wherein said means connecting the contact pads of the at least one additional semiconductor device to the contact pads on the other surface of the substrate includes interconnecting contact structures of the same construction as the first named interconnecting contact structures.
[44" id="US-20010002624-A1-CLM-00044] 44. An assembly as in
claim 41 wherein the shells formed of a conducting material are intimately bonded to the contact pads so as to provide additional pull strength securing the contact structures to the contact pads.
[45" id="US-20010002624-A1-CLM-00045] 45. An assembly as in
claim 41 wherein said substrate is a printed circuit board and wherein said printed circuit board is provided with a plurality of layers of metallization and vertical via conductors extending therethrough and wherein the contact pads are in contact with the vertical via conductors.
[46" id="US-20010002624-A1-CLM-00046] 46. An assembly as in
claim 41 together with spring clip means secured to the substrate and extending over the semiconductor device to retain the at least one active semiconductor device in a predetermined position with respect to the substrate and placing compressive forces on the interconnecting resilient contact structures.
[47" id="US-20010002624-A1-CLM-00047] 47. An assembly as in
claim 46 wherein said spring clip means is formed of the same materials as the interconnecting resilient contact structures.
[48" id="US-20010002624-A1-CLM-00048] 48. An assembly as in
claim 45 wherein the interconnecting contact structures have second free ends and wherein the second free ends extend through the vertical via conductors in the printed circuit board and frictionally engage the vertical via conductors to form electrical contact therewith while serving to retain the semiconductor device in a predetermined position with respect to the substrate.
[49" id="US-20010002624-A1-CLM-00049] 49. An assembly as in
claim 41 wherein said substrate is provided with a plurality of holes and spring clip means secured to the semiconductor device and extending through the holes and engaging the printed circuit board for retaining the semiconductor device in a predetermined position with respect to the substrate and to place compressive forces upon the resilient contact structures connecting the contact pads on the substrate to contact pads on the semiconductor device.
[50" id="US-20010002624-A1-CLM-00050] 50. An assembly as in
claim 41 wherein said substrate is provided with a plurality of alignment holes, alignment pins mounted on said semiconductor device and extending through said holes in said substrate for maintaining alignment of the semiconductor device with respect to the substrate and adhesive means disposed between the semiconductor device and the substrate for retaining the semiconductor device in the predetermined position with respect to the substrate in the alignment determined by the alignment pins.
[51" id="US-20010002624-A1-CLM-00051] 51. An assembly as in
claim 50 wherein said alignment pins are formed of elongate elements having shells formed thereon to provide additional structural support for the flexible elongate elements.
[52" id="US-20010002624-A1-CLM-00052] 52. An assembly as in
claim 41 together with a capacitor disposed between said first semiconductor device and said substrate, said capacitor having contact terminals and means coupling said contact terminals to the contact pads of the first semiconductor device.
[53" id="US-20010002624-A1-CLM-00053] 53. An assembly as in
claim 52 wherein said substrate is formed with a recess therein and wherein the capacitor is disposed therein.
[54" id="US-20010002624-A1-CLM-00054] 54. An assembly as in
claim 52 wherein said means coupling the contact terminals to the contact pads with the first active semiconductor device includes contact pads disposed adjacent the recess.
[55" id="US-20010002624-A1-CLM-00055] 55. An assembly as in
claim 41 wherein said substrate is provided with a second surface having steps therein at different levels and wherein contact pads are provided on the steps and wherein contact structures are secured to the pads on the steps and have free ends extending into the same horizontal plane.
[56" id="US-20010002624-A1-CLM-00056] 56. An assembly as in
claim 41 wherein said substrate is provided with a recess extending through the first surface, a capacitor disposed in the recess and additional contact structures carried by the capacitor and terminating in the same plane as the contact pads with the semiconductor structure and secured to the semiconductor device and making electrical contact to the semiconductor structure.
[57" id="US-20010002624-A1-CLM-00057] 57. An assembly as in
claim 41 together with an integration substrate having a plurality of contact pads thereon together with additional resilient contact structures interconnecting the contact pads of the substrate to the contact pads of the integration substrate.
[58" id="US-20010002624-A1-CLM-00058] 58. An assembly as in
claim 57 together with a plurality of additional substrates mounted on the integration substrate and contact structures connecting the additional substrates to the integration substrate.
[59" id="US-20010002624-A1-CLM-00059] 59. An assembly as in
claim 58 wherein said contact structures interconnecting said substrates to said integration substrate include an interposer having a first and second sides and having contact pads thereon with electrical interconnections between at least certain of contact pads on the first and second sides, said contact structures making contact with the contact pads on the interposer and contact pads on the substrate and solder means forming a connection between the contact pads of the interposer and the contact pads of the integration substrate.
[60" id="US-20010002624-A1-CLM-00060] 60. An assembly as in
claim 59 wherein said resilient contact structures yieldably engage the contact pads of the interposer, the substrate or the integration substrate and restraining means interconnecting the substrate to the integration substrate so that compressive forces are applied to the contact structures so that the contact structures remain in electrical contact with the contact pads.
[61" id="US-20010002624-A1-CLM-00061] 61. An assembly as in
claim 60 wherein said restraining means is in the form of removable fastening means.
[62" id="US-20010002624-A1-CLM-00062] 62. A semiconductor package assembly comprising a substrate formed of an insulating material having first and second surfaces and having conductive contact pads on the first and second surfaces, a plurality of semiconductor devices having contact pads facing the contact pads on the first and second surfaces of the substrate and resilient contact structures for electrically interconnecting the contact pads of the semiconductor devices and the contact pads carried by the substrate and for supporting the semiconductor devices in spaced-apart positions from the surfaces of the substrate so that the semiconductor devices lie in first and second parallel planes on opposite sides of the substrate and contact means carried by the substrate for making electrical contact to the semiconductor devices through the contact structures.
[63" id="US-20010002624-A1-CLM-00063] 63. An assembly as in
claim 62 wherein said contact means is disposed in a plane and is disposed in a row.
[64" id="US-20010002624-A1-CLM-00064] 64. A method for providing a structural contact for engagement with a contact pad carried by an electronic component by the use of a flexible elongate conductive element having first and second ends, securing the first end to the contact pad to form a first bond and forming a conductive material on the flexible elongate element to form a shell which extends over the flexible elongate element to provide the structural contact and which extends over first the bond and over the contact pad to adhere thereto so as to provide additional strength between the contact pad and the structural contact.
[65" id="US-20010002624-A1-CLM-00065] 65. A method as in
claim 64 together with the step of forming a bend in the flexible elongate element between the first and second ends and forming the shell over the bend to provide yieldable spring-like properties for the contact structure.
[66" id="US-20010002624-A1-CLM-00066] 66. A method as in
claim 65 together with the steps of providing an additional electronic component having a contact pad thereon together with the step of contacting the second end of the flexible elongate element to the contact pad on the additional electronic component to establish an electrical connection between the same.
[67" id="US-20010002624-A1-CLM-00067] 67. A method as in
claim 66 together with the step of applying compressive forces between the electronic component and the additional electronic component so that compressive forces are maintained on the contact structures.
[68" id="US-20010002624-A1-CLM-00068] 68. A method as in
claim 64 together with the step of securing the second end to the same contact pad to form a second bond.
[69" id="US-20010002624-A1-CLM-00069] 69. A method for mounting a protuberant conductive contact to a conductive terminal on electronic component, the method comprising sequential steps of providing a wire having a continuous feed end intimately bonding the feed end to the terminal, forming from the bonded feed end a stem which protrudes from the terminal and has a first stem end thereat, bonding a second stem end into a sacrificial member mounted in spaced relationship from the component, severing the stem at the second stem end to define a skeleton, depositing a conductive material to envelop the skeleton and at least an adjacent surface of the component and eliminating the sacrificial member.
[70" id="US-20010002624-A1-CLM-00070] 70. The method as in
claim 69 wherein during the eliminating step, the second stem end is severed from the sacrificial member.
[71" id="US-20010002624-A1-CLM-00071] 71. The method as in
claim 69 wherein the conductive material is provided with a multitude of microprotrusions on its surface.
[72" id="US-20010002624-A1-CLM-00072] 72. The method as in
claim 69 wherein the depositing step includes placement of a plurality of layers each differing from one another.
[73" id="US-20010002624-A1-CLM-00073] 73. The method as in
claim 73 wherein at least one of the layers comprising conductive material has a jagged topography in order to reduce contact resistance of the protuberant conductive contact when mated to a matching terminal.
[74" id="US-20010002624-A1-CLM-00074] 74. A method for mounting a protuberant conductive contact to a conductive terminal on an electronic component, the method comprising sequential steps of providing a wire having a continuous feed end to the terminal, intimately bonding the feed end to the terminal, forming from the feed end a stem which protrudes from the terminal and has a first stem end thereat, severing the stem at a second stem end to define a skeleton, depositing a conductive material to envelop the skeleton and adjacent surface of the terminal, performing the same steps on a plurality of terminals, at least one electronic component and wherein the terminals are in different planes, the forming steps resulting in a plurality of free standing protuberant stems, the severing steps being performed on the respective stems, all in a common plane.
[75" id="US-20010002624-A1-CLM-00075] 75. A method as in
claim 74 wherein the terminals are in different planes and wherein the forming steps are carried out on the different planes.
[76" id="US-20010002624-A1-CLM-00076] 76. A method for performing test and/or burn in procedures on a semiconductor device having a plurality of resilient contact structures mounted thereon by the use of a separate test or burn-in substrate having contact pads thereon arranged in a predetermined pattern, the method comprising positioning the semiconductor device with the plurality of resilient contact structures under compressive forces with respect to the test or burn-in substrate to yieldably urge the resilient contact structures associated with the semiconductor device into engagement and electrical contact with the contact pads of the test or burn-in substrate, performing tests on the semiconductor device while the resilient contact structures are in engagement with the contact pads of the test or burn-in substrate and removing the semiconductor device with the plurality of resilient contact structures from engagement with the contact pads of the test or burn-in substrate after completion of the testing or burn-in.
[77" id="US-20010002624-A1-CLM-00077] 77. A method as in
claim 76 for use with an integration substrate having a plurality of contact pads thereon arranged in a predetermined pattern, and following completion of the testing or burn-in procedures, performing the additional steps of placing the resilient contact structures of the semiconductor device into engagement with the contact pads on the integration substrate and forming a permanent connection between the contact structures and the contact pads of the integration substrate.
[78" id="US-20010002624-A1-CLM-00078] 78. A method as in
claim 76 wherein said contact structures have base and free ends together with the step of changing the spacing between the free ends so that the spacing is different from the base ends and corresponds to the spacing of the contact pads on the substrate.
[79" id="US-20010002624-A1-CLM-00079] 79. A method for mounting a protuberant conductive contact to a conductive terminal on an electronic component, the method comprising the steps of providing a wire having a continuous feed end, intimately bonding the feed end to the terminal, forming from the feed end a stem which protrudes from the terminal and has a first stem end thereat, severing the stem at a second stem end to define a skeleton, depositing a conductive material to envelop the skeleton and adjacent surface of the terminal.
[80" id="US-20010002624-A1-CLM-00080] 80. A method as in
claim 79 wherein the forming steps and the severing steps are performed by a wire bonding apparatus and after the severing steps but before the depositing step shaping the skeleton by means of a tool external to the apparatus.
[81" id="US-20010002624-A1-CLM-00081] 81. A method as in
claim 79 wherein the conductive material is provided with a multitude of microprotrusions on its surface.
[82" id="US-20010002624-A1-CLM-00082] 82. A method as in
claim 79 with the depositing step including placement of a plurality of layers each differing from one another.
[83" id="US-20010002624-A1-CLM-00083] 83. A method as in
claim 79 wherein the depositing step includes placement of a plurality of layers each different from one another.
[84" id="US-20010002624-A1-CLM-00084] 84. A method as in
claim 79 performed on a plurality of the terminals and wherein the forming steps result in a plurality of free standing protuberant stems, the severing steps are performed on the respective stems all in a common plane.
[85" id="US-20010002624-A1-CLM-00085] 85. A method as in
claim 79 performed on a plurality of the terminals on at least one electronic component and wherein the terminals are in different planes, the forming steps resulting in a plurality of free standing protuberant stems, the severing steps being performed on the respective stems all in a common plane.
[86" id="US-20010002624-A1-CLM-00086] 86. A method as in
claim 79 performed on at least one terminal on an electronic component wherein the wire is made primarily of a metal selected from a group consisting of gold, copper, aluminum, silver, indium and alloys thereof, the skeleton being coated with a first layer of conductive material selected from a group consisting of nickel, cobalt, boron, phosphorous, copper, tungsten, titanium, chromium and alloys thereof, and the top layer of the conductive material is a solder selected from a group consisting of indium, bismuth, antimony, gold, silver, cadmium and their alloys.
类似技术:
公开号 | 公开日 | 专利标题
US6274823B1|2001-08-14|Interconnection substrates with resilient contact structures on both sides
US7200930B2|2007-04-10|Probe for semiconductor devices
US6168974B1|2001-01-02|Process of mounting spring contacts to semiconductor devices
US6741085B1|2004-05-25|Contact carriers | for populating larger substrates with spring contacts
US5806181A|1998-09-15|Contact carriers | for populating larger substrates with spring contacts
EP0886894B1|2005-09-28|Contact carriers for populating substrates with spring contacts
EP0792519A1|1997-09-03|Interconnection elements for microelectronic components
US7084656B1|2006-08-01|Probe for semiconductor devices
KR100299465B1|2001-10-27|How to mount the chip interconnect carrier and the spring contactor to the semiconductor device
同族专利:
公开号 | 公开日
CN1135268A|1996-11-06|
EP0729652A1|1996-09-04|
US6476333B1|2002-11-05|
EP0729652B1|2002-10-16|
KR960706207A|1996-11-08|
US6274823B1|2001-08-14|
JP3939467B2|2007-07-04|
JP3996172B2|2007-10-24|
JP4092361B2|2008-05-28|
JP2005252313A|2005-09-15|
DE69431565D1|2002-11-21|
KR100210691B1|1999-07-15|
CN1045693C|1999-10-13|
JPH09505439A|1997-05-27|
US5917707A|1999-06-29|
US6242803B1|2001-06-05|
WO1995014314A1|1995-05-26|
JP3006885B2|2000-02-07|
JP2007173846A|2007-07-05|
DE69431565T2|2003-06-12|
EP1241481A3|2004-01-02|
EP0729652A4|1998-06-24|
US6184587B1|2001-02-06|
US5926951A|1999-07-27|
US5900738A|1999-05-04|
JP2000124397A|2000-04-28|
US6956174B2|2005-10-18|
EP1241481A2|2002-09-18|
US6279227B1|2001-08-28|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US2432275A|1943-02-01|1947-12-09|Hazeltine Research Inc|Coupling device|
US3087239A|1959-06-19|1963-04-30|Western Electric Co|Methods of bonding leads to semiconductive devices|
US3217213A|1961-06-02|1965-11-09|Slater Electric Inc|Semiconductor diode construction with heat dissipating housing|
US3274456A|1962-11-21|1966-09-20|Gen Instrument Corp|Rectifier assembly and method of making same|
US3336433A|1965-02-11|1967-08-15|Texas Instruments Inc|Electronic package|
US3373481A|1965-06-22|1968-03-19|Sperry Rand Corp|Method of electrically interconnecting conductors|
US3486083A|1965-11-22|1969-12-23|Matsushita Electronics Corp|Car alternator semiconductor diode and rectifying circuit assembly|
US3445770A|1965-12-27|1969-05-20|Philco Ford Corp|Microelectronic test probe with defect marker access|
US3460238A|1967-04-20|1969-08-12|Motorola Inc|Wire severing in wire bonding machines|
US3573617A|1967-10-27|1971-04-06|Aai Corp|Method and apparatus for testing packaged integrated circuits|
US3519890A|1968-04-01|1970-07-07|North American Rockwell|Low stress lead|
US3509270A|1968-04-08|1970-04-28|Ney Co J M|Interconnection for printed circuits and method of making same|
US3553499A|1968-07-17|1971-01-05|Sperry Rand Corp|Fast-acting avalanche mode transistor switch|
US3787966A|1971-01-29|1974-01-29|Licentia Gmbh|Method of connecting a contacting wire to a metal contact on the surface of a semiconductor element|
US3846823A|1971-08-05|1974-11-05|Lucerne Products Inc|Semiconductor assembly|
US3747198A|1971-08-19|1973-07-24|Gen Electric|Tailless wedge bonding of gold wire to palladium-silver cermets|
US3849728A|1973-08-21|1974-11-19|Wentworth Labor Inc|Fixed point probe card and an assembly and repair fixture therefor|
US3982811A|1975-09-22|1976-09-28|Rockwell International Corporation|Electrical terminal|
US4047780A|1976-04-07|1977-09-13|Cedrone Nicholas J|Test contactor system for semiconductor device handling apparatus|
US4125308A|1977-05-26|1978-11-14|Emc Technology, Inc.|Transitional RF connector|
US4332341A|1979-12-26|1982-06-01|Bell Telephone Laboratories, Incorporated|Fabrication of circuit packages using solid phase solder bonding|
US4385341A|1981-03-19|1983-05-24|Northern Telecom Limited|Strain relief member for flat flexible cables|
US4532152A|1982-03-05|1985-07-30|Elarde Vito D|Fabrication of a printed circuit board with metal-filled channels|
US4618879A|1983-04-20|1986-10-21|Fujitsu Limited|Semiconductor device having adjacent bonding wires extending at different angles|
US4567432A|1983-06-09|1986-01-28|Texas Instruments Incorporated|Apparatus for testing integrated circuits|
US4677458A|1983-11-04|1987-06-30|Control Data Corporation|Ceramic IC package attachment apparatus|
US4545610A|1983-11-25|1985-10-08|International Business Machines Corporation|Method for forming elongated solder connections between a semiconductor device and a supporting substrate|
US4667219A|1984-04-27|1987-05-19|Trilogy Computer Development Partners, Ltd.|Semiconductor chip interface|
US4784872A|1984-11-17|1988-11-15|Messerschmitt-Boelkow-Blohm Gmbh|Process for encapsulating microelectronic semi-conductor and layer type circuits|
US4673967A|1985-01-29|1987-06-16|Texas Instruments Incorporated|Surface mounted system for leaded semiconductor devices|
US4592617A|1985-02-06|1986-06-03|North American Specialties Corporation|Solder-bearing terminal|
US4821148A|1985-06-14|1989-04-11|Hitachi, Ltd.|Resin packaged semiconductor device having a protective layer made of a metal-organic matter compound|
US4764722A|1985-10-28|1988-08-16|International Business Machines Corporation|Coaxial probe|
US4747784A|1986-05-16|1988-05-31|Daymarc Corporation|Contactor for integrated circuits|
US4878611A|1986-05-30|1989-11-07|American Telephone And Telegraph Company, At&T Bell Laboratories|Process for controlling solder joint geometry when surface mounting a leadless integrated circuit package on a substrate|
US4728751A|1986-10-06|1988-03-01|International Business Machines Corporation|Flexible electrical connection and method of making same|
US4764848A|1986-11-24|1988-08-16|International Business Machines Corporation|Surface mounted array strain relief device|
US4955523A|1986-12-17|1990-09-11|Raychem Corporation|Interconnection of electronic components|
US4893172A|1987-01-19|1990-01-09|Hitachi, Ltd.|Connecting structure for electronic part and method of manufacturing the same|
US4776804A|1987-02-05|1988-10-11|Texas Instruments Incorporated|Circuit board systems, connectors used therein, and methods for making the connectors and systems|
US5045975A|1987-05-21|1991-09-03|Cray Computer Corporation|Three dimensionally interconnected module assembly|
US5195237A|1987-05-21|1993-03-23|Cray Computer Corporation|Flying leads for integrated circuits|
US4985310A|1988-04-08|1991-01-15|International Business Machines Corp.|Multilayered metallurgical structure for an electronic component|
US4871964A|1988-04-12|1989-10-03|G. G. B. Industries, Inc.|Integrated circuit probing apparatus|
US5059143A|1988-09-08|1991-10-22|Amp Incorporated|Connector contact|
US5110032A|1988-11-28|1992-05-05|Hitachi, Ltd.,|Method and apparatus for wire bonding|
US5396104A|1989-03-28|1995-03-07|Nippon Steel Corporation|Resin coated bonding wire, method of manufacturing the same, and semiconductor device|
US4914814A|1989-05-04|1990-04-10|International Business Machines Corporation|Process of fabricating a circuit package|
US5091772A|1989-05-18|1992-02-25|Mitsubishi Denki Kabushiki Kaisha|Semiconductor device and package|
US5349495A|1989-06-23|1994-09-20|Vlsi Technology, Inc.|System for securing and electrically connecting a semiconductor chip to a substrate|
US5055778A|1989-10-02|1991-10-08|Nihon Denshizairyo Kabushiki Kaisha|Probe card in which contact pressure and relative position of each probe end are correctly maintained|
US5298464A|1989-10-26|1994-03-29|Digital Equipment Corporation|Method of mounting a tape automated bonded semiconductor in a housing using a compressor|
US4998885A|1989-10-27|1991-03-12|International Business Machines Corporation|Elastomeric area array interposer|
US5239126A|1990-01-17|1993-08-24|Sony Corporation|High-frequency circuit package|
US5245751A|1990-04-27|1993-09-21|Circuit Components, Incorporated|Array connector|
US5088190A|1990-08-30|1992-02-18|Texas Instruments Incorporated|Method of forming an apparatus for burn in testing of integrated circuit chip|
US5154341A|1990-12-06|1992-10-13|Motorola Inc.|Noncollapsing multisolder interconnection|
US5148968A|1991-02-11|1992-09-22|Motorola, Inc.|Solder bump stretch device|
US5559444A|1991-06-04|1996-09-24|Micron Technology, Inc.|Method and apparatus for testing unpackaged semiconductor dice|
US5359227A|1991-07-12|1994-10-25|Vlsi Technology, Inc.|Lead frame assembly and method for wiring same|
US5672978A|1991-09-17|1997-09-30|Japan Synthetic Rubber Co., Ltd.|Inspection apparatus for printed wiring board|
US5294039A|1991-09-30|1994-03-15|Ceridian Corporation|Plated compliant lead|
US5598627A|1991-10-29|1997-02-04|Sumitomo Wiring Systems, Ltd.|Method of making a wire harness|
US5311059A|1992-01-24|1994-05-10|Motorola, Inc.|Backplane grounding for flip-chip integrated circuit|
US5345170A|1992-06-11|1994-09-06|Cascade Microtech, Inc.|Wafer probe station having integrated guarding, Kelvin connection and shielding systems|
US5347711A|1992-07-15|1994-09-20|The Whitaker Corporation|Termination of multi-conductor electrical cables|
US5535101A|1992-11-03|1996-07-09|Motorola, Inc.|Leadless integrated circuit package|
US5334804A|1992-11-17|1994-08-02|Fujitsu Limited|Wire interconnect structures for connecting an integrated circuit to a substrate|
US5656830A|1992-12-10|1997-08-12|International Business Machines Corp.|Integrated circuit chip composite having a parylene coating|
US5389743A|1992-12-21|1995-02-14|Hughes Aircraft Company|Rivet design for enhanced copper thick-film I/O pad adhesion|
US5497456A|1992-12-31|1996-03-05|Intel Corporation|Apparatus for transferring information between an interrupt producer and an interrupt service environment|
US5555422A|1993-03-10|1996-09-10|Co-Operative Facility For Aging Tester Development|Prober for semiconductor integrated circuit element wafer|
US5355283A|1993-04-14|1994-10-11|Amkor Electronics, Inc.|Ball grid array with via interconnection|
US5536973A|1993-05-28|1996-07-16|Kabushiki Kaisha Toshiba|Semiconductor device including a semiconductor element mounted on a substrate using bump-shaped connecting electrodes|
US5550482A|1993-07-20|1996-08-27|Tokyo Electron Kabushiki Kaisha|Probe device|
US5525911A|1993-08-04|1996-06-11|Tokyo Electron Limited|Vertical probe tester card with coaxial probes|
US5621263A|1993-08-09|1997-04-15|Murata Manufacturing Co., Ltd.|Piezoelectric resonance component|
US5621313A|1993-09-09|1997-04-15|Tokyo Seimitsu Co., Ltd.|Wafer probing system and method that stores reference pattern and movement value data for different kinds of wafers|
US5463324A|1993-10-26|1995-10-31|Hewlett-Packard Company|Probe with contacts that interdigitate with and wedge between adjacent legs of an IC or the like|
US5386341A|1993-11-01|1995-01-31|Motorola, Inc.|Flexible substrate folded in a U-shape with a rigidizer plate located in the notch of the U-shape|
US6482013B2|1993-11-16|2002-11-19|Formfactor, Inc.|Microelectronic spring contact element and electronic component having a plurality of spring contact elements|
US5476211A|1993-11-16|1995-12-19|Form Factor, Inc.|Method of manufacturing electrical contacts, using a sacrificial member|
US5639558A|1994-03-10|1997-06-17|Nippon Steel Corporation|Insulating resin-coated bonding wire|
US5627406A|1994-12-22|1997-05-06|Pace; Benedict G.|Inverted chip bonded module with high packaging efficiency|
US5606196A|1995-10-14|1997-02-25|Samsung Electronics Co., Ltd.|High-frequency, high-density semiconductor chip package with screening bonding wires|US20020148639A1|1994-07-07|2002-10-17|Tessera, Inc.|Multi-layer substrates and fabrication processes|
US20020173072A1|2001-05-18|2002-11-21|Larson Thane M.|Data capture plate for substrate components|
US20030029632A1|1997-04-08|2003-02-13|Anthony Anthony A.|Arrangement for energy conditioning|
US6642625B2|1997-06-30|2003-11-04|Formfactor, Inc.|Sockets for “springed” semiconductor devices|
US20040104477A1|2002-11-21|2004-06-03|Hiromi Fujisawa|Wire loop, semiconductor device having same, wire bonding method and wire bonding apparatus|
US20040191954A1|2003-03-24|2004-09-30|Kazuaki Ano|Wire bonding for thin semiconductor package|
US20050155223A1|1994-07-07|2005-07-21|Tessera, Inc.|Methods of making microelectronic assemblies|
US20060286828A1|1993-11-16|2006-12-21|Formfactor, Inc.|Contact Structures Comprising A Core Structure And An Overcoat|
US7166914B2|1994-07-07|2007-01-23|Tessera, Inc.|Semiconductor package with heat sink|
US20070057685A1|2005-09-14|2007-03-15|Touchdown Technologies, Inc.|Lateral interposer contact design and probe card assembly|
WO2007078493A1|2005-12-22|2007-07-12|Touchdown Technologies, Inc.|Probe card assembly|
US20090181562A1|2008-01-10|2009-07-16|Johnson Controls Technology Company|Electronics card comprising a printed circuit board and a piece of equipment carried by the board|
US7659619B1|2004-10-13|2010-02-09|Sun Microsystems, Inc.|Structures for Z-aligned proximity communication|
US7675729B2|2003-12-22|2010-03-09|X2Y Attenuators, Llc|Internally shielded energy conditioner|
US7688565B2|1997-04-08|2010-03-30|X2Y Attenuators, Llc|Arrangements for energy conditioning|
US7733621B2|1997-04-08|2010-06-08|X2Y Attenuators, Llc|Energy conditioning circuit arrangement for integrated circuit|
US7768763B2|1997-04-08|2010-08-03|X2Y Attenuators, Llc|Arrangement for energy conditioning|
US7782587B2|2005-03-01|2010-08-24|X2Y Attenuators, Llc|Internally overlapped conditioners|
US7817397B2|2005-03-01|2010-10-19|X2Y Attenuators, Llc|Energy conditioner with tied through electrodes|
US20100327466A1|2009-06-30|2010-12-30|Sun Microsystems, Inc.|Technique for fabricating microsprings on non-planar surfaces|
US8016182B2|2005-05-10|2011-09-13|Kaijo Corporation|Wire loop, semiconductor device having same and wire bonding method|
US8026777B2|2006-03-07|2011-09-27|X2Y Attenuators, Llc|Energy conditioner structures|
US9054094B2|1997-04-08|2015-06-09|X2Y Attenuators, Llc|Energy conditioning circuit arrangement for integrated circuit|US3258736A||1966-06-28||Electrical connector |
US3302067A||1967-01-31||Modular circuit package utilizing solder coated |
DE1026876B|1953-06-17|1958-03-27|Telefunken Gmbh|Process for the production of p-n junctions of specific barrier layer size|
US2869040A|1954-01-11|1959-01-13|Sylvania Electric Prod|Solder-dipped stamped wiring|
US2923859A|1955-07-20|1960-02-02|Philco Corp|Manufacture of electrical appliances with printed wiring panels|
US3075282A|1959-07-24|1963-01-29|Bell Telephone Labor Inc|Semiconductor device contact|
US3202489A|1959-12-01|1965-08-24|Hughes Aircraft Co|Gold-aluminum alloy bond electrode attachment|
US3070650A|1960-09-23|1962-12-25|Sanders Associates Inc|Solder connection for electrical circuits|
US3047683A|1961-03-22|1962-07-31|Jr Bernard Edward Shlesinger|Multiple contact switch|
US3281751A|1963-08-30|1966-10-25|Raymond H Blair|Spring connector for printed circuit board|
US3296692A|1963-09-13|1967-01-10|Bell Telephone Labor Inc|Thermocompression wire attachments to quartz crystals|
US3286340A|1964-02-28|1966-11-22|Philco Corp|Fabrication of semiconductor units|
DE1514304A1|1964-04-03|1969-05-14|Philco Ford Corp|Semiconductor device and manufacturing process therefor|
US3344228A|1964-11-19|1967-09-26||Thermal barriers for electric cables |
US3429040A|1965-06-18|1969-02-25|Ibm|Method of joining a component to a substrate|
FR1483574A|1965-06-24|1967-09-06|||
US3368114A|1965-07-06|1968-02-06|Radiation Inc|Microelectronic circuit packages with improved connection structure|
US3467765A|1965-10-04|1969-09-16|Contemporary Research Inc|Solder composition|
US3614832A|1966-03-09|1971-10-26|Ibm|Decal connectors and methods of forming decal connections to solid state devices|
US3390308A|1966-03-31|1968-06-25|Itt|Multiple chip integrated circuit assembly|
US3397451A|1966-04-06|1968-08-20|Western Electric Co|Sequential wire and articlebonding methods|
US3426252A|1966-05-03|1969-02-04|Bell Telephone Labor Inc|Semiconductive device including beam leads|
US3517438A|1966-05-12|1970-06-30|Ibm|Method of packaging a circuit module and joining same to a circuit substrate|
DE1539692A1|1966-06-23|1969-10-16|Blume & Redecker Gmbh|Wrapping device for coils|
NL6613526A|1966-09-26|1968-03-27|||
US3474297A|1967-06-30|1969-10-21|Texas Instruments Inc|Interconnection system for complex semiconductor arrays|
US3495170A|1967-11-24|1970-02-10|James R Biard|Method for the indirect measurement of resistivities and impurity concentrations in a semiconductor body including an epitaxial film|
US3689991A|1968-03-01|1972-09-12|Gen Electric|A method of manufacturing a semiconductor device utilizing a flexible carrier|
US3567846A|1968-05-31|1971-03-02|Gen Cable Corp|Metallic sheathed cables with roam cellular polyolefin insulation and method of making|
US3590480A|1968-10-03|1971-07-06|Theodore H Johnson Jr|Method of manufacturing a pulse transformer package|
US3550645A|1968-10-03|1970-12-29|Photocircuits Corp|Wire wound armature,method and apparatus for making same|
US3555477A|1969-01-21|1971-01-12|Standard Int Corp|Electrical inductor and method of making the same|
US3673681A|1969-04-01|1972-07-04|Inforex|Electrical circuit board wiring|
US3623649A|1969-06-09|1971-11-30|Gen Motors Corp|Wedge bonding tool for the attachment of semiconductor leads|
US3680206A|1969-06-23|1972-08-01|Ferranti Ltd|Assemblies of semiconductor devices having mounting pillars as circuit connections|
US3871015A|1969-08-14|1975-03-11|Ibm|Flip chip module with non-uniform connector joints|
US3871014A|1969-08-14|1975-03-11|Ibm|Flip chip module with non-uniform solder wettable areas on the substrate|
US3591839A|1969-08-27|1971-07-06|Siliconix Inc|Micro-electronic circuit with novel hermetic sealing structure and method of manufacture|
US3569610A|1969-10-15|1971-03-09|Gen Cable Corp|Ethylene-propylene rubber insulated cable with cross-linked polyethylene strand shielding|
JPS4919634B1|1969-12-29|1974-05-18|||
US3627124A|1970-01-29|1971-12-14|Western Electric Co|Method for separating selected articles from an array|
US3616532A|1970-02-02|1971-11-02|Sperry Rand Corp|Multilayer printed circuit electrical interconnection device|
US3662454A|1970-03-18|1972-05-16|Rca Corp|Method of bonding metals together|
DE2119567C2|1970-05-05|1983-07-14|International Computers Ltd., London|Electrical connection device and method for making the same|
US3864728A|1970-11-20|1975-02-04|Siemens Ag|Semiconductor components having bimetallic lead connected thereto|
US3683105A|1970-10-13|1972-08-08|Westinghouse Electric Corp|Microcircuit modular package|
US3680037A|1970-11-05|1972-07-25|Tech Wire Prod Inc|Electrical interconnector|
US3753665A|1970-11-12|1973-08-21|Gen Electric|Magnetic film plated wire|
US3844909A|1970-11-12|1974-10-29|Gen Electric|Magnetic film plated wire and substrates therefor|
US3724068A|1971-02-25|1973-04-03|Du Pont|Semiconductor chip packaging apparatus and method|
US3772575A|1971-04-28|1973-11-13|Rca Corp|High heat dissipation solder-reflow flip chip transistor|
US3832769A|1971-05-26|1974-09-03|Minnesota Mining & Mfg|Circuitry and method|
US3611061A|1971-07-07|1971-10-05|Motorola Inc|Multiple lead integrated circuit device and frame member for the fabrication thereof|
GB1387587A|1971-07-22|1975-03-19|Plessey Co Ltd|Electrical interconnectors and connector assemblies|
US3917900A|1971-07-26|1975-11-04|Anaconda Co|Electric cable with expanded-metal shield and method of making|
US3832632A|1971-11-22|1974-08-27|F Ardezzone|Multi-point probe head assembly|
US3719981A|1971-11-24|1973-03-13|Rca Corp|Method of joining solder balls to solder bumps|
CA954635A|1972-06-06|1974-09-10|Microsystems International Limited|Mounting leads and method of fabrication|
DE2228703B2|1972-06-13|1974-11-28|Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt||
DE2232794B1|1972-07-04|1973-01-25|Matsuo Electric Co., Ltd., Toyonaka, Osaka |Plate-shaped electronic component|
US3939559A|1972-10-03|1976-02-24|Western Electric Company, Inc.|Methods of solid-phase bonding mating members through an interposed pre-shaped compliant medium|
US3811186A|1972-12-11|1974-05-21|Ibm|Method of aligning and attaching circuit devices on a substrate|
US3842189A|1973-01-08|1974-10-15|Rca Corp|Contact array and method of making the same|
US3861135A|1973-02-08|1975-01-21|Chomerics Inc|Electrical interconnector and method of making|
US3795884A|1973-03-06|1974-03-05|Amp Inc|Electrical connector formed from coil spring|
US3862791A|1973-06-13|1975-01-28|Northern Electric Co|Terminal pin block and method of making it|
US3839727A|1973-06-25|1974-10-01|Ibm|Semiconductor chip to substrate solder bond using a locally dispersed, ternary intermetallic compound|
US3873173A|1973-10-05|1975-03-25|Itt|Electrical connector assembly|
US3868724A|1973-11-21|1975-02-25|Fairchild Camera Instr Co|Multi-layer connecting structures for packaging semiconductor devices mounted on a flexible carrier|
US3877064A|1974-02-22|1975-04-08|Amp Inc|Device for connecting leadless integrated circuit packages to a printed-circuit board|
US3926360A|1974-05-28|1975-12-16|Burroughs Corp|Method of attaching a flexible printed circuit board to a rigid printed circuit board|
US3921285A|1974-07-15|1975-11-25|Ibm|Method for joining microminiature components to a carrying structure|
US3904262A|1974-09-27|1975-09-09|John M Cutchaw|Connector for leadless integrated circuit packages|
US4074342A|1974-12-20|1978-02-14|International Business Machines Corporation|Electrical package for lsi devices and assembly process therefor|
US4009485A|1974-12-23|1977-02-22|General Electric Company|Semiconductor pellet assembly mounted on ceramic substrate|
US3982320A|1975-02-05|1976-09-28|Technical Wire Products, Inc.|Method of making electrically conductive connector|
US3984166A|1975-05-07|1976-10-05|Burroughs Corporation|Semiconductor device package having lead frame structure with integral spring contacts|
US3991463A|1975-05-19|1976-11-16|Chomerics, Inc.|Method of forming an interconnector|
US4312117A|1977-09-01|1982-01-26|Raytheon Company|Integrated test and assembly device|
US4189825A|1975-06-04|1980-02-26|Raytheon Company|Integrated test and assembly device|
US4003621A|1975-06-16|1977-01-18|Technical Wire Products, Inc.|Electrical connector employing conductive rectilinear elements|
US3990689A|1975-08-11|1976-11-09|Eklund Sr Ralph H|Adjustable holder assembly for positioning a vacuum chuck|
DE2608250C3|1976-02-28|1985-06-05|Telefunken electronic GmbH, 7100 Heilbronn|Method for thermocompression joining of metal connection contacts located on semiconductor bodies with associated housing connection parts and device for carrying out the method|
US4080722A|1976-03-22|1978-03-28|Rca Corporation|Method of manufacturing semiconductor devices having a copper heat capacitor and/or copper heat sink|
DE2617465C3|1976-04-21|1978-10-19|Siemens Ag, 1000 Berlin Und 8000 Muenchen|Electric coil and process for its manufacture|
US4034468A|1976-09-03|1977-07-12|Ibm Corporation|Method for making conduction-cooled circuit package|
US4067104A|1977-02-24|1978-01-10|Rockwell International Corporation|Method of fabricating an array of flexible metallic interconnects for coupling microelectronics components|
US4246595A|1977-03-08|1981-01-20|Matsushita Electric Industrial Co., Ltd.|Electronics circuit device and method of making the same|
US4085502A|1977-04-12|1978-04-25|Advanced Circuit Technology, Inc.|Jumper cable|
JPS53149763A|1977-06-01|1978-12-27|Citizen Watch Co Ltd|Mounting method of semiconductor integrate circuit|
US4139936A|1977-07-05|1979-02-20|Hughes Aircraft Company|Method of making hermetic coaxial cable|
US4161692A|1977-07-18|1979-07-17|Cerprobe Corporation|Probe device for integrated circuit wafers|
EP0002166A3|1977-11-18|1979-08-08|International Business Machines Corporation|Carrier for mounting an integrated-circuit chip and method for its manufacture|
US4155615A|1978-01-24|1979-05-22|Amp Incorporated|Multi-contact connector for ceramic substrate packages and the like|
US4179802A|1978-03-27|1979-12-25|International Business Machines Corporation|Studded chip attachment process|
JPS54146581A|1978-05-09|1979-11-15|Mitsubishi Electric Corp|Electric chracteristic measuring device for semiconductor chip|
US4326663A|1978-07-20|1982-04-27|Eltec Instruments, Inc.|Pyroelectric detector|
JPS5555985U|1978-10-12|1980-04-16|||
US4225900A|1978-10-25|1980-09-30|Raytheon Company|Integrated circuit device package interconnect means|
US4216350A|1978-11-01|1980-08-05|Burroughs Corporation|Multiple solder pre-form with non-fusible web|
US4231154A|1979-01-10|1980-11-04|International Business Machines Corporation|Electronic package assembly method|
US4195193A|1979-02-23|1980-03-25|Amp Incorporated|Lead frame and chip carrier housing|
US4278311A|1979-04-06|1981-07-14|Amp Incorporated|Surface to surface connector|
JPS568081U|1979-06-29|1981-01-23|||
JPS5626446A|1979-08-09|1981-03-14|Nec Corp|Semiconductor device|
US4272140A|1979-12-19|1981-06-09|Gte Automatic Electric Laboratories Incorporated|Arrangement for mounting dual-in-line packaged integrated circuits to thick/thin film circuits|
US4322778A|1980-01-25|1982-03-30|International Business Machines Corp.|High performance semiconductor package assembly|
SU1003396A1|1980-02-08|1983-03-07|Институт коллоидной химии и химии воды АН УССР|Electric connector|
JPS56116282A|1980-02-19|1981-09-11|Sharp Kk|Electronic part with plural terminals|
US4417392A|1980-05-15|1983-11-29|Cts Corporation|Process of making multi-layer ceramic package|
US4523144A|1980-05-27|1985-06-11|Japan Electronic Materials Corp.|Complex probe card for testing a semiconductor wafer|
JPS5728337A|1980-07-28|1982-02-16|Hitachi Ltd|Connecting constructin of semiconductor element|
US4374457A|1980-08-04|1983-02-22|Wiech Raymond E Jr|Method of fabricating complex micro-circuit boards and substrates|
US4385202A|1980-09-25|1983-05-24|Texas Instruments Incorporated|Electronic circuit interconnection system|
US4546406A|1980-09-25|1985-10-08|Texas Instruments Incorporated|Electronic circuit interconnection system|
US4472762A|1980-09-25|1984-09-18|Texas Instruments Incorporated|Electronic circuit interconnection system|
US4396935A|1980-10-06|1983-08-02|Ncr Corporation|VLSI Packaging system|
US4418857A|1980-12-31|1983-12-06|International Business Machines Corp.|High melting point process for Au:Sn:80:20 brazing alloy for chip carriers|
US4422568A|1981-01-12|1983-12-27|Kulicke And Soffa Industries, Inc.|Method of making constant bonding wire tail lengths|
FR2498814B1|1981-01-26|1985-12-20|Burroughs Corp|HOUSING FOR INTEGRATED CIRCUIT, MEANS FOR MOUNTING AND MANUFACTURING METHOD|
NL184184C|1981-03-20|1989-05-01|Philips Nv|METHOD FOR APPLYING CONTACT INCREASES TO CONTACT PLACES OF AN ELECTRONIC MICROCKETES|
US4408218A|1981-03-27|1983-10-04|Amp Incorporated|Ceramic chip carrier with lead frame having removable rim|
US4407007A|1981-05-28|1983-09-27|International Business Machines Corporation|Process and structure for minimizing delamination in the fabrication of multi-layer ceramic substrate|
US4410905A|1981-08-14|1983-10-18|Amp Incorporated|Power, ground and decoupling structure for chip carriers|
US4402450A|1981-08-21|1983-09-06|Western Electric Company, Inc.|Adapting contacts for connection thereto|
JPS6347151B2|1981-09-07|1988-09-20|Tokyo Shibaura Electric Co||
EP0074605B1|1981-09-11|1990-08-29|Kabushiki Kaisha Toshiba|Method for manufacturing multilayer circuit substrate|
US4419818A|1981-10-26|1983-12-13|Amp Incorporated|Method for manufacturing substrate with selectively trimmable resistors between signal leads and ground structure|
US4447857A|1981-12-09|1984-05-08|International Business Machines Corporation|Substrate with multiple type connections|
DE3173078D1|1981-12-29|1986-01-09|Ibm|Soldering method of pins to eyelets of conductors formed on a ceramic substrate|
US4453176A|1981-12-31|1984-06-05|International Business Machines Corporation|LSI Chip carrier with buried repairable capacitor with low inductance leads|
US4514750A|1982-01-11|1985-04-30|Texas Instruments Incorporated|Integrated circuit package having interconnected leads adjacent the package ends|
US4412642A|1982-03-15|1983-11-01|Western Electric Co., Inc.|Cast solder leads for leadless semiconductor circuits|
JPS58173790A|1982-04-06|1983-10-12|Citizen Watch Co Ltd|Connection structure of display unit and semiconductor device|
US4754316A|1982-06-03|1988-06-28|Texas Instruments Incorporated|Solid state interconnection system for three dimensional integrated circuit structures|
US4551746A|1982-10-05|1985-11-05|Mayo Foundation|Leadless chip carrier apparatus providing an improved transmission line environment and improved heat dissipation|
JPH0214779B2|1982-11-12|1990-04-10|Matsushita Electric Ind Co Ltd||
US4442938A|1983-03-22|1984-04-17|Advanced Interconnections|Socket terminal positioning method and construction|
US4513355A|1983-06-15|1985-04-23|Motorola, Inc.|Metallization and bonding means and method for VLSI packages|
JPS6010298A|1983-06-29|1985-01-19|Fujitsu Ltd|Voice message length forecasting system|
US4664309A|1983-06-30|1987-05-12|Raychem Corporation|Chip mounting device|
US4705205A|1983-06-30|1987-11-10|Raychem Corporation|Chip carrier mounting device|
US4553192A|1983-08-25|1985-11-12|International Business Machines Corporation|High density planar interconnected integrated circuit package|
US4615573A|1983-10-28|1986-10-07|Honeywell Inc.|Spring finger interconnect for IC chip carrier|
US4751199A|1983-12-06|1988-06-14|Fairchild Semiconductor Corporation|Process of forming a compliant lead frame for array-type semiconductor packages|
US4520561A|1983-12-16|1985-06-04|Rca Corporation|Method of fabricating an electronic circuit including an aperture through the substrate thereof|
US4547833A|1983-12-23|1985-10-15|Schlumberger Technology Corporation|High density electronics packaging system for hostile environment|
KR900001273B1|1983-12-23|1990-03-05|후지쑤 가부시끼가이샤|Semiconductor integrated circuit device|
US4597522A|1983-12-26|1986-07-01|Kabushiki Kaisha Toshiba|Wire bonding method and device|
US4581291A|1983-12-29|1986-04-08|Bongianni Wayne L|Microminiature coaxial cable and methods manufacture|
JPS60150657A|1984-01-18|1985-08-08|Hitachi Ltd|Resin molded semiconductor device|
US4670770A|1984-02-21|1987-06-02|American Telephone And Telegraph Company|Integrated circuit chip-and-substrate assembly|
US4597617A|1984-03-19|1986-07-01|Tektronix, Inc.|Pressure interconnect package for integrated circuits|
US4574470A|1984-03-19|1986-03-11|Trilogy Computer Development Partners, Ltd.|Semiconductor chip mounting system|
US4595794A|1984-03-19|1986-06-17|At&T Bell Laboratories|Component mounting apparatus|
US4685998A|1984-03-22|1987-08-11|Thomson Components - Mostek Corp.|Process of forming integrated circuits with contact pads in a standard array|
US4627151A|1984-03-22|1986-12-09|Thomson Components-Mostek Corporation|Automatic assembly of integrated circuits|
US4548451A|1984-04-27|1985-10-22|International Business Machines Corporation|Pinless connector interposer and method for making the same|
DK291184D0|1984-06-13|1984-06-13|Boeegh Petersen Allan|METHOD AND DEVICE FOR TESTING CIRCUIT PLATES|
JPH0256838B2|1984-07-24|1990-12-03|Fujitsu Ltd||
US4600138A|1984-07-25|1986-07-15|Hughes Aircraft Company|Bonding tool and clamp assembly and wire handling method|
DE3577371D1|1984-07-27|1990-05-31|Toshiba Kawasaki Kk|APPARATUS FOR PRODUCING A SEMICONDUCTOR ARRANGEMENT.|
US4772936A|1984-09-24|1988-09-20|United Technologies Corporation|Pretestable double-sided tab design|
GB2167228B|1984-10-11|1988-05-05|Anamartic Ltd|Integrated circuit package|
DE3536908C2|1984-10-18|1988-04-14|Sanyo Electric Co., Ltd., Moriguchi, Osaka, Jp||
US4649415A|1985-01-15|1987-03-10|National Semiconductor Corporation|Semiconductor package with tape mounted die|
US4659437A|1985-01-19|1987-04-21|Tokusen Kogyo Kabushiki Kaisha|Method of thermal diffusion alloy plating for steel wire on continuous basis|
US4634199A|1985-01-22|1987-01-06|Itt Corporation|Connector assembly for making multiple connections in a thin space|
JPS61170054A|1985-01-23|1986-07-31|Mitsubishi Electric Corp|Clip lead|
US4604644A|1985-01-28|1986-08-05|International Business Machines Corporation|Solder interconnection structure for joining semiconductor devices to substrates that have improved fatigue life, and process for making|
US4982264A|1985-02-27|1991-01-01|Texas Instruments Incorporated|High density integrated circuit package|
US5059557A|1989-08-08|1991-10-22|Texas Instruments Incorporated|Method of electrically connecting integrated circuits by edge-insertion in grooved support members|
US4628410A|1985-04-10|1986-12-09|Itt Corporation|Surface mounting connector|
JPH0763083B2|1985-04-22|1995-07-05|日本特殊陶業株式会社|Terminal connection structure and its connection method|
US4642889A|1985-04-29|1987-02-17|Amp Incorporated|Compliant interconnection and method therefor|
US4640499A|1985-05-01|1987-02-03|The United States Of America As Represented By The Secretary Of The Air Force|Hermetic chip carrier compliant soldering pads|
US4724383A|1985-05-03|1988-02-09|Testsystems, Inc.|PC board test fixture|
US4757256A|1985-05-10|1988-07-12|Micro-Probe, Inc.|High density probe card|
US4837622A|1985-05-10|1989-06-06|Micro-Probe, Inc.|High density probe card|
US4647959A|1985-05-20|1987-03-03|Tektronix, Inc.|Integrated circuit package, and method of forming an integrated circuit package|
US4628406A|1985-05-20|1986-12-09|Tektronix, Inc.|Method of packaging integrated circuit chips, and integrated circuit package|
FR2583254A1|1985-06-10|1986-12-12|Thevenin Gilles|PANEL FOR MOUNTING REMOVABLE ELEMENTS, ESPECIALLY FOR EDUCATIONAL TOYS|
JPS61287254A|1985-06-14|1986-12-17|Hitachi Device Eng Co Ltd|Semiconductor device|
US4647126A|1985-06-17|1987-03-03|Sperry Corporation|Compliant lead clip|
US4641426A|1985-06-21|1987-02-10|Associated Enterprises, Inc.|Surface mount compatible connector system with mechanical integrity|
US4780836A|1985-08-14|1988-10-25|Kabushiki Kaisha Toshiba|Method of testing semiconductor devices using a probe card|
US4661192A|1985-08-22|1987-04-28|Motorola, Inc.|Low cost integrated circuit bonding process|
CA1226966A|1985-09-10|1987-09-15|Gabriel Marcantonio|Integrated circuit chip package|
JPH0553066B2|1985-09-27|1993-08-09|Hitachi Ltd||
US4646435A|1985-10-04|1987-03-03|Raychem Corporation|Chip carrier alignment device and alignment method|
US4874721A|1985-11-11|1989-10-17|Nec Corporation|Method of manufacturing a multichip package with increased adhesive strength|
JPH0365005B2|1985-11-22|1991-10-09|||
US4890194A|1985-11-22|1989-12-26|Texas Instruments Incorporated|A chip carrier and mounting structure connected to the chip carrier|
US4903120A|1985-11-22|1990-02-20|Texas Instruments Incorporated|Chip carrier with interconnects on lid|
US4750089A|1985-11-22|1988-06-07|Texas Instruments Incorporated|Circuit board with a chip carrier and mounting structure connected to the chip carrier|
AT385932B|1985-12-13|1988-06-10|Neumayer Karl|BAND OR WIRE SHAPED MATERIAL|
US4716049A|1985-12-20|1987-12-29|Hughes Aircraft Company|Compressive pedestal for microminiature connections|
US4924353A|1985-12-20|1990-05-08|Hughes Aircraft Company|Connector system for coupling to an integrated circuit chip|
US4902606A|1985-12-20|1990-02-20|Hughes Aircraft Company|Compressive pedestal for microminiature connections|
US4700276A|1986-01-03|1987-10-13|Motorola Inc.|Ultra high density pad array chip carrier|
US4700473A|1986-01-03|1987-10-20|Motorola Inc.|Method of making an ultra high density pad array chip carrier|
JPS62160373A|1986-01-09|1987-07-16|Mitsubishi Heavy Ind Ltd|Waste ship utilizing type indoor factory forming method|
US4721993A|1986-01-31|1988-01-26|Olin Corporation|Interconnect tape for use in tape automated bonding|
US4709468A|1986-01-31|1987-12-01|Texas Instruments Incorporated|Method for producing an integrated circuit product having a polyimide film interconnection structure|
JPS62194652A|1986-02-21|1987-08-27|Hitachi Ltd|Semiconductor device|
US4807021A|1986-03-10|1989-02-21|Kabushiki Kaisha Toshiba|Semiconductor device having stacking structure|
US4695870A|1986-03-27|1987-09-22|Hughes Aircraft Company|Inverted chip carrier|
JPS62246480A|1986-04-16|1987-10-27|Shinano Kuatsu Kogyo Kk|Clamping device|
US4681654A|1986-05-21|1987-07-21|International Business Machines Corporation|Flexible film semiconductor chip carrier|
US4793814A|1986-07-21|1988-12-27|Rogers Corporation|Electrical circuit board interconnect|
US4695872A|1986-08-01|1987-09-22|Texas Instruments Incorporated|High density micropackage for IC chips|
US4767344A|1986-08-22|1988-08-30|Burndy Corporation|Solder mounting of electrical contacts|
KR900007231B1|1986-09-16|1990-10-05|가부시키가이샤 도시바|Semoconductor intergrated circuite device|
US4918811A|1986-09-26|1990-04-24|General Electric Company|Multichip integrated circuit packaging method|
US4937203A|1986-09-26|1990-06-26|General Electric Company|Method and configuration for testing electronic circuits and integrated circuit chips using a removable overlay layer|
US4777564A|1986-10-16|1988-10-11|Motorola, Inc.|Leadform for use with surface mounted components|
US4970570A|1986-10-28|1990-11-13|International Business Machines Corporation|Use of tapered head pin design to improve the stress distribution in the braze joint|
US4811082A|1986-11-12|1989-03-07|International Business Machines Corporation|High performance integrated circuit packaging structure|
DE3780764T2|1986-11-15|1992-12-24|Matsushita Electric Works Ltd|MOLDED PLASTIC CHIP HOUSING WITH PLUG PATTERN.|
US4814295A|1986-11-26|1989-03-21|Northern Telecom Limited|Mounting of semiconductor chips on a plastic substrate|
JPH07112041B2|1986-12-03|1995-11-29|シャープ株式会社|Method for manufacturing semiconductor device|
US5189507A|1986-12-17|1993-02-23|Raychem Corporation|Interconnection of electronic components|
US5086337A|1987-01-19|1992-02-04|Hitachi, Ltd.|Connecting structure of electronic part and electronic device using the structure|
US4783719A|1987-01-20|1988-11-08|Hughes Aircraft Company|Test connector for electrical devices|
US5285949A|1987-01-26|1994-02-15|Hitachi, Ltd.|Wire-bonding method, wire-bonding apparatus, and semiconductor device produced by the wire-bonding method|
US4855867A|1987-02-02|1989-08-08|International Business Machines Corporation|Full panel electronic packaging structure|
US4816426A|1987-02-19|1989-03-28|Olin Corporation|Process for manufacturing plastic pin grid arrays and the product produced thereby|
US5057461A|1987-03-19|1991-10-15|Texas Instruments Incorporated|Method of mounting integrated circuit interconnect leads releasably on film|
US5196268A|1987-03-19|1993-03-23|Texas Instruments Incorporated|Integrated circuit interconnect leads releasably mounted on film|
US4942140A|1987-03-25|1990-07-17|Mitsubishi Denki Kabushiki Kaisha|Method of packaging semiconductor device|
US4874476A|1987-04-13|1989-10-17|Texas Instruments Incorporated|Fixture for plating tall contact bumps on integrated circuit|
US4861452A|1987-04-13|1989-08-29|Texas Instruments Incorporated|Fixture for plating tall contact bumps on integrated circuit|
US5024746A|1987-04-13|1991-06-18|Texas Instruments Incorporated|Fixture and a method for plating contact bumps for integrated circuits|
US4931149A|1987-04-13|1990-06-05|Texas Instruments Incorporated|Fixture and a method for plating contact bumps for integrated circuits|
US4874722A|1987-04-16|1989-10-17|Texas Instruments Incorporated|Process of packaging a semiconductor device with reduced stress forces|
US5106784A|1987-04-16|1992-04-21|Texas Instruments Incorporated|Method of making a post molded cavity package with internal dam bar for integrated circuit|
US4983907A|1987-05-14|1991-01-08|Intel Corporation|Driven guard probe card|
US4796078A|1987-06-15|1989-01-03|International Business Machines Corporation|Peripheral/area wire bonding technique|
US4857482A|1987-06-30|1989-08-15|Kabushiki Kaisha Toshiba|Method of forming bump electrode and electronic circuit device|
US4818823A|1987-07-06|1989-04-04|Micro-Circuits, Inc.|Adhesive component means for attaching electrical components to conductors|
US4967261A|1987-07-30|1990-10-30|Mitsubishi Denki Kabushiki Kaisha|Tape carrier for assembling an IC chip on a substrate|
US4956749A|1987-11-20|1990-09-11|Hewlett-Packard Company|Interconnect structure for integrated circuits|
US5014111A|1987-12-08|1991-05-07|Matsushita Electric Industrial Co., Ltd.|Electrical contact bump and a package provided with the same|
US4926241A|1988-02-19|1990-05-15|Microelectronics And Computer Technology Corporation|Flip substrate for chip mount|
US4827611A|1988-03-28|1989-05-09|Control Data Corporation|Compliant S-leads for chip carriers|
US4858819A|1988-03-29|1989-08-22|Hughes Aircraft Company|Orthogonal bonding method and equipment|
US4878846A|1988-04-06|1989-11-07|Schroeder Jon M|Electronic circuit chip connection assembly and method|
US4918032A|1988-04-13|1990-04-17|General Motors Corporation|Method for fabricating three-dimensional microstructures and a high-sensitivity integrated vibration sensor using such microstructures|
US5103557A|1988-05-16|1992-04-14|Leedy Glenn J|Making and testing an integrated circuit using high density probe points|
JPH01313969A|1988-06-13|1989-12-19|Hitachi Ltd|Semiconductor device|
US5185073A|1988-06-21|1993-02-09|International Business Machines Corporation|Method of fabricating nendritic materials|
US4842184A|1988-06-23|1989-06-27|Ltv Aerospace & Defense Company|Method and apparatus for applying solder preforms|
US4887148A|1988-07-15|1989-12-12|Advanced Micro Devices, Inc.|Pin grid array package structure|
US4943845A|1988-08-02|1990-07-24|Northern Telecom Limited|Thick film packages with common wafer aperture placement|
US4884122A|1988-08-05|1989-11-28|General Electric Company|Method and configuration for testing electronic circuits and integrated circuit chips using a removable overlay layer|
US5025306A|1988-08-09|1991-06-18|Texas Instruments Incorporated|Assembly of semiconductor chips|
US4907734A|1988-10-28|1990-03-13|International Business Machines Corporation|Method of bonding gold or gold alloy wire to lead tin solder|
DE3838413A1|1988-11-12|1990-05-17|Mania Gmbh|ADAPTER FOR ELECTRONIC TEST DEVICES FOR PCBS AND THE LIKE|
US5399982A|1989-11-13|1995-03-21|Mania Gmbh & Co.|Printed circuit board testing device with foil adapter|
US4903889A|1988-11-14|1990-02-27|Raychem Corporation|Connection to a component for use in an electronics assembly|
US4996629A|1988-11-14|1991-02-26|International Business Machines Corporation|Circuit board with self-supporting connection between sides|
JPH02174255A|1988-12-27|1990-07-05|Mitsubishi Electric Corp|Semiconductor integrated circuit|
US5024372A|1989-01-03|1991-06-18|Motorola, Inc.|Method of making high density solder bumps and a substrate socket for high density solder bumps|
FR2643753A1|1989-02-28|1990-08-31|Commissariat Energie Atomique|Method of interconnecting electrical components by means of deformable and substantially spherical conducting elements|
JPH02237047A|1989-03-09|1990-09-19|Mitsubishi Electric Corp|Semiconductor testing device|
US4932902A|1989-03-21|1990-06-12|Crane Electronics, Inc.|Ultra-high density electrical interconnect system|
US4922376A|1989-04-10|1990-05-01|Unistructure, Inc.|Spring grid array interconnection for active microelectronic elements|
JP2810101B2|1989-04-17|1998-10-15|日本エー・エム・ピー株式会社|Electric pin and method of manufacturing the same|
US5077633A|1989-05-01|1991-12-31|Motorola Inc.|Grounding an ultra high density pad array chip carrier|
US5041901A|1989-05-10|1991-08-20|Hitachi, Ltd.|Lead frame and semiconductor device using the same|
US5198153A|1989-05-26|1993-03-30|International Business Machines Corporation|Electrically conductive polymeric|
US5200112A|1989-05-26|1993-04-06|International Business Machines Corporation|Electrically conductive polymeric materials and uses thereof|
US5202061A|1989-05-26|1993-04-13|International Business Machines Corporation|Electrically conductive polymeric materials and uses thereof|
US5060843A|1989-06-07|1991-10-29|Nec Corporation|Process of forming bump on electrode of semiconductor chip and apparatus used therefor|
US5366380A|1989-06-13|1994-11-22|General Datacomm, Inc.|Spring biased tapered contact elements for electrical connectors and integrated circuit packages|
US4954878A|1989-06-29|1990-09-04|Digital Equipment Corp.|Method of packaging and powering integrated circuit chips and the chip assembly formed thereby|
US5246159A|1989-07-19|1993-09-21|Nec Corporation|Method for forming a bump by bonding a ball on an electrode of an electronic device and apparatus for forming the same|
US5047711A|1989-08-23|1991-09-10|Silicon Connections Corporation|Wafer-level burn-in testing of integrated circuits|
US5299730A|1989-08-28|1994-04-05|Lsi Logic Corporation|Method and apparatus for isolation of flux materials in flip-chip manufacturing|
US5053922A|1989-08-31|1991-10-01|Hewlett-Packard Company|Demountable tape-automated bonding system|
JPH03142847A|1989-10-30|1991-06-18|Hitachi Ltd|Semiconductor integrated circuit device|
US5012187A|1989-11-03|1991-04-30|Motorola, Inc.|Method for parallel testing of semiconductor devices|
US5077598A|1989-11-08|1991-12-31|Hewlett-Packard Company|Strain relief flip-chip integrated circuit assembly with test fixturing|
US5006673A|1989-12-07|1991-04-09|Motorola, Inc.|Fabrication of pad array carriers from a universal interconnect structure|
US5379515A|1989-12-11|1995-01-10|Canon Kabushiki Kaisha|Process for preparing electrical connecting member|
US5095187A|1989-12-20|1992-03-10|Raychem Corporation|Weakening wire supplied through a wire bonder|
US5045921A|1989-12-26|1991-09-03|Motorola, Inc.|Pad array carrier IC device using flexible tape|
US5007576A|1989-12-26|1991-04-16|Hughes Aircraft Company|Testable ribbon bonding method and wedge bonding tool for microcircuit device fabrication|
US4989069A|1990-01-29|1991-01-29|Motorola, Inc.|Semiconductor package having leads that break-away from supports|
US5066907A|1990-02-06|1991-11-19|Cerprobe Corporation|Probe system for device and circuit testing|
US5065281A|1990-02-12|1991-11-12|Rogers Corporation|Molded integrated circuit package incorporating heat sink|
US5083697A|1990-02-14|1992-01-28|Difrancesco Louis|Particle-enhanced joining of metal surfaces|
US5471151A|1990-02-14|1995-11-28|Particle Interconnect, Inc.|Electrical interconnect using particle enhanced joining of metal surfaces|
US4975079A|1990-02-23|1990-12-04|International Business Machines Corp.|Connector assembly for chip testing|
DE4115043A1|1991-05-08|1997-07-17|Gen Electric|High density interconnect structure for packaging microwave and other overlay sensitive chips|
US5123850A|1990-04-06|1992-06-23|Texas Instruments Incorporated|Non-destructive burn-in test socket for integrated circuit die|
JPH0412483A|1990-04-27|1992-01-17|Kel Corp|Ic socket|
US5071359A|1990-04-27|1991-12-10|Rogers Corporation|Array connector|
US5047830A|1990-05-22|1991-09-10|Amp Incorporated|Field emitter array integrated circuit chip interconnection|
US5227662A|1990-05-24|1993-07-13|Nippon Steel Corporation|Composite lead frame and semiconductor device using the same|
US5130779A|1990-06-19|1992-07-14|International Business Machines Corporation|Solder mass having conductive encapsulating arrangement|
US5127570A|1990-06-28|1992-07-07|Cray Research, Inc.|Flexible automated bonding method and apparatus|
US5147084A|1990-07-18|1992-09-15|International Business Machines Corporation|Interconnection structure and test method|
US5128612A|1990-07-31|1992-07-07|Texas Instruments Incorporated|Disposable high performance test head|
US5187020A|1990-07-31|1993-02-16|Texas Instruments Incorporated|Compliant contact pad|
US5134462A|1990-08-27|1992-07-28|Motorola, Inc.|Flexible film chip carrier having a flexible film substrate and means for maintaining planarity of the substrate|
US5136367A|1990-08-31|1992-08-04|Texas Instruments Incorporated|Low cost erasable programmable read only memory package|
US5192681A|1990-08-31|1993-03-09|Texas Instruments Incorporated|Low cost erasable programmable read only memory package|
US5029325A|1990-08-31|1991-07-02|Motorola, Inc.|TAB tape translator for use with semiconductor devices|
US5258330A|1990-09-24|1993-11-02|Tessera, Inc.|Semiconductor chip assemblies with fan-in leads|
US5148265A|1990-09-24|1992-09-15|Ist Associates, Inc.|Semiconductor chip assemblies with fan-in leads|
US5148266A|1990-09-24|1992-09-15|Ist Associates, Inc.|Semiconductor chip assemblies having interposer and flexible lead|
US5166774A|1990-10-05|1992-11-24|Motorola, Inc.|Selectively releasing conductive runner and substrate assembly having non-planar areas|
US5072520A|1990-10-23|1991-12-17|Rogers Corporation|Method of manufacturing an interconnect device having coplanar contact bumps|
US5148103A|1990-10-31|1992-09-15|Hughes Aircraft Company|Apparatus for testing integrated circuits|
US5136366A|1990-11-05|1992-08-04|Motorola, Inc.|Overmolded semiconductor package with anchoring means|
US5241133A|1990-12-21|1993-08-31|Motorola, Inc.|Leadless pad array chip carrier|
US5321277A|1990-12-31|1994-06-14|Texas Instruments Incorporated|Multi-chip module testing|
US5239199A|1991-01-14|1993-08-24|Texas Instruments Incorporated|Vertical lead-on-chip package|
US5097100A|1991-01-25|1992-03-17|Sundstrand Data Control, Inc.|Noble metal plated wire and terminal assembly, and method of making the same|
US5157325A|1991-02-15|1992-10-20|Compaq Computer Corporation|Compact, wireless apparatus for electrically testing printed circuit boards|
JP2852134B2|1991-02-20|1999-01-27|日本電気株式会社|Bump forming method|
JPH04264758A|1991-02-20|1992-09-21|Nec Corp|Semiconductor chip carrier|
US5289346A|1991-02-26|1994-02-22|Microelectronics And Computer Technology Corporation|Peripheral to area adapter with protective bumper for an integrated circuit chip|
US5379191A|1991-02-26|1995-01-03|Microelectronics And Computer Technology Corporation|Compact adapter package providing peripheral to area translation for an integrated circuit chip|
JP2814151B2|1991-02-27|1998-10-22|株式会社新川|Wire bonding method|
US5130783A|1991-03-04|1992-07-14|Texas Instruments Incorporated|Flexible film semiconductor package|
US5283104A|1991-03-20|1994-02-01|International Business Machines Corporation|Via paste compositions and use thereof to form conductive vias in circuitized ceramic substrates|
US5217597A|1991-04-01|1993-06-08|Motorola, Inc.|Solder bump transfer method|
US5088007A|1991-04-04|1992-02-11|Motorola, Inc.|Compliant solder interconnection|
US5118027A|1991-04-24|1992-06-02|International Business Machines Corporation|Method of aligning and mounting solder balls to a substrate|
US5237203A|1991-05-03|1993-08-17|Trw Inc.|Multilayer overlay interconnect for high-density packaging of circuit elements|
US5221815A|1991-07-26|1993-06-22|Raychem Corporation|Heat recoverable soldering device|
US5173055A|1991-08-08|1992-12-22|Amp Incorporated|Area array connector|
FR2680284B1|1991-08-09|1993-12-03|Thomson Csf|VERY LOW PIT CONNECTION DEVICE AND MANUFACTURING METHOD.|
JPH0548000A|1991-08-13|1993-02-26|Fujitsu Ltd|Semiconductor device|
JP3061954B2|1991-08-20|2000-07-10|株式会社東芝|Semiconductor device|
US5131852A|1991-08-23|1992-07-21|Amp Incorporated|Electrical socket|
JP2967621B2|1991-08-27|1999-10-25|日本電気株式会社|Method of manufacturing package for semiconductor device|
US5264787A|1991-08-30|1993-11-23|Hughes Aircraft Company|Rigid-flex circuits with raised features as IC test probes|
US5239447A|1991-09-13|1993-08-24|International Business Machines Corporation|Stepped electronic device package|
US5139427A|1991-09-23|1992-08-18|Amp Incorporated|Planar array connector and flexible contact therefor|
JP3138969B2|1991-09-24|2001-02-26|日本ユニット株式会社|Brush material|
US5201454A|1991-09-30|1993-04-13|Texas Instruments Incorporated|Process for enhanced intermetallic growth in IC interconnections|
US5288007A|1991-10-04|1994-02-22|International Business Machine Corporation|Apparatus and methods for making simultaneous electrical connections|
US5326643A|1991-10-07|1994-07-05|International Business Machines Corporation|Adhesive layer in multi-level packaging and organic material as a metal diffusion barrier|
US5152695A|1991-10-10|1992-10-06|Amp Incorporated|Surface mount electrical connector|
JP2558976B2|1991-11-08|1996-11-27|松下電器産業株式会社|Method of joining electrodes and leads of electronic parts|
US5350947A|1991-11-12|1994-09-27|Nec Corporation|Film carrier semiconductor device|
US5309324A|1991-11-26|1994-05-03|Herandez Jorge M|Device for interconnecting integrated circuit packages to circuit boards|
US5180977A|1991-12-02|1993-01-19|Hoya Corporation Usa|Membrane probe contact bump compliancy system|
DE69109869T2|1991-12-06|1995-09-21|Sigmatech Co Ltd|Apparatus for inspecting the internal circuit of a semiconductor.|
JP3187904B2|1991-12-20|2001-07-16|山一電機株式会社|Connector for electrical components|
JPH05182729A|1991-12-26|1993-07-23|Yamaichi Electron Co Ltd|Contactor for electrical parts|
US5367764A|1991-12-31|1994-11-29|Tessera, Inc.|Method of making a multi-layer circuit assembly|
US5214563A|1991-12-31|1993-05-25|Compaq Computer Corporation|Thermally reactive lead assembly and method for making same|
US5282312A|1991-12-31|1994-02-01|Tessera, Inc.|Multi-layer circuit construction methods with customization features|
US5299939A|1992-03-05|1994-04-05|International Business Machines Corporation|Spring array connector|
US5210939A|1992-04-17|1993-05-18|Intel Corporation|Lead grid array integrated circuit|
US5424652A|1992-06-10|1995-06-13|Micron Technology, Inc.|Method and apparatus for testing an unpackaged semiconductor die|
US5228861A|1992-06-12|1993-07-20|Amp Incorporated|High density electrical connector system|
US5237743A|1992-06-19|1993-08-24|International Business Machines Corporation|Method of forming a conductive end portion on a flexible circuit member|
US5442282A|1992-07-02|1995-08-15|Lsi Logic Corporation|Testing and exercising individual, unsingulated dies on a wafer|
WO1994003036A1|1992-07-24|1994-02-03|Tessera, Inc.|Semiconductor connection components and methods with releasable lead support|
US5338705A|1992-09-10|1994-08-16|Texas Instruments Incorporated|Pressure differential downset|
US5497546A|1992-09-21|1996-03-12|Matsushita Electric Works, Ltd.|Method for mounting lead terminals to circuit board|
US5382898A|1992-09-21|1995-01-17|Cerprobe Corporation|High density probe card for testing electrical circuits|
US5371654A|1992-10-19|1994-12-06|International Business Machines Corporation|Three dimensional high performance interconnection package|
US5327327A|1992-10-30|1994-07-05|Texas Instruments Incorporated|Three dimensional assembly of integrated circuit chips|
US5308797A|1992-11-24|1994-05-03|Texas Instruments Incorporated|Leads for semiconductor chip assembly and method|
US5422574A|1993-01-14|1995-06-06|Probe Technology Corporation|Large scale protrusion membrane for semiconductor devices under test with very high pin counts|
US5386344A|1993-01-26|1995-01-31|International Business Machines Corporation|Flex circuit card elastomeric cable connector assembly|
US5313368A|1993-02-02|1994-05-17|The Whitaker Corporation|Electrical connections between printed circuit boards and integrated circuits surface mounted thereon|
US5306670A|1993-02-09|1994-04-26|Texas Instruments Incorporated|Multi-chip integrated circuit module and method for fabrication thereof|
US5378982A|1993-02-25|1995-01-03|Hughes Aircraft Company|Test probe for panel having an overlying protective member adjacent panel contacts|
CA2110472C|1993-03-01|1999-08-10|Anilkumar Chinuprasad Bhatt|Method and apparatus for in-situ testing of integrated circuit chips|
US5414298A|1993-03-26|1995-05-09|Tessera, Inc.|Semiconductor chip assemblies and components with pressure contact|
US5453583A|1993-05-05|1995-09-26|Lsi Logic Corporation|Interior bond pad arrangements for alleviating thermal stresses|
US5359493A|1993-07-09|1994-10-25|Texas Instruments Incorporated|Three dimensional multi-chip module with integral heat sink|
US5398863A|1993-07-23|1995-03-21|Tessera, Inc.|Shaped lead structure and method|
US5390844A|1993-07-23|1995-02-21|Tessera, Inc.|Semiconductor inner lead bonding tool|
US5388327A|1993-09-15|1995-02-14|Lsi Logic Corporation|Fabrication of a dissolvable film carrier containing conductive bump contacts for placement on a semiconductor device package|
US5381848A|1993-09-15|1995-01-17|Lsi Logic Corporation|Casting of raised bump contacts on a substrate|
US5477611A|1993-09-20|1995-12-26|Tessera, Inc.|Method of forming interface between die and chip carrier|
US5414299A|1993-09-24|1995-05-09|Vlsi Technology, Inc.|Semi-conductor device interconnect package assembly for improved package performance|
US5397245A|1993-10-29|1995-03-14|Texas Instruments Incorporated|Non-destructive interconnect system for semiconductor devices|
US5455390A|1994-02-01|1995-10-03|Tessera, Inc.|Microelectronics unit mounting with multiple lead bonding|
US5435482A|1994-02-04|1995-07-25|Lsi Logic Corporation|Integrated circuit having a coplanar solder ball contact array|
US5518964A|1994-07-07|1996-05-21|Tessera, Inc.|Microelectronic mounting with multiple lead deformation and bonding|
US5590460A|1994-07-19|1997-01-07|Tessera, Inc.|Method of making multilayer circuit|
US5491302A|1994-09-19|1996-02-13|Tessera, Inc.|Microelectronic bonding with lead motion|
JPH08122463A|1994-10-21|1996-05-17|Shoichi Shinozuka|Stopwatch and time counting system|
US5495667A|1994-11-07|1996-03-05|Micron Technology, Inc.|Method for forming contact pins for semiconductor dice and interconnects|
US5557501A|1994-11-18|1996-09-17|Tessera, Inc.|Compliant thermal connectors and assemblies incorporating the same|
US5613861A|1995-06-07|1997-03-25|Xerox Corporation|Photolithographically patterned spring contact|
JP3225946B2|1998-03-23|2001-11-05|荒川化学工業株式会社|Method for producing lactone and catalyst thereof|
JP3142847B2|2000-01-01|2001-03-07|株式会社ソフィア|Pachinko machine|
CN101401227B|2006-03-20|2010-05-19|中信国安盟固利新能源科技有限公司|A soft package lithium ion power battery module|US6664628B2|1998-07-13|2003-12-16|Formfactor, Inc.|Electronic component overlapping dice of unsingulated semiconductor wafer|
US7368924B2|1993-04-30|2008-05-06|International Business Machines Corporation|Probe structure having a plurality of discrete insulated probe tips projecting from a support surface, apparatus for use thereof and methods of fabrication thereof|
US6295729B1|1992-10-19|2001-10-02|International Business Machines Corporation|Angled flying lead wire bonding process|
US20050062492A1|2001-08-03|2005-03-24|Beaman Brian Samuel|High density integrated circuit apparatus, test probe and methods of use thereof|
EP1468776A3|1996-05-17|2009-11-04|FormFactor, Inc.|Microelectronics spring contact elements|
US6741085B1|1993-11-16|2004-05-25|Formfactor, Inc.|Contact carriersfor populating larger substrates with spring contacts|
US20100065963A1|1995-05-26|2010-03-18|Formfactor, Inc.|Method of wirebonding that utilizes a gas flow within a capillary from whicha wire is played out|
US6690185B1|1997-01-15|2004-02-10|Formfactor, Inc.|Large contactor with multiple, aligned contactor units|
US6482013B2|1993-11-16|2002-11-19|Formfactor, Inc.|Microelectronic spring contact element and electronic component having a plurality of spring contact elements|
US6184053B1|1993-11-16|2001-02-06|Formfactor, Inc.|Method of making microelectronic spring contact elements|
US6246247B1|1994-11-15|2001-06-12|Formfactor, Inc.|Probe card assembly and kit, and methods of using same|
US6064213A|1993-11-16|2000-05-16|Formfactor, Inc.|Wafer-level burn-in and test|
US6150186A|1995-05-26|2000-11-21|Formfactor, Inc.|Method of making a product with improved material properties by moderate heat-treatment of a metal incorporating a dilute additive|
US5772451A|1993-11-16|1998-06-30|Form Factor, Inc.|Sockets for electronic components and methods of connecting to electronic components|
US6836962B2|1993-11-16|2005-01-04|Formfactor, Inc.|Method and apparatus for shaping spring elements|
US20020004320A1|1995-05-26|2002-01-10|David V. Pedersen|Attaratus for socketably receiving interconnection elements of an electronic component|
US6043563A|1997-05-06|2000-03-28|Formfactor, Inc.|Electronic components with terminals and spring contact elements extending from areas which are remote from the terminals|
US7579269B2|1993-11-16|2009-08-25|Formfactor, Inc.|Microelectronic spring contact elements|
US8033838B2|1996-02-21|2011-10-11|Formfactor, Inc.|Microelectronic contact structure|
US5829128A|1993-11-16|1998-11-03|Formfactor, Inc.|Method of mounting resilient contact structures to semiconductor devices|
CN1272632C|1996-05-17|2006-08-30|佛姆法克特股份有限公司|Wafer-level burn-in and test|
US7064566B2|1993-11-16|2006-06-20|Formfactor, Inc.|Probe card assembly and kit|
US6525555B1|1993-11-16|2003-02-25|Formfactor, Inc.|Wafer-level burn-in and test|
KR100460471B1|1996-05-17|2004-12-08|폼팩터, 인크.|Wafer-level burn-in and test|
US6727580B1|1993-11-16|2004-04-27|Formfactor, Inc.|Microelectronic spring contact elements|
WO1997044676A1|1996-05-17|1997-11-27|Formfactor, Inc.|Microelectronic contact structure and method of making same|
US6442831B1|1993-11-16|2002-09-03|Formfactor, Inc.|Method for shaping spring elements|
US5998864A|1995-05-26|1999-12-07|Formfactor, Inc.|Stacking semiconductor devices, particularly memory chips|
US7714235B1|1997-05-06|2010-05-11|Formfactor, Inc.|Lithographically defined microelectronic contact structures|
US20070228110A1|1993-11-16|2007-10-04|Formfactor, Inc.|Method Of Wirebonding That Utilizes A Gas Flow Within A Capillary From Which A Wire Is Played Out|
US20020053734A1|1993-11-16|2002-05-09|Formfactor, Inc.|Probe card assembly and kit, and methods of making same|
US7200930B2|1994-11-15|2007-04-10|Formfactor, Inc.|Probe for semiconductor devices|
US7073254B2|1993-11-16|2006-07-11|Formfactor, Inc.|Method for mounting a plurality of spring contact elements|
EP2063466A2|1995-05-26|2009-05-27|FormFactor, Inc.|Interconnection element and method of fabrication thereof|
US6624648B2|1993-11-16|2003-09-23|Formfactor, Inc.|Probe card assembly|
US6499216B1|1994-07-07|2002-12-31|Tessera, Inc.|Methods and structures for electronic probing arrays|
US6690186B2|1994-07-07|2004-02-10|Tessera, Inc.|Methods and structures for electronic probing arrays|
US5495667A|1994-11-07|1996-03-05|Micron Technology, Inc.|Method for forming contact pins for semiconductor dice and interconnects|
US5810607A|1995-09-13|1998-09-22|International Business Machines Corporation|Interconnector with contact pads having enhanced durability|
US6880245B2|1996-03-12|2005-04-19|International Business Machines Corporation|Method for fabricating a structure for making contact with an IC device|
US6722032B2|1995-11-27|2004-04-20|International Business Machines Corporation|Method of forming a structure for electronic devices contact locations|
US5729150A|1995-12-01|1998-03-17|Cascade Microtech, Inc.|Low-current probe card with reduced triboelectric current generating cables|
JPH09260428A|1996-03-19|1997-10-03|Toshiba Corp|Semiconductor device an mounting method thereof|
JP3328135B2|1996-05-28|2002-09-24|田中電子工業株式会社|Gold alloy wire for bump formation and bump formation method|
TW406454B|1996-10-10|2000-09-21|Berg Tech Inc|High density connector and method of manufacture|
US5914613A|1996-08-08|1999-06-22|Cascade Microtech, Inc.|Membrane probing system with local contact scrub|
DE69737599T2|1996-09-13|2007-12-20|International Business Machines Corp.|INTEGRATED SUBSEQUENT PROBE FOR CHECKING AND BURNING|
US7282945B1|1996-09-13|2007-10-16|International Business Machines Corporation|Wafer scale high density probe assembly, apparatus for use thereof and methods of fabrication thereof|
DE69734158T2|1996-09-13|2006-06-22|International Business Machines Corp.|TEST HEAD STRUCTURE WITH SEVERAL ISOLATED TIPS|
EP1158579B1|1996-10-01|2008-11-19|Panasonic Corporation|Wire bonding capillary for forming bump electrodes|
US5989939A|1996-12-13|1999-11-23|Tessera, Inc.|Process of manufacturing compliant wirebond packages|
US7063541B2|1997-03-17|2006-06-20|Formfactor, Inc.|Composite microelectronic spring structure and method for making same|
US5929521A|1997-03-26|1999-07-27|Micron Technology, Inc.|Projected contact structure for bumped semiconductor device and resulting articles and assemblies|
US6215166B1|1997-04-30|2001-04-10|Motorola, Inc.|Radio frequency electronic device and method for regulating an amount of power delivered to a radio frequency electronic device|
US6215196B1|1997-06-30|2001-04-10|Formfactor, Inc.|Electronic component with terminals and spring contact elements extending from areas which are remote from the terminals|
US6232789B1|1997-05-28|2001-05-15|Cascade Microtech, Inc.|Probe holder for low current measurements|
US6034533A|1997-06-10|2000-03-07|Tervo; Paul A.|Low-current pogo probe card|
US6534855B1|1997-08-22|2003-03-18|Micron Technology, Inc.|Wireless communications system and method of making|
US6329829B1|1997-08-22|2001-12-11|Micron Technology, Inc.|Interconnect and system for making temporary electrical connections to semiconductor components|
JPH11121897A|1997-10-14|1999-04-30|Fujitsu Ltd|Structure and production of printed wiring board mounting a plurality of circuit elements|
US8613846B2|2003-02-04|2013-12-24|Microfabrica Inc.|Multi-layer, multi-material fabrication methods for producing micro-scale and millimeter-scale devices with enhanced electrical and/or mechanical properties|
US9671429B2|2003-05-07|2017-06-06|University Of Southern California|Multi-layer, multi-material micro-scale and millimeter-scale devices with enhanced electrical and/or mechanical properties|
US6114240A|1997-12-18|2000-09-05|Micron Technology, Inc.|Method for fabricating semiconductor components using focused laser beam|
US5994221A|1998-01-30|1999-11-30|Lucent Technologies Inc.|Method of fabricating aluminum-indiumvias for ULSI metallization and interconnects|
US6281446B1|1998-02-16|2001-08-28|Matsushita Electric Industrial Co., Ltd.|Multi-layered circuit board and method of manufacturing the same|
JP4006081B2|1998-03-19|2007-11-14|株式会社ルネサステクノロジ|Manufacturing method of semiconductor device|
US6222276B1|1998-04-07|2001-04-24|International Business Machines Corporation|Through-chip conductors for low inductance chip-to-chip integration and off-chip connections|
US6720501B1|1998-04-14|2004-04-13|Formfactor, Inc.|PC board having clustered blind vias|
TW366548B|1998-04-18|1999-08-11|United Microelectronics Corp|Trench bump block and the application of the same|
SG108210A1|1998-06-19|2005-01-28|Advantest Corp|Probe contactor formed by photolithography process|
US6164523A|1998-07-01|2000-12-26|Semiconductor Components Industries, Llc|Electronic component and method of manufacture|
AT373830T|1998-07-08|2007-10-15|Capres Aps|MORE TIP PROBE|
US7304486B2|1998-07-08|2007-12-04|Capres A/S|Nano-drive for high resolution positioning and for positioning of a multi-point probe|
US6705876B2|1998-07-13|2004-03-16|Formfactor, Inc.|Electrical interconnect assemblies and methods|
US6256882B1|1998-07-14|2001-07-10|Cascade Microtech, Inc.|Membrane probing system|
JP2000138104A|1998-08-26|2000-05-16|Yazaki Corp|Inspection structure for circuit protective element|
US6184576B1|1998-09-21|2001-02-06|Advantest Corp.|Packaging and interconnection of contact structure|
US6414501B2|1998-10-01|2002-07-02|Amst Co., Ltd.|Micro cantilever style contact pin structure for wafer probing|
GB2342509A|1998-10-05|2000-04-12|Standex Int Corp|Surface mount reed switch having transverse feet formed from leads|
US6268662B1|1998-10-14|2001-07-31|Texas Instruments Incorporated|Wire bonded flip-chip assembly of semiconductor devices|
JP2000200804A|1998-10-30|2000-07-18|Shinko Electric Ind Co Ltd|Semiconductor device and manufacture thereof|
US6441315B1|1998-11-10|2002-08-27|Formfactor, Inc.|Contact structures with blades having a wiping motion|
US6504223B1|1998-11-30|2003-01-07|Advantest Corp.|Contact structure and production method thereof and probe contact assembly using same|
US6608385B2|1998-11-30|2003-08-19|Advantest Corp.|Contact structure and production method thereof and probe contact assembly using same|
US6579804B1|1998-11-30|2003-06-17|Advantest, Corp.|Contact structure and production method thereof and probe contact assembly using same|
US6641430B2|2000-02-14|2003-11-04|Advantest Corp.|Contact structure and production method thereof and probe contact assembly using same|
US20030176066A1|2001-09-12|2003-09-18|Yu Zhou|Contact structure and production method thereof and probe contact assemly using same|
US6676438B2|2000-02-14|2004-01-13|Advantest Corp.|Contact structure and production method thereof and probe contact assembly using same|
US6798073B2|2001-12-13|2004-09-28|Megic Corporation|Chip structure and process for forming the same|
US6456099B1|1998-12-31|2002-09-24|Formfactor, Inc.|Special contact points for accessing internal circuitry of an integrated circuit|
JP3530761B2|1999-01-18|2004-05-24|新光電気工業株式会社|Semiconductor device|
JP3160583B2|1999-01-27|2001-04-25|日本特殊陶業株式会社|Resin substrate|
US6274937B1|1999-02-01|2001-08-14|Micron Technology, Inc.|Silicon multi-chip module packaging with integrated passive components and method of making|
US6079990A|1999-02-02|2000-06-27|Molex Incorporated|Terminal-receiving socket for mounting on a circuit board|
US6543131B1|1999-03-10|2003-04-08|Tessera, Inc.|Microelectronic joining processes with temporary securement|
US6183267B1|1999-03-11|2001-02-06|Murray Hill Devices|Ultra-miniature electrical contacts and method of manufacture|
KR100422089B1|1999-04-22|2004-03-11|롬 가부시키가이샤|Circuit board, battery pack, and method of manufacturing circuit board|
US7349223B2|2000-05-23|2008-03-25|Nanonexus, Inc.|Enhanced compliant probe card systems having improved planarity|
US7952373B2|2000-05-23|2011-05-31|VerigyPte. Ltd.|Construction structures and manufacturing processes for integrated circuit wafer probe card assemblies|
US7382142B2|2000-05-23|2008-06-03|Nanonexus, Inc.|High density interconnect system having rapid fabrication cycle|
US20050068054A1|2000-05-23|2005-03-31|Sammy Mok|Standardized layout patterns and routing structures for integrated circuit wafer probe card assemblies|
US6812718B1|1999-05-27|2004-11-02|Nanonexus, Inc.|Massively parallel interface for electronic circuits|
US6578264B1|1999-06-04|2003-06-17|Cascade Microtech, Inc.|Method for constructing a membrane probe using a depression|
US7215131B1|1999-06-07|2007-05-08|Formfactor, Inc.|Segmented contactor|
US6287126B1|1999-06-25|2001-09-11|International Business Machines Corporation|Mechanical attachment means used as electrical connection|
AU2003218288A1|2002-03-18|2003-10-08|Nanonexus, Inc.|A miniaturized contact spring|
US6329722B1|1999-07-01|2001-12-11|Texas Instruments Incorporated|Bonding pads for integrated circuits having copper interconnect metallization|
US6917525B2|2001-11-27|2005-07-12|Nanonexus, Inc.|Construction structures and manufacturing processes for probe card assemblies and packages having wafer level springs|
US6799976B1|1999-07-28|2004-10-05|Nanonexus, Inc.|Construction structures and manufacturing processes for integrated circuit wafer probe card assemblies|
US6407562B1|1999-07-29|2002-06-18|Agilent Technologies, Inc.|Probe tip terminating device providing an easily changeable feed-through termination|
US6713374B2|1999-07-30|2004-03-30|Formfactor, Inc.|Interconnect assemblies and methods|
US7435108B1|1999-07-30|2008-10-14|Formfactor, Inc.|Variable width resilient conductive contact structures|
JP5333337B2|1999-08-12|2013-11-06|富士通セミコンダクター株式会社|Manufacturing method of semiconductor device|
US6468098B1|1999-08-17|2002-10-22|Formfactor, Inc.|Electrical contactor especially wafer level contactor using fluid pressure|
JP2001060596A|1999-08-19|2001-03-06|Shinko Electric Ind Co Ltd|Manufacture of semiconductor device|
US7695644B2|1999-08-27|2010-04-13|Shocking Technologies, Inc.|Device applications for voltage switchable dielectric material having high aspect ratio particles|
AU6531600A|1999-08-27|2001-03-26|Lex Kosowsky|Current carrying structure using voltage switchable dielectric material|
US7981325B2|2006-07-29|2011-07-19|Shocking Technologies, Inc.|Electronic device for voltage switchable dielectric material having high aspect ratio particles|
US7446030B2|1999-08-27|2008-11-04|Shocking Technologies, Inc.|Methods for fabricating current-carrying structures using voltage switchable dielectric materials|
US6340822B1|1999-10-05|2002-01-22|Agere Systems Guardian Corp.|Article comprising vertically nano-interconnected circuit devices and method for making the same|
US6853067B1|1999-10-12|2005-02-08|Microassembly Technologies, Inc.|Microelectromechanical systems using thermocompression bonding|
EP1096674B1|1999-10-29|2013-03-27|Kyocera Corporation|Circuit substrate|
US6342399B1|1999-11-08|2002-01-29|Agere Systems Guardian Corp.|Testing integrated circuits|
US6392428B1|1999-11-16|2002-05-21|Eaglestone Partners I, Llc|Wafer level interposer|
DE19961791C2|1999-12-21|2002-11-28|Infineon Technologies Ag|Arrangement for testing chips using a printed circuit board|
JP2001174482A|1999-12-21|2001-06-29|Toshiba Corp|Contact needle for evaluating electric characteristic, probe structure, probe card and manufacturing method of contact needle for evaluating electric characteristic|
US6827584B2|1999-12-28|2004-12-07|Formfactor, Inc.|Interconnect for microelectronic structures with enhanced spring characteristics|
SG94730A1|2000-01-19|2003-03-18|Advantest Corp|Contact structure having contact bumps|
EP1121009A3|2000-01-28|2004-06-16|Kabushiki Kaisha Toshiba|Power semiconductor module for use in power conversion units with downsizing requirements|
US6540524B1|2000-02-14|2003-04-01|Advantest Corp.|Contact structure and production method thereof|
US6838890B2|2000-02-25|2005-01-04|Cascade Microtech, Inc.|Membrane probing system|
US7262611B2|2000-03-17|2007-08-28|Formfactor, Inc.|Apparatuses and methods for planarizing a semiconductor contactor|
US6424167B1|2000-03-22|2002-07-23|National Semiconductor Corporation|Vibration resistant test module for use with semiconductor device test apparatus|
JP4323055B2|2000-03-22|2009-09-02|富士通マイクロエレクトロニクス株式会社|Semiconductor device testing contactor and method of manufacturing the same|
JP4088015B2|2000-03-24|2008-05-21|株式会社新川|Method for forming curved wire|
DE10017746B4|2000-04-10|2005-10-13|Infineon Technologies Ag|Method for producing an electronic component with microscopically small contact surfaces|
US6640432B1|2000-04-12|2003-11-04|Formfactor, Inc.|Method of fabricating shaped springs|
US7458816B1|2000-04-12|2008-12-02|Formfactor, Inc.|Shaped spring|
US6833984B1|2000-05-03|2004-12-21|Rambus, Inc.|Semiconductor module with serial bus connection to multiple dies|
US7122889B2|2000-05-03|2006-10-17|Rambus, Inc.|Semiconductor module|
US6396296B1|2000-05-15|2002-05-28|Advanced Micro Devices, Inc.|Method and apparatus for electrical characterization of an integrated circuit package using a vertical probe station|
JP3879816B2|2000-06-02|2007-02-14|セイコーエプソン株式会社|SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD, LAMINATED SEMICONDUCTOR DEVICE, CIRCUIT BOARD AND ELECTRONIC DEVICE|
US20020113322A1|2000-06-12|2002-08-22|Shinichi Terashima|Semiconductor device and method to produce the same|
US7247035B2|2000-06-20|2007-07-24|Nanonexus, Inc.|Enhanced stress metal spring contactor|
US6332782B1|2000-06-19|2001-12-25|International Business Machines Corporation|Spatial transformation interposer for electronic packaging|
US6459039B1|2000-06-19|2002-10-01|International Business Machines Corporation|Method and apparatus to manufacture an electronic package with direct wiring pattern|
WO2001098793A2|2000-06-20|2001-12-27|Nanonexus, Inc.|Systems for testing integraged circuits during burn-in|
US6717062B2|2000-07-03|2004-04-06|Rohm Co., Ltd.|Battery pack and battery case used for the same, and method for producing the same|
US6812048B1|2000-07-31|2004-11-02|Eaglestone Partners I, Llc|Method for manufacturing a wafer-interposer assembly|
US6537831B1|2000-07-31|2003-03-25|Eaglestone Partners I, Llc|Method for selecting components for a matched set using a multi wafer interposer|
US6822469B1|2000-07-31|2004-11-23|Eaglestone Partners I, Llc|Method for testing multiple semiconductor wafers|
US6462575B1|2000-08-28|2002-10-08|Micron Technology, Inc.|Method and system for wafer level testing and burning-in semiconductor components|
WO2002023618A1|2000-09-18|2002-03-21|Nippon Steel Corporation|Bonding wire for semiconductor and method of manufacturing the bonding wire|
US6589819B2|2000-09-29|2003-07-08|Tessera, Inc.|Microelectronic packages having an array of resilient leads and methods therefor|
US6815712B1|2000-10-02|2004-11-09|Eaglestone Partners I, Llc|Method for selecting components for a matched set from a wafer-interposer assembly|
JP3450290B2|2000-10-17|2003-09-22|山形日本電気株式会社|LCD panel drive circuit|
US6686657B1|2000-11-07|2004-02-03|Eaglestone Partners I, Llc|Interposer for improved handling of semiconductor wafers and method of use of same|
US20020096421A1|2000-11-29|2002-07-25|Cohn Michael B.|MEMS device with integral packaging|
DE20114544U1|2000-12-04|2002-02-21|Cascade Microtech Inc|wafer probe|
US7348494B1|2000-12-15|2008-03-25|Nortel Networks Limited|Signal layer interconnects|
US20020078401A1|2000-12-15|2002-06-20|Fry Michael Andrew|Test coverage analysis system|
US6750396B2|2000-12-15|2004-06-15|Di/Dt, Inc.|I-channel surface-mount connector|
US6529022B2|2000-12-15|2003-03-04|Eaglestone Pareners I, Llc|Wafer testing interposer for a conventional package|
US6524885B2|2000-12-15|2003-02-25|Eaglestone Partners I, Llc|Method, apparatus and system for building an interposer onto a semiconductor wafer using laser techniques|
JP3910363B2|2000-12-28|2007-04-25|富士通株式会社|External connection terminal|
JP4674970B2|2001-01-09|2011-04-20|Okiセミコンダクタ株式会社|Metal wire bonding method|
US6539625B2|2001-01-11|2003-04-01|International Business Machines Corporation|Chromium adhesion layer for copper vias in low-k technology|
US6885106B1|2001-01-11|2005-04-26|Tessera, Inc.|Stacked microelectronic assemblies and methods of making same|
US6532654B2|2001-01-12|2003-03-18|International Business Machines Corporation|Method of forming an electrical connector|
JP3486872B2|2001-01-26|2004-01-13|Necセミコンダクターズ九州株式会社|Semiconductor device and manufacturing method thereof|
JP2002231399A|2001-02-02|2002-08-16|Fujitsu Ltd|Semiconductor device testing contact and manufacturing method therefor|
US6673653B2|2001-02-23|2004-01-06|Eaglestone Partners I, Llc|Wafer-interposer using a ceramic substrate|
US20020163062A1|2001-02-26|2002-11-07|International Business Machines Corporation|Multiple material stacks with a stress relief layer between a metal structure and a passivation layer|
US7396236B2|2001-03-16|2008-07-08|Formfactor, Inc.|Wafer level interposer|
US6884653B2|2001-03-21|2005-04-26|Micron Technology, Inc.|Folded interposer|
US6627980B2|2001-04-12|2003-09-30|Formfactor, Inc.|Stacked semiconductor device assembly with microelectronic spring contacts|
US6655018B2|2001-04-30|2003-12-02|Delphi Technologies, Inc.|Technique for surface mounting electrical components to a circuit board|
JP2002343478A|2001-05-16|2002-11-29|Tyco Electronics Amp Kk|Electrical contact and electrical connection member using the same|
US6585527B2|2001-05-31|2003-07-01|Samtec, Inc.|Compliant connector for land grid array|
US6545226B2|2001-05-31|2003-04-08|International Business Machines Corporation|Printed wiring board interposer sub-assembly|
US6788085B2|2001-07-11|2004-09-07|International Business Machines Corporation|Self-aligning wafer burn-in probe|
US6560861B2|2001-07-11|2003-05-13|Xerox Corporation|Microspring with conductive coating deposited on tip after release|
US6729019B2|2001-07-11|2004-05-04|Formfactor, Inc.|Method of manufacturing a probe card|
US6806568B2|2001-07-20|2004-10-19|The Board Of Trustees Of The University Of Arkansas|Decoupling capacitor for integrated circuit package and electrical components using the decoupling capacitor and associated methods|
GB2377654A|2001-07-20|2003-01-22|Alex Chang|Artificial eye for dolls|
US7182672B2|2001-08-02|2007-02-27|Sv Probe Pte. Ltd.|Method of probe tip shaping and cleaning|
AU2002327490A1|2001-08-21|2003-06-30|Cascade Microtech, Inc.|Membrane probing system|
US20030038356A1|2001-08-24|2003-02-27|Derderian James M|Semiconductor devices including stacking spacers thereon, assemblies including the semiconductor devices, and methods|
US20030042615A1|2001-08-30|2003-03-06|Tongbi Jiang|Stacked microelectronic devices and methods of fabricating same|
US6764869B2|2001-09-12|2004-07-20|Formfactor, Inc.|Method of assembling and testing an electronics module|
US6714828B2|2001-09-17|2004-03-30|Formfactor, Inc.|Method and system for designing a probe card|
US6906540B2|2001-09-20|2005-06-14|Wentworth Laboratories, Inc.|Method for chemically etching photo-defined micro electrical contacts|
US6977515B2|2001-09-20|2005-12-20|Wentworth Laboratories, Inc.|Method for forming photo-defined micro electrical contacts|
US6882546B2|2001-10-03|2005-04-19|Formfactor, Inc.|Multiple die interconnect system|
US6817052B2|2001-11-09|2004-11-16|Formfactor, Inc.|Apparatuses and methods for cleaning test probes|
US6608390B2|2001-11-13|2003-08-19|Kulicke & Soffa Investments, Inc.|Wirebonded semiconductor package structure and method of manufacture|
US7244367B2|2001-12-11|2007-07-17|Jds Uniphase Corporation|Metal alloy elements in micromachined devices|
US6960923B2|2001-12-19|2005-11-01|Formfactor, Inc.|Probe card covering system and method|
US7168160B2|2001-12-21|2007-01-30|Formfactor, Inc.|Method for mounting and heating a plurality of microelectronic components|
KR20040065310A|2001-12-27|2004-07-21|폼팩터, 인크.|Cooling assembly with direct cooling of active electronic components|
US7064953B2|2001-12-27|2006-06-20|Formfactor, Inc.|Electronic package with direct cooling of active electronic components|
US6891385B2|2001-12-27|2005-05-10|Formfactor, Inc.|Probe card cooling assembly with direct cooling of active electronic components|
US6896760B1|2002-01-16|2005-05-24|Micron Technology, Inc.|Fabrication of stacked microelectronic devices|
US6840374B2|2002-01-18|2005-01-11|Igor Y. Khandros|Apparatus and method for cleaning test probes|
US6712621B2|2002-01-23|2004-03-30|High Connection Density, Inc.|Thermally enhanced interposer and method|
US6721189B1|2002-03-13|2004-04-13|Rambus, Inc.|Memory module|
US7126220B2|2002-03-18|2006-10-24|Nanonexus, Inc.|Miniaturized contact spring|
JP4054208B2|2002-04-01|2008-02-27|富士通株式会社|Contactor manufacturing method|
US7010854B2|2002-04-10|2006-03-14|Formfactor, Inc.|Re-assembly process for MEMS structures|
US20060051948A1|2003-02-04|2006-03-09|Microfabrica Inc.|Microprobe tips and methods for making|
US20080211524A1|2003-02-04|2008-09-04|Microfabrica Inc.|Electrochemically Fabricated Microprobes|
US20070045121A1|2002-05-07|2007-03-01|Microfabrica Inc.|Electrochemically fabricated hermetically sealed microstructures and methods of and apparatus for producing such structures|
US20080105355A1|2003-12-31|2008-05-08|Microfabrica Inc.|Probe Arrays and Method for Making|
US20060238209A1|2002-05-07|2006-10-26|Microfabrica Inc.|Vertical microprobes for contacting electronic components and method for making such probes|
US20060053625A1|2002-05-07|2006-03-16|Microfabrica Inc.|Microprobe tips and methods for making|
US20060108678A1|2002-05-07|2006-05-25|Microfabrica Inc.|Probe arrays and method for making|
US20050142739A1|2002-05-07|2005-06-30|Microfabrica Inc.|Probe arrays and method for making|
US7273812B2|2002-05-07|2007-09-25|Microfabrica Inc.|Microprobe tips and methods for making|
US20080106280A1|2003-02-04|2008-05-08|Microfabrica Inc.|Vertical Microprobes for Contacting Electronic Components and Method for Making Such Probes|
US20050067292A1|2002-05-07|2005-03-31|Microfabrica Inc.|Electrochemically fabricated structures having dielectric or active bases and methods of and apparatus for producing such structures|
US7250101B2|2002-05-07|2007-07-31|Microfabrica Inc.|Electrochemically fabricated structures having dielectric or active bases and methods of and apparatus for producing such structures|
US6911835B2|2002-05-08|2005-06-28|Formfactor, Inc.|High performance probe system|
US6965244B2|2002-05-08|2005-11-15|Formfactor, Inc.|High performance probe system|
US20040000428A1|2002-06-26|2004-01-01|Mirng-Ji Lii|Socketless package to circuit board assemblies and methods of using same|
AU2002368160A1|2002-07-15|2004-02-25|Formfactor, Inc.|Fiducial alignment marks on microelectronic spring contacts|
US6710609B2|2002-07-15|2004-03-23|Nanonexus, Inc.|Mosaic decal probe|
US6612161B1|2002-07-23|2003-09-02|Fidelica Microsystems, Inc.|Atomic force microscopy measurements of contact resistance and current-dependent stiction|
DE10242521A1|2002-09-12|2004-03-25|Robert Bosch Gmbh|Diode used as a rectifier diode for rectifying a current fed to a vehicle generator has a head wire with a stepped wire connection with a region which forms a housing together with a sleeve, a base and a fixing region|
US6917102B2|2002-10-10|2005-07-12|Advantest Corp.|Contact structure and production method thereof and probe contact assembly using same|
US6724205B1|2002-11-13|2004-04-20|Cascade Microtech, Inc.|Probe for combined signals|
US6920689B2|2002-12-06|2005-07-26|Formfactor, Inc.|Method for making a socket to perform testing on integrated circuits|
US7084650B2|2002-12-16|2006-08-01|Formfactor, Inc.|Apparatus and method for limiting over travel in a probe card assembly|
US20040114338A1|2002-12-17|2004-06-17|Blasko Raymond J.|Direct connection to a circuit board|
US6945827B2|2002-12-23|2005-09-20|Formfactor, Inc.|Microelectronic contact structure|
US20040124507A1|2002-12-30|2004-07-01|Aldaz Robert Edward|Contact structure and production method thereof|
KR20060126481A|2003-10-29|2006-12-07|컨덕티브 잉크젯 테크놀로지 리미티드|Electrical connection of components|
US7243421B2|2003-10-29|2007-07-17|Conductive Inkjet Technology Limited|Electrical connection of components|
US10416192B2|2003-02-04|2019-09-17|Microfabrica Inc.|Cantilever microprobes for contacting electronic components|
US7265565B2|2003-02-04|2007-09-04|Microfabrica Inc.|Cantilever microprobes for contacting electronic components and methods for making such probes|
US7412767B2|2003-02-04|2008-08-19|Microfabrica, Inc.|Microprobe tips and methods for making|
US20080108221A1|2003-12-31|2008-05-08|Microfabrica Inc.|Microprobe Tips and Methods for Making|
US7363705B2|2003-02-04|2008-04-29|Microfabrica, Inc.|Method of making a contact|
US10641792B2|2003-12-31|2020-05-05|University Of Southern California|Multi-layer, multi-material micro-scale and millimeter-scale devices with enhanced electrical and/or mechanical properties|
US7531077B2|2003-02-04|2009-05-12|Microfabrica Inc.|Electrochemical fabrication process for forming multilayer multimaterial microprobe structures|
US7567089B2|2003-02-04|2009-07-28|Microfabrica Inc.|Two-part microprobes for contacting electronic components and methods for making such probes|
US20050104609A1|2003-02-04|2005-05-19|Microfabrica Inc.|Microprobe tips and methods for making|
US9244101B2|2003-02-04|2016-01-26|University Of Southern California|Electrochemical fabrication process for forming multilayer multimaterial microprobe structures|
US20060006888A1|2003-02-04|2006-01-12|Microfabrica Inc.|Electrochemically fabricated microprobes|
US20050184748A1|2003-02-04|2005-08-25|Microfabrica Inc.|Pin-type probes for contacting electronic circuits and methods for making such probes|
US7505862B2|2003-03-07|2009-03-17|Salmon Technologies, Llc|Apparatus and method for testing electronic systems|
US6948940B2|2003-04-10|2005-09-27|Formfactor, Inc.|Helical microelectronic contact and method for fabricating same|
US6965245B2|2003-05-01|2005-11-15|K&S Interconnect, Inc.|Prefabricated and attached interconnect structure|
US7057404B2|2003-05-23|2006-06-06|Sharp Laboratories Of America, Inc.|Shielded probe for testing a device under test|
US6953707B2|2003-05-28|2005-10-11|Texas Instruments Incorporated|Method and system for chip-to-package interconnection|
US7326327B2|2003-06-06|2008-02-05|Formfactor, Inc.|Rhodium electroplated structures and methods of making same|
US7242097B2|2003-06-30|2007-07-10|Intel Corporation|Electromigration barrier layers for solder joints|
US7456050B2|2003-07-01|2008-11-25|Stmicroelectronics, Inc.|System and method for controlling integrated circuit die height and planarity|
US7304376B2|2003-07-30|2007-12-04|Tessers, Inc.|Microelectronic assemblies with springs|
US6958670B2|2003-08-01|2005-10-25|Raytheon Company|Offset connector with compressible conductor|
US7408258B2|2003-08-20|2008-08-05|Salmon Technologies, Llc|Interconnection circuit and electronic module utilizing same|
DE10340297B4|2003-09-02|2006-07-20|Semikron Elektronik Gmbh & Co. Kg|Verbindugsanordnung for connecting active and passive electrical and electronic components|
US20050095835A1|2003-09-26|2005-05-05|Tessera, Inc.|Structure and method of making capped chips having vertical interconnects|
US6881074B1|2003-09-29|2005-04-19|Cookson Electronics, Inc.|Electrical circuit assembly with micro-socket|
US6847122B1|2003-10-16|2005-01-25|Kulicke & Soffa Investments, Inc.|System and method for preventing and alleviating short circuiting in a semiconductor device|
US7179688B2|2003-10-16|2007-02-20|Kulicke And Soffa Industries, Inc.|Method for reducing or eliminating semiconductor device wire sweep in a multi-tier bonding device and a device produced by the method|
JP2005127952A|2003-10-27|2005-05-19|Sumitomo Electric Ind Ltd|Contact probe and its manufacturing method|
US20050116344A1|2003-10-29|2005-06-02|Tessera, Inc.|Microelectronic element having trace formed after bond layer|
MY137372A|2003-11-14|2009-01-30|Wentworth Lab Inc|Die design with integrated assembly aid|
US7024763B2|2003-11-26|2006-04-11|Formfactor, Inc.|Methods for making plated through holes usable as interconnection wire or probe attachments|
JP2007517231A|2003-12-24|2007-06-28|カスケード マイクロテック インコーポレイテッド|Active wafer probe|
US7640651B2|2003-12-31|2010-01-05|Microfabrica Inc.|Fabrication process for co-fabricating multilayer probe array and a space transformer|
TWI266057B|2004-02-05|2006-11-11|Ind Tech Res Inst|Integrated probe card and the packaging method|
JP4140012B2|2004-02-06|2008-08-27|ソニー株式会社|Chip-shaped electronic component, manufacturing method thereof and mounting structure|
US20050184376A1|2004-02-19|2005-08-25|Salmon Peter C.|System in package|
US7282932B2|2004-03-02|2007-10-16|Micron Technology, Inc.|Compliant contact pin assembly, card system and methods thereof|
SG124273A1|2004-03-08|2006-08-30|Tan Yin Leong|Non-abrasive electrical test contact|
JP5203697B2|2004-03-10|2013-06-05|ウエントワースラボラトリーズ,インコーポレイテッド|Flexible space transformer assembly for fine circuits|
US7202541B2|2004-04-29|2007-04-10|Hewlett-Packard Development Company, L.P.|Apparatus and method for transverse characterization of materials|
US20050255722A1|2004-05-07|2005-11-17|Salmon Peter C|Micro blade assembly|
USRE43503E1|2006-06-29|2012-07-10|Microprobe, Inc.|Probe skates for electrical testing of convex pad topologies|
US7759949B2|2004-05-21|2010-07-20|Microprobe, Inc.|Probes with self-cleaning blunt skates for contacting conductive pads|
US9097740B2|2004-05-21|2015-08-04|Formfactor, Inc.|Layered probes with core|
US8988091B2|2004-05-21|2015-03-24|Microprobe, Inc.|Multiple contact probes|
US7733101B2|2004-05-21|2010-06-08|Microprobe, Inc.|Knee probe having increased scrub motion|
US9476911B2|2004-05-21|2016-10-25|Microprobe, Inc.|Probes with high current carrying capability and laser machining methods|
US20050277281A1|2004-06-10|2005-12-15|Dubin Valery M|Compliant interconnect and method of formation|
US7183493B2|2004-06-30|2007-02-27|Intel Corporation|Electronic assembly having multi-material interconnects|
JP2006019636A|2004-07-05|2006-01-19|Renesas Technology Corp|Semiconductor apparatus|
WO2006017078A2|2004-07-07|2006-02-16|Cascade Microtech, Inc.|Probe head having a membrane suspended probe|
WO2006014635A1|2004-07-21|2006-02-09|K & S Interconnect, Inc.|Reinforced probes for testing semiconductor devices|
US20090174423A1|2004-07-21|2009-07-09|Klaerner Peter J|Bond Reinforcement Layer for Probe Test Cards|
KR100618342B1|2004-07-29|2006-09-04|삼성전자주식회사|Small structure and fabrication method therefor|
US7750487B2|2004-08-11|2010-07-06|Intel Corporation|Metal-metal bonding of compliant interconnect|
US7385411B2|2004-08-31|2008-06-10|Formfactor, Inc.|Method of designing a probe card apparatus with desired compliance characteristics|
DE602005008008D1|2004-09-08|2008-08-21|Murata Manufacturing Co|COMPOSED CERAMIC SUBSTRATE|
KR100648039B1|2004-09-13|2006-11-23|삼성전자주식회사|method of forming solder ball and related fabrication and structure of semiconductor package using the method|
DE202005021435U1|2004-09-13|2008-02-28|Cascade Microtech, Inc., Beaverton|Double-sided test setups|
JP2006108431A|2004-10-06|2006-04-20|Sharp Corp|Semiconductor device|
US7046027B2|2004-10-15|2006-05-16|Teradyne, Inc.|Interface apparatus for semiconductor device tester|
KR100585561B1|2004-10-26|2006-06-07|주식회사 파이컴|Manufacture method of vertical-type electric contactor and vertical-type electric contactor thereof|
US7378742B2|2004-10-27|2008-05-27|Intel Corporation|Compliant interconnects for semiconductors and micromachines|
WO2006052616A1|2004-11-03|2006-05-18|Tessera, Inc.|Stacked packaging improvements|
KR100968184B1|2004-12-16|2010-07-05|인터내셔널 비지네스 머신즈 코포레이션|Metalized elastomeric electrical contacts|
US7427809B2|2004-12-16|2008-09-23|Salmon Technologies, Llc|Repairable three-dimensional semiconductor subsystem|
US7771208B2|2004-12-16|2010-08-10|International Business Machines Corporation|Metalized elastomeric electrical contacts|
US8832936B2|2007-04-30|2014-09-16|International Business Machines Corporation|Method of forming metallized elastomeric electrical contacts|
US20060132152A1|2004-12-20|2006-06-22|Wang Chih Y|Contact-type film probe|
US20070007983A1|2005-01-06|2007-01-11|Salmon Peter C|Semiconductor wafer tester|
US20060170114A1|2005-01-31|2006-08-03|Chao-Yuan Su|Novel method for copper wafer wire bonding|
US7656172B2|2005-01-31|2010-02-02|Cascade Microtech, Inc.|System for testing semiconductors|
US7535247B2|2005-01-31|2009-05-19|Cascade Microtech, Inc.|Interface for testing semiconductors|
JP2006216911A|2005-02-07|2006-08-17|Renesas Technology Corp|Semiconductor device and encapsulated semiconductor package|
US20060180927A1|2005-02-14|2006-08-17|Daisuke Takai|Contact structure and method for manufacturing the same|
US20060183270A1|2005-02-14|2006-08-17|Tessera, Inc.|Tools and methods for forming conductive bumps on microelectronic elements|
JP2006245336A|2005-03-03|2006-09-14|Koito Mfg Co Ltd|Light-emitting device|
US8143095B2|2005-03-22|2012-03-27|Tessera, Inc.|Sequential fabrication of vertical conductive interconnects in capped chips|
EP1866830B1|2005-03-30|2008-12-24|Nxp B.V.|A portable object connectable package|
US7371676B2|2005-04-08|2008-05-13|Micron Technology, Inc.|Method for fabricating semiconductor components with through wire interconnects|
JP4534062B2|2005-04-19|2010-09-01|ルネサスエレクトロニクス株式会社|Semiconductor device|
US7692521B1|2005-05-12|2010-04-06|Microassembly Technologies, Inc.|High force MEMS device|
US7541826B2|2005-05-13|2009-06-02|Kla-Tencor Corporation|Compliant pad wafer chuck|
JP4036872B2|2005-05-18|2008-01-23|アルプス電気株式会社|Manufacturing method of semiconductor device|
US7393770B2|2005-05-19|2008-07-01|Micron Technology, Inc.|Backside method for fabricating semiconductor components with conductive interconnects|
US7449899B2|2005-06-08|2008-11-11|Cascade Microtech, Inc.|Probe for high frequency signals|
US7388296B2|2005-06-09|2008-06-17|Ngk Spark Plug Co., Ltd.|Wiring substrate and bonding pad composition|
JP5080459B2|2005-06-13|2012-11-21|カスケードマイクロテックインコーポレイテッド|Wideband active / passive differential signal probe|
DE102005028951B4|2005-06-22|2018-05-30|Infineon Technologies Ag|Arrangement for the electrical connection of a semiconductor circuit arrangement with an external contact device|
US7589406B2|2005-06-27|2009-09-15|Micron Technology, Inc.|Stacked semiconductor component|
DE102005034485B4|2005-07-20|2013-08-29|Infineon Technologies Ag|Connecting element for a semiconductor device and method for producing a semiconductor power device|
US20070023889A1|2005-08-01|2007-02-01|Salmon Peter C|Copper substrate with feedthroughs and interconnection circuits|
US7245135B2|2005-08-01|2007-07-17|Touchdown Technologies, Inc.|Post and tip design for a probe contact|
US20070023923A1|2005-08-01|2007-02-01|Salmon Peter C|Flip chip interface including a mixed array of heat bumps and signal bumps|
US7362119B2|2005-08-01|2008-04-22|Touchdown Technologies, Inc|Torsion spring probe contactor design|
US7586747B2|2005-08-01|2009-09-08|Salmon Technologies, Llc.|Scalable subsystem architecture having integrated cooling channels|
US20070023904A1|2005-08-01|2007-02-01|Salmon Peter C|Electro-optic interconnection apparatus and method|
US7331796B2|2005-09-08|2008-02-19|International Business Machines Corporation|Land grid arrayinterposer utilizing metal-on-elastomer hemi-torus and other multiple points of contact geometries|
KR100790685B1|2005-09-16|2008-01-02|삼성전기주식회사|A built in antenna module of wireless communication terminalas|
JP4923494B2|2005-09-22|2012-04-25|富士通株式会社|Multilayer circuit board design support method, program, apparatus, and multilayer circuit board|
US20070090156A1|2005-10-25|2007-04-26|Ramanathan Lakshmi N|Method for forming solder contacts on mounted substrates|
US7825491B2|2005-11-22|2010-11-02|Shocking Technologies, Inc.|Light-emitting device using voltage switchable dielectric material|
US7923844B2|2005-11-22|2011-04-12|Shocking Technologies, Inc.|Semiconductor devices including voltage switchable materials for over-voltage protection|
US7307348B2|2005-12-07|2007-12-11|Micron Technology, Inc.|Semiconductor components having through wire interconnects |
US7649367B2|2005-12-07|2010-01-19|Microprobe, Inc.|Low profile probe having improved mechanical scrub and reduced contact inductance|
US20070138644A1|2005-12-15|2007-06-21|Tessera, Inc.|Structure and method of making capped chip having discrete article assembled into vertical interconnect|
US8058101B2|2005-12-23|2011-11-15|Tessera, Inc.|Microelectronic packages and methods therefor|
US20070152685A1|2006-01-03|2007-07-05|Formfactor, Inc.|A probe array structure and a method of making a probe array structure|
US7936062B2|2006-01-23|2011-05-03|Tessera Technologies Ireland Limited|Wafer level chip packaging|
FR2896914B1|2006-01-30|2008-07-04|Valeo Electronique Sys Liaison|ELECTRONIC MODULE AND METHOD FOR ASSEMBLING SUCH A MODULE|
US7312617B2|2006-03-20|2007-12-25|Microprobe, Inc.|Space transformers employing wire bonds for interconnections with fine pitch contacts|
US7659612B2|2006-04-24|2010-02-09|Micron Technology, Inc.|Semiconductor components having encapsulated through wire interconnects |
US20090126903A1|2006-04-24|2009-05-21|Sumitomo Electric Industries, Ltd.|Heat transfer member, convex structural member, electronic apparatus, and electric product|
US7444253B2|2006-05-09|2008-10-28|Formfactor, Inc.|Air bridge structures and methods of making and using air bridge structures|
AT495561T|2006-05-23|2011-01-15|Delphi Tech Inc|ELECTRONIC COMPONENT WITH CONTACT ELEMENTS|
US7723999B2|2006-06-12|2010-05-25|Cascade Microtech, Inc.|Calibration structures for differential signal probing|
US7764072B2|2006-06-12|2010-07-27|Cascade Microtech, Inc.|Differential signal probing system|
US7403028B2|2006-06-12|2008-07-22|Cascade Microtech, Inc.|Test structure and probe for differential signals|
US7723224B2|2006-06-14|2010-05-25|Freescale Semiconductor, Inc.|Microelectronic assembly with back side metallization and method for forming the same|
US20080022522A1|2006-07-19|2008-01-31|Lotes Co., Ltd.|Manufacturing method for electrical connector|
US7331797B1|2006-07-26|2008-02-19|Lotes Co., Ltd.|Electrical connector and a manufacturing method thereof|
US7659739B2|2006-09-14|2010-02-09|Micro Porbe, Inc.|Knee probe having reduced thickness section for control of scrub motion|
CN101536190A|2006-09-24|2009-09-16|肖克科技有限公司|Formulations for voltage switchable dielectric material having a stepped voltage response and methods for making the same|
CN101517734A|2006-09-26|2009-08-26|阿尔卑斯电气株式会社|Elastic contact and method for bonding between metal terminals using the same|
US8907689B2|2006-10-11|2014-12-09|Microprobe, Inc.|Probe retention arrangement|
US7786740B2|2006-10-11|2010-08-31|Astria Semiconductor Holdings, Inc.|Probe cards employing probes having retaining portions for potting in a potting region|
EP1930216A1|2006-12-07|2008-06-11|Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO|Wire beam|
US8604605B2|2007-01-05|2013-12-10|Invensas Corp.|Microelectronic assembly with multi-layer support structure|
DE102007012500A1|2007-03-15|2008-09-18|Continental Automotive Gmbh|Contacting device for contacting circuit boards comprises electrical conductors coupled with an electrically insulating coupling body so that the ends of the conductors protrude from the coupling body |
US7675131B2|2007-04-05|2010-03-09|Micron Technology, Inc.|Flip-chip image sensor packages and methods of fabricating the same|
US7514948B2|2007-04-10|2009-04-07|Microprobe, Inc.|Vertical probe array arranged to provide space transformation|
US7793236B2|2007-06-13|2010-09-07|Shocking Technologies, Inc.|System and method for including protective voltage switchable dielectric material in the design or simulation of substrate devices|
US7876114B2|2007-08-08|2011-01-25|Cascade Microtech, Inc.|Differential waveguide probe|
JP2009071156A|2007-09-14|2009-04-02|Toshiba Corp|Semiconductor device and its manufacturing method|
US7888955B2|2007-09-25|2011-02-15|Formfactor, Inc.|Method and apparatus for testing devices using serially controlled resources|
US7977959B2|2007-09-27|2011-07-12|Formfactor, Inc.|Method and apparatus for testing devices using serially controlled intelligent switches|
US20090091025A1|2007-10-04|2009-04-09|Agency For Science, Technology And Research|Method for forming and releasing interconnects|
US8723546B2|2007-10-19|2014-05-13|Microprobe, Inc.|Vertical guided layered probe|
US7671610B2|2007-10-19|2010-03-02|Microprobe, Inc.|Vertical guided probe array providing sideways scrub motion|
US9147665B2|2007-11-06|2015-09-29|Fairchild Semiconductor Corporation|High bond line thickness for semiconductor devices|
TWI389290B|2007-11-08|2013-03-11|Ind Tech Res Inst|Chip structure and process thereof, stacked structure of chips and process thereof|
JP4443598B2|2007-11-26|2010-03-31|シャープ株式会社|Double-sided wiring board|
TWI370586B|2007-12-07|2012-08-11|Jye Chuang Electronic Co Ltd||
AT481735T|2007-12-27|2010-10-15|Imec|METHOD OF ADJUSTMENT AND BONDING OF PARTS AND A COMPONENT OF ADJUSTED AND BONDED PARTS|
US8206614B2|2008-01-18|2012-06-26|Shocking Technologies, Inc.|Voltage switchable dielectric material having bonded particle constituents|
JP2009176947A|2008-01-24|2009-08-06|Olympus Corp|Three-dimensional module|
US20090224793A1|2008-03-07|2009-09-10|Formfactor, Inc.|Method And Apparatus For Designing A Custom Test System|
US8122309B2|2008-03-11|2012-02-21|Formfactor, Inc.|Method and apparatus for processing failures during semiconductor device testing|
JP5194932B2|2008-03-26|2013-05-08|富士通セミコンダクター株式会社|Semiconductor device and manufacturing method of semiconductor device|
US8203421B2|2008-04-14|2012-06-19|Shocking Technologies, Inc.|Substrate device or package using embedded layer of voltage switchable dielectric material in a vertical switching configuration|
DE102008023761B9|2008-05-09|2012-11-08|Feinmetall Gmbh|Electrical contact element for contact contacting of electrical specimens and corresponding contacting arrangement|
US8230593B2|2008-05-29|2012-07-31|Microprobe, Inc.|Probe bonding method having improved control of bonding material|
US8963323B2|2008-06-20|2015-02-24|Alcatel Lucent|Heat-transfer structure|
KR101004911B1|2008-08-12|2010-12-28|삼성전기주식회사|Fabrication method of micro electro-mechanical component|
US8095841B2|2008-08-19|2012-01-10|Formfactor, Inc.|Method and apparatus for testing semiconductor devices with autonomous expected value generation|
TWI372250B|2008-08-27|2012-09-11|King Yuan Electronics Co Ltd|Probe card|
US7944225B2|2008-09-26|2011-05-17|Formfactor, Inc.|Method and apparatus for providing a tester integrated circuit for testing a semiconductor device under test|
US9208931B2|2008-09-30|2015-12-08|Littelfuse, Inc.|Voltage switchable dielectric material containing conductor-on-conductor core shelled particles|
US9208930B2|2008-09-30|2015-12-08|Littelfuse, Inc.|Voltage switchable dielectric material containing conductive core shelled particles|
US7888957B2|2008-10-06|2011-02-15|Cascade Microtech, Inc.|Probing apparatus with impedance optimized interface|
US8119576B2|2008-10-10|2012-02-21|Halliburton Energy Services, Inc.|Ceramic coated particulates|
US7982305B1|2008-10-20|2011-07-19|Maxim Integrated Products, Inc.|Integrated circuit package including a three-dimensional fan-out / fan-in signal routing|
US8362871B2|2008-11-05|2013-01-29|Shocking Technologies, Inc.|Geometric and electric field considerations for including transient protective material in substrate devices|
US8410806B2|2008-11-21|2013-04-02|Cascade Microtech, Inc.|Replaceable coupon for a probing apparatus|
US9226391B2|2009-01-27|2015-12-29|Littelfuse, Inc.|Substrates having voltage switchable dielectric materials|
US8399773B2|2009-01-27|2013-03-19|Shocking Technologies, Inc.|Substrates having voltage switchable dielectric materials|
US8272123B2|2009-01-27|2012-09-25|Shocking Technologies, Inc.|Substrates having voltage switchable dielectric materials|
US8073019B2|2009-03-02|2011-12-06|Jian Liu|810 nm ultra-short pulsed fiber laser|
MY155882A|2009-03-10|2015-12-15|Johnstech Int Corp|Electrically conductive pins for microcircuit tester|
CN102550132A|2009-03-26|2012-07-04|肖克科技有限公司|Components having voltage switchable dielectric materials|
JP5062283B2|2009-04-30|2012-10-31|日亜化学工業株式会社|Semiconductor device and manufacturing method thereof|
US8436251B2|2009-07-08|2013-05-07|Medtronic, Inc.|Ribbon connecting electrical components|
US9053844B2|2009-09-09|2015-06-09|Littelfuse, Inc.|Geometric configuration or alignment of protective material in a gap structure for electrical devices|
WO2011033393A1|2009-09-17|2011-03-24|Koninklijke Philips Electronics N.V.|Geometry of contact sites at brittle inorganic layers in electronic devices|
EP2499180A2|2009-11-12|2012-09-19|Dow Global Technologies LLC|Polyoxazolidone resins|
JP5488024B2|2010-02-17|2014-05-14|ミツミ電機株式会社|AC adapter|
US9082622B2|2010-02-26|2015-07-14|Littelfuse, Inc.|Circuit elements comprising ferroic materials|
US9320135B2|2010-02-26|2016-04-19|Littelfuse, Inc.|Electric discharge protection for surface mounted and embedded components|
US9224728B2|2010-02-26|2015-12-29|Littelfuse, Inc.|Embedded protection against spurious electrical events|
US8215966B2|2010-04-20|2012-07-10|Tyco Electronics Corporation|Interposer connector assembly|
US8407888B2|2010-05-07|2013-04-02|Oracle International Corporation|Method of assembling a circuit board assembly|
JP2011258364A|2010-06-08|2011-12-22|Shinko Electric Ind Co Ltd|Socket|
US8167644B2|2010-06-30|2012-05-01|Tyco Electronics Corporation|Electrical connector for an electronic module|
US8172615B2|2010-06-30|2012-05-08|Tyco Electronics Corporation|Electrical connector for an electronic module|
US9159708B2|2010-07-19|2015-10-13|Tessera, Inc.|Stackable molded microelectronic packages with area array unit connectors|
US8482111B2|2010-07-19|2013-07-09|Tessera, Inc.|Stackable molded microelectronic packages|
JP5713598B2|2010-07-20|2015-05-07|新光電気工業株式会社|Socket and manufacturing method thereof|
US8274798B2|2010-07-28|2012-09-25|Unimicron Technology Corp.|Carrier substrate and method for making the same|
JP5788166B2|2010-11-02|2015-09-30|新光電気工業株式会社|Connection terminal structure, manufacturing method thereof, and socket|
US8191246B1|2010-11-11|2012-06-05|Qi Luo|Method of manufacturing a plurality of miniaturized spring contacts|
KR101075241B1|2010-11-15|2011-11-01|테세라, 인코포레이티드|Microelectronic package with terminals on dielectric mass|
US20120146206A1|2010-12-13|2012-06-14|Tessera Research Llc|Pin attachment|
US20120208379A1|2011-02-14|2012-08-16|Chicony Power Technology Co., Ltd.|Ac inlet|
US9702904B2|2011-03-21|2017-07-11|Formfactor, Inc.|Non-linear vertical leaf spring|
KR101128063B1|2011-05-03|2012-04-23|테세라, 인코포레이티드|Package-on-package assembly with wire bonds to encapsulation surface|
US9105483B2|2011-10-17|2015-08-11|Invensas Corporation|Package-on-package assembly with wire bond vias|
JP2013101043A|2011-11-08|2013-05-23|Renesas Electronics Corp|Method for manufacturing semiconductor device|
WO2013070201A1|2011-11-09|2013-05-16|Advantest America, Inc.|Fine pitch microelectronic contact array and method of making same|
US8946757B2|2012-02-17|2015-02-03|Invensas Corporation|Heat spreading substrate with embedded interconnects|
US8372741B1|2012-02-24|2013-02-12|Invensas Corporation|Method for package-on-package assembly with wire bonds to encapsulation surface|
US9349706B2|2012-02-24|2016-05-24|Invensas Corporation|Method for package-on-package assembly with wire bonds to encapsulation surface|
US9082763B2|2012-03-15|2015-07-14|Taiwan Semiconductor Manufacturing Company, Ltd.|Joint structure for substrates and methods of forming|
US8835228B2|2012-05-22|2014-09-16|Invensas Corporation|Substrate-less stackable package with wire-bond interconnect|
US8902605B2|2012-06-13|2014-12-02|International Business Machines Corporation|Adapter for plated through hole mounting of surface mount component|
US9391008B2|2012-07-31|2016-07-12|Invensas Corporation|Reconstituted wafer-level package DRAM|
US9502390B2|2012-08-03|2016-11-22|Invensas Corporation|BVA interposer|
US8927877B2|2012-08-08|2015-01-06|Taiwan Semiconductor Manufacturing Company, Ltd.|Looped interconnect structure|
TWI453425B|2012-09-07|2014-09-21|Mjc Probe Inc|Apparatus for probing die electricity and method for forming the same|
US20140104776A1|2012-10-17|2014-04-17|James E. Clayton|Rigid circuit board with flexibly attached module|
US8902606B2|2012-10-17|2014-12-02|Microelectronics Assembly Technologies|Electronic interconnect system|
US9338895B2|2012-10-17|2016-05-10|Microelectronics Assembly Technologies|Method for making an electrical circuit|
US8975738B2|2012-11-12|2015-03-10|Invensas Corporation|Structure for microelectronic packaging with terminals on dielectric mass|
US8878353B2|2012-12-20|2014-11-04|Invensas Corporation|Structure for microelectronic packaging with bond elements to encapsulation surface|
US9202782B2|2013-01-07|2015-12-01|Intel Corporation|Embedded package in PCB build up|
US9136254B2|2013-02-01|2015-09-15|Invensas Corporation|Microelectronic package having wire bond vias and stiffening layer|
JP6161918B2|2013-02-25|2017-07-12|新光電気工業株式会社|Semiconductor device|
US9167710B2|2013-08-07|2015-10-20|Invensas Corporation|Embedded packaging with preformed vias|
US9685365B2|2013-08-08|2017-06-20|Invensas Corporation|Method of forming a wire bond having a free end|
US20150076714A1|2013-09-16|2015-03-19|Invensas Corporation|Microelectronic element with bond elements to encapsulation surface|
WO2015043947A1|2013-09-27|2015-04-02|Alcatel Lucent|A structure for a heat transfer interface and method of manufacturing the same|
CA2929896A1|2013-11-07|2015-05-14|Heraeus Deutschland GmbH & Co. KG|Probe pin and method for producing a probe pin|
US9583456B2|2013-11-22|2017-02-28|Invensas Corporation|Multiple bond via arrays of different wire heights on a same substrate|
US9263394B2|2013-11-22|2016-02-16|Invensas Corporation|Multiple bond via arrays of different wire heights on a same substrate|
US9379074B2|2013-11-22|2016-06-28|Invensas Corporation|Die stacks with one or more bond via arrays of wire bond wires and with one or more arrays of bump interconnects|
US9196577B2|2014-01-09|2015-11-24|Infineon Technologies Ag|Semiconductor packaging arrangement|
US9583411B2|2014-01-17|2017-02-28|Invensas Corporation|Fine pitch BVA using reconstituted wafer with area array accessible for testing|
TWI587412B|2014-05-08|2017-06-11|矽品精密工業股份有限公司|Package structures and methods for fabricating the same|
US10381326B2|2014-05-28|2019-08-13|Invensas Corporation|Structure and method for integrated circuits packaging with increased density|
US9646917B2|2014-05-29|2017-05-09|Invensas Corporation|Low CTE component with wire bond interconnects|
US9412714B2|2014-05-30|2016-08-09|Invensas Corporation|Wire bond support structure and microelectronic package including wire bonds therefrom|
GB2529678B|2014-08-28|2017-01-25|Cambium Networks Ltd|Radio frequency connection arrangement|
US9735084B2|2014-12-11|2017-08-15|Invensas Corporation|Bond via array for thermal conductivity|
US10679866B2|2015-02-13|2020-06-09|Taiwan Semiconductor Manufacturing Co., Ltd.|Interconnect structure for semiconductor package and method of fabricating the interconnect structure|
US9888579B2|2015-03-05|2018-02-06|Invensas Corporation|Pressing of wire bond wire tips to provide bent-over tips|
KR101663826B1|2015-03-11|2016-10-10|주식회사 듀링플러스|Elastic signal pin|
US9668344B2|2015-04-23|2017-05-30|SK Hynix Inc.|Semiconductor packages having interconnection members|
US9502372B1|2015-04-30|2016-11-22|Invensas Corporation|Wafer-level packaging using wire bond wires in place of a redistribution layer|
US9761554B2|2015-05-07|2017-09-12|Invensas Corporation|Ball bonding metal wire bond wires to metal pads|
US10685943B2|2015-05-14|2020-06-16|Mediatek Inc.|Semiconductor chip package with resilient conductive paste post and fabrication method thereof|
US10490528B2|2015-10-12|2019-11-26|Invensas Corporation|Embedded wire bond wires|
US9490222B1|2015-10-12|2016-11-08|Invensas Corporation|Wire bond wires for interference shielding|
US10332854B2|2015-10-23|2019-06-25|Invensas Corporation|Anchoring structure of fine pitch bva|
US10181457B2|2015-10-26|2019-01-15|Invensas Corporation|Microelectronic package for wafer-level chip scale packaging with fan-out|
US9911718B2|2015-11-17|2018-03-06|Invensas Corporation|‘RDL-First’ packaged microelectronic device for a package-on-package device|
US9659848B1|2015-11-18|2017-05-23|Invensas Corporation|Stiffened wires for offset BVA|
CN105467176A|2015-12-10|2016-04-06|苏州世纪福智能装备股份有限公司|A double layer floating type high density connector|
US9984992B2|2015-12-30|2018-05-29|Invensas Corporation|Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces|
US10104773B2|2016-01-27|2018-10-16|Northrop Grumman Systems Corporation|Resilient micro lattice electrical interconnection assembly|
CN105719978B|2016-05-09|2018-12-04|中芯长电半导体(江阴)有限公司|A kind of nearly spacing copper needle encapsulating structure and preparation method thereof|
US10120020B2|2016-06-16|2018-11-06|Formfactor Beaverton, Inc.|Probe head assemblies and probe systems for testing integrated circuit devices|
US10299368B2|2016-12-21|2019-05-21|Invensas Corporation|Surface integrated waveguides and circuit structures therefor|
JP6387426B2|2017-01-25|2018-09-05|日鉄住金マイクロメタル株式会社|Bonding wire|
US20190067412A1|2017-08-29|2019-02-28|Paolo Tessariol|Capacitors having vertical contacts extending through conductive tiers|
JP6806269B2|2018-01-11|2021-01-06|オムロン株式会社|Probe pins, inspection jigs, inspection units and inspection equipment|
CN109300859B|2018-09-18|2020-08-28|苏州施密科微电子设备有限公司|Semiconductor chip packaging frame|
DE102018220089A1|2018-11-22|2020-05-28|Infineon Technologies Ag|Digital predistortion technology for a circuit arrangement with a power amplifier|
CN111786159A|2019-04-03|2020-10-16|高天星|Conduction device|
法律状态:
2009-04-20| FPAY| Fee payment|Year of fee payment: 4 |
2013-05-31| REMI| Maintenance fee reminder mailed|
2013-10-18| LAPS| Lapse for failure to pay maintenance fees|
2013-11-18| STCH| Information on status: patent discontinuation|Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
2013-12-10| FP| Expired due to failure to pay maintenance fee|Effective date: 20131018 |
2016-07-12| AS| Assignment|Owner name: HSBC BANK USA, NATIONAL ASSOCIATION, CALIFORNIA Free format text: SECURITY INTEREST IN UNITED STATES PATENTS AND TRADEMARKS;ASSIGNORS:FORMFACTOR, INC.;ASTRIA SEMICONDUCTOR HOLDINGS, INC.;CASCADE MICROTECH, INC.;AND OTHERS;REEL/FRAME:039184/0280 Effective date: 20160624 |
优先权:
申请号 | 申请日 | 专利标题
US08/152,812|US5476211A|1993-11-16|1993-11-16|Method of manufacturing electrical contacts, using a sacrificial member|
US08/340,144|US5917707A|1993-11-16|1994-11-15|Flexible contact structure with an electrically conductive shell|
US73581496A| true| 1996-10-21|1996-10-21||
US09/295,269|US6956174B2|1993-11-16|1999-04-20|Tip structures|US09/295,269| US6956174B2|1993-11-16|1999-04-20|Tip structures|
[返回顶部]