专利摘要:
Monolithic inductance-enhancing integrated circuits, complementary metal oxide semiconductor (CMOS) inductance-enhancing integrated circuits, inductor assemblies, and inductance-multiplying methods are described. In one embodiment, a monolithic inductance-enhancing integrated circuit comprises a transistor supported by a bulk monocrystalline silicon substrate. An inductor assembly is supported by the substrate and operably connected with the transistor in an inductance-enhancing circuit configuration having a quality factor (Q) greater than 10. In another embodiment, a complementary metal oxide semiconductor (CMOS), inductance-enhancing integrated circuit includes a field effect transistor supported over a silicon-containing substrate and having a gate, a source, and a drain. A first inductor is received within an insulative material layer over the substrate, and is connected to the gate. A second inductor is received within the insulative material layer and is connected to the source. The first and second inductors are arranged in a feedback loop which incorporates the field effect transistor. In yet another embodiment, a monolithic substrate is provided having formed thereon integrated circuitry which is formed through complementary metal oxide semiconductor (CMOS) techniques and includes a field effect transistor and a pair of inductors. The transistor and inductor pair are arranged into a circuit configuration in which the field effect transistor can sample one of the pair of inductors and drive the other of the pair of inductors in a manner which effectively increases the inductance of the sampled inductor.
公开号:US20010002060A1
申请号:US09/769,554
申请日:2001-01-24
公开日:2001-05-31
发明作者:Leonard Forbes
申请人:Leonard Forbes;
IPC主号:H01L28-10
专利说明:
[0001] The present invention relates to monolithic inductance-enhancing integrated circuits, to complementary metal oxide semiconductor (CMOS) inductance-enhancing integrated circuits, to inductor assemblies, and to inductance-multiplying methods [0001] BACKGROUND OF THE INVENTION
[0002] As integrated circuit devices continue to shrink in dimension, the demand to integrate different functionalities on the same integrated circuit die continue to grow. For example, portable wireless communication products have become high volume consumer devices. Some of these devices are now operating in the 1-2 GHz frequency range. There is, as a consequence, a demand to integrate RF front end circuits into high-yield silicon integrated circuit processes to allow a combination of analog, digital, and RF functions on the same integrated circuit die. Yet, some considerable difficulty has been experienced in attempts to fabricate inductors having high quality factors (Q) in silicon technology for RF circuits which are used in communications. [0002]
[0003] Attempts have been made to build high-Q inductors in silicon integrated circuit technology, but have yielded Q factors of only three to eight. This is undesirable in the context of RF circuit design at frequencies in the above-stated range, where required Q factors need to be typically in a range from between 5-20 for broad-band applications, and may have to be higher than 30 in narrow-band networks. Problems associated with the use of silicon technology in these scenarios, in part, is a result of the conductivity of silicon substrates which tends to induce losses. As frequencies approach the self resonant frequency, the inductance value decreases which is most undesirable. Losses in the conductive silicon substrates can be increased by the high dielectric constant of the insulators under the conductors and the relatively large values of stray capacitance coupling to the silicon substrate. [0003]
[0004] Some attempts have been made to provide oxide-encased, spiral-type inductors for silicon technology, with such encased inductors being disposed over a cavity which is etched into the silicon substrate. Others have attempted to provide higher-Q inductors in a five or six-level metal BiCMOS technology. The conductors in these instances are still encased in oxide but are far removed from the silicon substrate by virtue of a large number of insulator and metal levels. The number of these levels, however, is far in excess of the two to four levels commonly utilized in CMOS technology. [0004]
[0005] Other attempts have been made to provide higher-Q inductors through the use of long pad-to-pad wire bond techniques in BiCMOS technology in the design and fabrication of voltage controlled oscillators. Wire bond inductors have previously been used in a variety of applications as inductors and for impedance matching networks and, more recently, to create low impedance resonant connections from guard rings or bonding pads to ground planes. Having the conductor surrounded by air rather than an insulator serves to reduce losses from the conductive silicon substrates and yield high-Q values (11 to 15 at 1.8 GHz). However, having such long unsupported spans of wire, e.g. up to three millimeters in some cases, does not provide for good mechanical stability. In addition, there is no provision nor is there a possibility of, passivation in these structures. Air bridge or wire bond inductors might have very good high-Q values, but their characteristics typically tend to be subject to change in an advent of severe mechanical shocks or abrasion. In addition, such structures are not suitably protected from corrosive environments. [0005]
[0006] Against the backdrop of these attempts, there continues to remain a need in silicon integrated circuit technologies for high-Q inductors with rigid and fixed mechanical characteristics. Such inductors are, or can be used in the design and implementation of oscillators, tuned amplifiers, and in optimizing broad band amplifiers. These cannot be achieved by standard integrated circuit techniques, nor air bridge and/or suspended metal conductors. [0006]
[0007] Inductance and Q-multipliers have been used previously in low frequency telephony circuits where operational amplifiers with a low unity gain corner frequency have been employed as the active gain elements. Examples of such are described in U.S. Pat. No. 4,767,980. More complicated feedback circuits employing operational amplifiers at low frequencies have been utilized to achieve Q-multiplier circuits. Such are described in U.S. Pat. Nos. 5,303,394, and 4,661,785. It is difficult, however, to fabricate operational amplifiers in CMOS technology with a high unity gain frequency. [0007]
[0008] Accordingly, this invention arose out of concerns associated with providing improved structures and methods for enhancing the inductive quality of integrated circuits. Particularly, this invention arose out of concerns associated with providing such structures and methods in the context of CMOS technology. Such structures preferably have high Q values at the frequencies of interest. [0008] SUMMARY OF THE INVENTION
[0009] Monolithic inductance-enhancing integrated circuits, complementary metal oxide semiconductor (CMOS) inductance-enhancing integrated circuits, inductor assemblies, and inductance-multiplying methods are described. [0009]
[0010] In one embodiment, a monolithic inductance-enhancing integrated circuit comprises a transistor supported by a bulk monocrystalline silicon substrate. An inductor assembly is supported by the substrate and operably connected with the transistor in an inductance-enhancing circuit configuration having a quality factor (Q) greater than 10. In another embodiment, a complementary metal oxide semiconductor (CMOS), inductance-enhancing integrated circuit includes a field effect transistor supported over a silicon-containing substrate and having a gate, a source, and a drain. A first inductor is received within an insulative material layer over the substrate, and is connected to the gate. A second inductor is received within the insulative material layer and is connected to the source. The first and second inductors are arranged in a feedback loop which incorporates the field effect transistor. In another embodiment, an inductor assembly comprises a semiconductive silicon substrate having first and second spiral-type inductors received thereover to define a first and second respective inductor levels which, preferably, have no more than four inductor or metal levels. In yet another embodiment, a monolithic substrate is provided having formed thereon integrated circuitry which is formed through complementary metal oxide semiconductor (CMOS) techniques and includes a field effect transistor and a pair of inductors. The transistor and inductor pair are arranged into a circuit configuration in which the field effect transistor can sample one of the pair of inductors and drive the other of the pair of inductors in a manner which effectively increases the inductance of the sampled inductor. In another embodiment, first and second spiral-type inductors are provided over a semiconductive substrate. The output of the first spiral-type inductor is sampled with a field effect transistor and the second spiral-type inductor is driven with the field effect transistor thereby increasing the inductance of the first spiral-type inductor. [0010] BRIEF DESCRIPTION OF THE DRAWINGS
[0011] Preferred embodiments of the invention are described below with reference to the following accompanying drawings. [0011]
[0012] FIG. 1 is a schematic circuit diagram of a circuit in accordance with one embodiment of the invention. [0012]
[0013] FIG. 2 is a graph which is useful in understanding the operation of one or more embodiments of the invention. [0013]
[0014] FIG. 3 is a schematic circuit diagram which is used in connection with certain derivations to assist in understanding the invention. [0014]
[0015] FIG. 4 is a graph which is useful in understanding the operation of one or more embodiments of the invention. [0015]
[0016] FIG. 5 is a graph which is useful in understanding one or more embodiments of the present invention. [0016]
[0017] FIG. 6 is a graph which is useful in understanding one or more embodiments of the invention. [0017]
[0018] FIG. 7 is a graph which is useful in understanding one or more embodiments of the invention. [0018]
[0019] FIG. 8 is a diagrammatic side sectional view of one aspect of one embodiment of the present invention. [0019]
[0020] FIG. 9 is a diagrammatic side sectional view of an inductor assembly constructed in accordance with one embodiment of the invention. [0020]
[0021] FIG. 10 is a top plan view of a spiral-type inductor in accordance with one embodiment of the invention. [0021] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0022] This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8). [0022]
[0023] Referring to FIG. 1, a schematic diagram of a circuit constructed in accordance with one embodiment of the invention is shown generally at [0023] 20. In one preferred embodiment, circuit 20 constitutes a monolithic, inductance-enhancing integrated circuit comprising a transistor 22 (FIGS. 1 and 8) supported by a bulk monocrystalline silicon substrate 100, and an inductor assembly supported by the substrate and indicated generally with reference numeral 24 (FIG. 9). Preferably, inductor assembly 24 is operably connected with transistor 22 in an inductance-enhancing circuit configuration having a quality factor greater than or equal to about 10. Operable interconnection of the integrated circuitry structures shown in FIGS. 8 and 9 can take place through known integrated circuit fabrication techniques. The illustrated circuit and the concepts embraced thereby constitute improvements over prior attempts to provide high-Q, silicon-integrated, monolithic circuits suitable for use in the gigahertz range.
[0024] In one specific embodiment, transistor [0024] 22 comprises a field effect transistor which is preferably a metal oxide semiconductor field effect transistor (MOSFET) as shown in FIG. 8. Accordingly, transistor 22 includes a gate 26, a drain 28, and a source 30. Preferably, inductor assembly 24 comprises a pair of inductors, e.g. first inductor 32 and second inductor 34. In the illustrated embodiment, first inductor 32 is connected to gate 26 and second inductor 34 is connected to source 30. In the particular illustrated circuit of FIG. 1, drain 28 of transistor 22 is connected to a voltage supply VDD. Inductor 32 is connected between gate 26 and a voltage source VGS, with a coil resistance Rc being shown in series with inductor 32. Coil resistance Rc represents the inherent resistance of the inductive coil. Inductor 34 is connected between source 30 and ground.
[0025] In a preferred embodiment and as best illustrated in FIGS. 9 and 10, inductor assembly [0025] 24 comprises a plurality of spiral-type inductors. Two such exemplary inductors are shown in cross-section at 32, 34 respectively, in FIG. 9. FIG. 10 shows a cross-hatched, top plan view of one such inductor. In the illustrated example (FIGS. 1 and 9), two such spiral-type inductors are shown. One of the inductors, e.g. inductor 32, is preferably larger than the other inductor 34. The inductors are preferably formed through integrated circuit techniques which can include, for example, damascene methods or substractive methods. In damascene methods, trenches are formed in an insulative material in the pattern of a particular portion of an inductive element. Conductive material, e.g. aluminum, copper, or some other suitable material such as other metals, is subsequently deposited into the trenches, with unneeded metal being subsequently removed. In subtractive methods, a metal layer is formed over a substrate and subsequently patterned into a desired inductive element shape. In the instant example, thee larger of the inductors, inductor 32, is formed or disposed over the smaller of the inductors, inductor 34 (FIG. 9).
[0026] In another preferred embodiment which is shown best in FIGS. 1, 8 and [0026] 9, a complementary metal oxide semiconductor (CMOS), inductance-enhancing integrated circuit 20 is provided. The circuit comprises a field effect transistor 22 received by and supported over a silicon-containing substrate 100. The transistor comprises a gate 26, a drain 28, and a source 30. A first inductor 32 is received within an insulative material layer 36 which is supported by substrate 100. First inductor 32 is connected, in this example, to gate 26. Second inductor 34 is provided and is received within insulative material layer 36. Second inductor 34 is preferably connected to source. 30 of transistor 22. In this example, first and second inductors 32, 34 are arranged in a feedback loop (FIG. 1) which incorporates the field effect transistor. One of the first and second inductors 32, 34 respectively, is larger than the other of the first and second inductors. In this example, inductor 32 is larger than inductor 34. Preferably, one of the first and second inductors is a spiral-type inductor such as the inductive element shown in FIG. 10. Even more preferably, both of the first and second inductors are spiral-type inductors. Additionally, one of the inductors is preferably disposed over the other of the inductors. In the illustrated example, the larger of the inductors is received over the smaller of the inductors.
[0027] In another embodiment, an inductor assembly is provided over a semiconductive silicon substrate in an arrangement which is illustrated in FIG. 9. In a preferred embodiment, a first spiral-type inductor [0027] 32 is received over substrate 100 and defines a first inductor level. A second spiral-type inductor 34 is received over substrate 100 and is operably coupled with first spiral inductor 32 and defines a second inductor level. The inductor assembly preferably includes no more than four inductor or metal levels. In this specific example, the inductors each constitute an inductor or metal layer, and the conductive interconnects which extend above and below, and to the left and right, as viewed in the figure, constitute two other metal layers making a total of no more than four metal layers. Such a construction and number of levels is highly desirable in the context of CMOS circuitry.
[0028] First and second spiral-type inductors [0028] 32, 34 are preferably arranged, or can be arranged in a circuit to provide the circuit with a quality factor Q, as described below, which is no less than about 10. Even more preferably, a quality factor Q is provided which is equal to about, or no less than about 15. As discussed above, having Q factors in this range in the context of semiconductive silicon substrates, together with the total number of metal levels necessary for implementing the inductor assembly not exceeding four, constitutes a highly desirable improvement over prior methods which either were unable to realize Q factors in this range in silicon, or needed more than four metal levels to implement particular inductors.
[0029] Various embodiments of the invention provide inductance-multiplying methods which constitute improvements over prior known methods. In one embodiment, a monolithic substrate is provided having formed thereon integrated circuitry which is formed through complementary metal oxide semiconductor (CMOS) techniques. The circuitry preferably comprises a field effect transistor, such as transistor [0029] 22, and a pair of inductors, such as inductors 32, 34. The field effect transistor and the pair of inductors are preferably arranged into a circuit configuration (see FIG. 1) in which the field effect transistor is configured to sample one of the pair of inductors, e.g. inductor 32, and drive the other of the pair of inductors, e.g. inductor 34. By arranging the circuit as just described, the inductance of the sampled inductor is effectively increased. In one embodiment, the substrate is provided as a monocrystalline substrate. In another embodiment, the substrate is provided as a monocrystalline, silicon-containing substrate. In another embodiment, provision of the monolithic substrate having the described integrated circuitry thereon comprises fabricating the integrated circuitry. In one fabrication embodiment, one of the inductors is fabricated to be larger than the other of the inductors. Preferably, the larger of the inductors is fabricated to be disposed elevationally over the other of the inductors.
[0030] In yet another embodiment, integrated circuitry is fabricated to comprise a MOSFET having a gate, a drain, and a source. One of the pair of inductors is fabricated to be larger than the other of the pair of inductors and is connected to the gate of the transistor. An exemplary circuit is shown in FIG. 1. The other of the pair of inductors is fabricated to be connected to the source of the transistor. [0030]
[0031] In the illustrated and preferred embodiment, the arranging of the integrated circuitry into the described circuit configuration comprises providing a suitable voltage potential(s) to render the field effect transistor operative. In the specific illustrated example shown in FIG. 1, the integrated circuitry is arranged into a source-follower configuration. Other circuit configurations utilizing various inventive principles described above and below can be assembled or fabricated. [0031]
[0032] As discussed above, one of the advantages of the present invention is that various circuits which utilize the inventive concepts can be realized through or in connection with CMOS fabrication techniques. Given the difficulty in fabricating inductors in CMOS integrated circuits, as opposed to, for example, GaAs MESFET circuits, the present invention provides solutions relating to the need for techniques to produce high inductance and high-Q elements in CMOS integrated circuits. [0032]
[0033] In accordance with various embodiments of the invention, an active inductor circuit utilizes a MOSFET to achieve a multiplication of inductance values and a multiplication of Q values by compensating for the losses in spiral inductors fabricated over silicon substrates. The circuit shown in FIG. 1 illustrates but one example of a MOSFET which is employed to achieve these objectives. [0033]
[0034] For purposes of a better understanding of the invention, the circuit of FIG. 1 is compared to a simple passive inductor, and certain derivations relative to the two are set forth below. In one example, the active circuit of FIG. 1 utilized an inductor L[0034] 1 which has an inductance of 9 nH and a resistance of 100 ohms. Such provides a low-valued and high loss inductor. On the other hand, the passive circuit equivalent requires a larger inductor, e.g. 46 nH, to achieve the same resonant frequency near 3 GHz and, likewise, has a larger coil resistance, e.g. around 600 ohms. And, while the passive circuit equivalent can resonate near 3 GHz, its Q value is equal to around 1.5, rather than a desirable Q value of around 15. Clearly, the active circuit which employs the MOSFET has a smaller inductor area thereby taking up much less wafer area and, at the same time, providing a high quality factor Q which is suitable for use in the frequency range mentioned above.
[0035] The design of the active circuit shown in FIG. 1, without any coil resistance, is seemingly simple but, in reality, is fairly complicated. This circuit is, in reality, a positive feedback circuit with a loop gain which is less than the order of 1, if k[0035] 2< L2/L1, and since the amplifier is a source follower with a gain of one or less. The parameter k, just referenced, is the coupling coefficient between the two coils, where the mutual inductance M= k (L1*L2)½.
[0036] The equation derived just below results from the solution of the circuit node equations, in the simple case, where there is no coil resistance. Such a circuit is shown in FIG. 3. [0036] V 1 =   i 1  ( sL 1 ) + i 2  ( sM ) V 2 =   i 1  ( sM ) + i 2  ( sL 2 )    where   i 2 = g m  ( V 1 - V 2 ) Z =   V 1 i 1 =sL 1 ( 1 + g m  sL 2 - g m  sk 2  L 2 ( 1 + g m  sL 2 - g m  sM )
[0037] In the above equations, s=jω. Quite surprisingly, not only does this result in an effective multiplication of the input impedance Z= V[0037] 1/i1, or effective multiplication of the inductance, resulting in an impedance of around 1000 ohms (46 nH) at 3 GHz, rather than just the 9 nH (170 ohms) at 3 GHz, but also a negative impedance since the phase angle is larger than 90 ° as shown in FIG. 4. If there is no other positive resistance in the circuit, such as a coil resistance, this circuit is potentially unstable. In reality, however, all practical circuits have coil resistances (such as resistance Rc in FIG. 1) which can bring the circuit toward stability. If the circuit is designed correctly, as the graph in FIG. 2 describes, the circuit will be stable. The dashed line in FIG. 2 constitutes the performance characteristics of the above-described passive circuit, while the solid line represents the performance characteristics of an active circuit in accordance with the invention. The negative resistance above serves to compensate for the coil losses and results, in part, in the Q multiplication.
[0038] FIGS. 6 and 7 show the impedance looking at node [0038] 1 (V1 in FIG. 3) with a coil resistance of 100 ohms. Note that the phase angle is always less than 90 ° so there is no negative resistance and the circuit is stable.
[0039] A more detailed analytical investigation has been made of the circuit in FIG. 1, including the coil resistance R[0039] c, and any additional stray resistance or resistance which might be added to the circuit to ensure stability. Somewhat complicated algebraic equations follow which can be simplified if it is assumed that:
[0040] With this assumption, the effective inductance, L[0040] eff is the multiplied inductance Leff=M1*L1, where M1 is given by the equation:
[0041] This detailed analysis also yields a condition on the minimum value of resistance R[0041] c which will ensure there is no negative resistance at the input. Such is given by the following equation:
[0042] Using the values for the circuit in FIG. 1 results in a multiplication of the inductance by a factor of six and requires a resistance R[0042] c of around 100 ohms or more. Using the same approximations, one can find that the Q of the new circuit resonated at 3 GHz with a 0.07 pF capacitor is given by:
[0043] Since the denominator involves differences between larger numbers, the denominator can be small and the Q of the circuit can be around 15. [0043]
[0044] With respect to stability, a few conditions must be considered. The first condition relates to the well known Nyquist criteria for feedback circuits. This circuit is, in reality, a positive feedback circuit, but can be and will be stable if the loop gain is less than one. Since the amplifier, in this example the source follower, has at most a gain of one, then this condition can be ensured by making the loop gain of the feedback loop, the transformer, have a gain less than one by making: [0044]
[0045] Another condition to ensure absolute stability and avoid any possibility of oscillations or ringing in the circuit is also to make the real part of the impedance or resistance looking into the circuit positive. This, as detailed above, requires a minimum on the losses in the coil(s) and circuit represented here by R[0045] c. If the resistance of the coil is not large enough, some additional series resistance can be included to make:
[0046] With respect to noise, at low frequencies the input impedance of the circuit is simply R[0046] c, and has added to it the thermal noise of this resistor, 4(kT) RcΔf (V2/Hz). The inductance and multiplied inductance becomes important only at high frequencies, typically over 100 MHz. As a result one can neglect the low frequency noise of the FET and consider only the channel mean square noise current. An analysis of an equivalent circuit yields two components to the noise at the input node, the resistor noise:
[0047] and the added noise due to the transistor when g[0047] m sL2 is >>1, at high frequencies:
[0048] where (M/(L[0048] 2−M)) is a multiplication factor similar to one which multiplied the inductance. The total mean square noise voltage at the input will be the sum of these two components. However, since 1/gm is smaller than Rc, typically these two components will be around the same order of magnitude so the FET does not introduce much additional noise.
[0049] Various advantages can be achieved by the inventive structures and methods among which are included improved or enhanced inductance values and Q factors in the context of silicon processing techniques, e.g. CMOS techniques. Further, reductions in the consumption of wafer real estate can be achieved with improved Q factors at the frequencies of interest. Moreover, very large scale integration of analog, digital and RF functions can be enabled by the present invention, with a particular utility in the integrated RF front end circuit such as those which are used in connection with portable wireless communication products. [0049]
[0050] In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents. [0050]
权利要求:
Claims (38)
[1" id="US-20010002060-A1-CLM-00001] 1. A monolithic inductance-enhancing integrated circuit comprising:
a transistor supported by a bulk monocrystalline silicon substrate; and
an inductor assembly supported by the substrate and operably connected with the transistor in an inductance-enhancing circuit configuration having a quality factor Q greater than or equal to about 10.
[2" id="US-20010002060-A1-CLM-00002] 2. The monolithic inductance-enhancing integrated circuit of
claim 1 , wherein the quality factor Q of the circuit configuration is no less than 15.
[3" id="US-20010002060-A1-CLM-00003] 3. The monolithic inductance-enhancing integrated circuit of
claim 1 , wherein the transistor comprises a field effect transistor.
[4" id="US-20010002060-A1-CLM-00004] 4. The monolithic inductance-enhancing integrated circuit of
claim 1 , wherein the transistor comprises a metal oxide field effect transistor (MOSFET).
[5" id="US-20010002060-A1-CLM-00005] 5. The monolithic inductance-enhancing integrated circuit of
claim 1 , wherein the inductor assembly comprises two inductors.
[6" id="US-20010002060-A1-CLM-00006] 6. The monolithic inductance-enhancing integrated circuit of
claim 1 , wherein the transistor comprises a field effect transistor having a gate, a drain, and a source, and the inductor assembly comprises two inductors, one of the inductors being connected to the gate, the other of the inductors being connected to the source.
[7" id="US-20010002060-A1-CLM-00007] 7. The monolithic inductance-enhancing integrated circuit of
claim 1 , wherein the inductor assembly comprises two spiral-type inductors.
[8" id="US-20010002060-A1-CLM-00008] 8. The monolithic inductance-enhancing integrated circuit of
claim 1 , wherein the transistor comprises a field effect transistor having a gate, a drain, and a source, and the inductor assembly comprises two spiral-type inductors, one of the inductors being connected to the gate, the other of the inductors being connected to the source.
[9" id="US-20010002060-A1-CLM-00009] 9. The monolithic inductance-enhancing integrated circuit of
claim 1 , wherein the inductor assembly comprises two spiral-type inductors, and wherein one of the inductors is disposed over the other of the inductors.
[10" id="US-20010002060-A1-CLM-00010] 10. The monolithic inductance-enhancing integrated circuit of
claim 1 , wherein the transistor comprises a field effect transistor having a gate, a drain, and a source, and wherein the inductor assembly comprises two spiral-type inductors, wherein one of the inductors is disposed over the other of the inductors, and wherein said one inductor is connected to the gate and the other of the inductors is connected to the source.
[11" id="US-20010002060-A1-CLM-00011] 11. The monolithic inductance-enhancing integrated circuit of
claim 1 , wherein the inductor assembly comprises two spiral-type inductors, one of the inductors being larger than the other of the inductors, the larger of the inductors being disposed over the smaller of the inductors.
[12" id="US-20010002060-A1-CLM-00012] 12. The monolithic inductance-enhancing integrated circuit of
claim 1 , wherein the transistor comprises a field effect transistor having a gate, a drain, and a source, and the inductor assembly comprises two spiral-type inductors, one of the inductors being larger than the other of the inductors, the larger of the inductors being disposed over the smaller of the inductors, and wherein the larger of the inductors is connected to the gate and the smaller of the inductors is connected to the source.
[13" id="US-20010002060-A1-CLM-00013] 13. A complementary metal oxide semiconductor (CMOS), inductance-enhancing integrated circuit comprising:
a field effect transistor received by and supported over a silicon-containing substrate and having a gate, a source, and a drain;
a first inductor received within an insulative layer of material supported by the substrate, the first inductor being connected to the gate; and
a second inductor received within an insulative layer of material supported by the substrate, the second inductor being connected to the source, the first and second inductors being arranged in a feedback loop which incorporates the field effect transistor.
[14" id="US-20010002060-A1-CLM-00014] 14. The CMOS inductance-enhancing integrated circuit of
claim 13 , wherein one of the first and second inductors is larger than the other of the first and second inductors.
[15" id="US-20010002060-A1-CLM-00015] 15. The CMOS inductance-enhancing integrated circuit of
claim 13 , wherein one of the first and second inductors is a spiral-type inductor.
[16" id="US-20010002060-A1-CLM-00016] 16. The CMOS inductance-enhancing integrated circuit of
claim 13 , wherein both of the first and second inductors are spiral-type inductors.
[17" id="US-20010002060-A1-CLM-00017] 17. The CMOS inductance-enhancing integrated circuit of
claim 13 , wherein one of the first and second inductors is larger than the other of the first and second inductors, and wherein both of the first and second inductors are spiral-type inductors.
[18" id="US-20010002060-A1-CLM-00018] 18. The CMOS inductance-enhancing integrated circuit of
claim 13 , wherein the first inductor is larger than the second inductor.
[19" id="US-20010002060-A1-CLM-00019] 19. The CMOS inductance-enhancing integrated circuit of
claim 13 , wherein one of the inductors is disposed over the other of the inductors.
[20" id="US-20010002060-A1-CLM-00020] 20. The CMOS inductance-enhancing integrated circuit of
claim 13 , wherein one of the first and second inductors is larger than the other of the first and second inductors, the larger of the inductors being received over the smaller of the inductors.
[21" id="US-20010002060-A1-CLM-00021] 21. The CMOS inductance-enhancing integrated circuit of
claim 13 , wherein:
both of the first and second inductors are spiral-type inductors;
the first inductor is larger than the second inductor; and
the larger of the inductors is received over the smaller of the inductors.
[22" id="US-20010002060-A1-CLM-00022] 22. An inductor assembly comprising:
a semiconductive silicon substrate;
a first spiral-type inductor received over the semiconductive silicon substrate and defining a first inductor level; and
a second spiral-type inductor received over the semiconductive silicon substrate and operably coupled with the first spiral inductor and defining a second inductor level, the inductor assembly having no more than four inductor levels.
[23" id="US-20010002060-A1-CLM-00023] 23. The inductor assembly of
claim 22 , wherein the first and second spiral-type inductors are arranged in a circuit to provide the circuit with a quality factor Q which is no less than about 10.
[24" id="US-20010002060-A1-CLM-00024] 24. The inductor assembly of
claim 22 , wherein the first and second spiral-type inductors are arranged in a circuit to provide the circuit with a quality factor Q which is no less than about 15.
[25" id="US-20010002060-A1-CLM-00025] 25. An inductance-multiplying method comprising:
providing a monolithic substrate having formed thereon CMOS integrated circuitry, the integrated circuitry comprising a field effect transistor and a pair of inductors;
arranging the field effect transistor and the pair of inductors into a circuit configuration in which the field effect transistor is configured to sample one of the pair of inductors and drive the other of the pair of inductors, wherein the inductance of the one of the pair of inductors is effectively increased.
[26" id="US-20010002060-A1-CLM-00026] 26. The inductance-multiplying method of
claim 25 , wherein the providing of the substrate comprises providing a monocrystalline substrate.
[27" id="US-20010002060-A1-CLM-00027] 27. The inductance-multiplying method of
claim 25 , wherein the providing of the substrate comprises providing a monocrystalline silicon-containing substrate.
[28" id="US-20010002060-A1-CLM-00028] 28. The inductance-multiplying method of
claim 25 , wherein said arranging comprises providing a suitable voltage potential to render the field effect transistor operative.
[29" id="US-20010002060-A1-CLM-00029] 29. The inductance-multiplying method of
claim 25 , wherein the providing of the monolithic substrate comprises fabricating said integrated circuitry.
[30" id="US-20010002060-A1-CLM-00030] 30. The inductance-multiplying method of
claim 25 , wherein said arranging comprises arranging the field effect transistor and the pair of inductors into a source-follower configuration.
[31" id="US-20010002060-A1-CLM-00031] 31. The inductance-multiplying method of
claim 25 , wherein said providing comprises fabricating said one of the pair of inductors to be larger than said other of the pair of inductors.
[32" id="US-20010002060-A1-CLM-00032] 32. The inductance-multiplying method of
claim 25 , wherein said providing of the monolithic substrate comprises fabricating said one of the pair of inductors to be larger than said other of the pair of inductors, said larger of the inductors being disposed elevationally over said other of the pair of inductors.
[33" id="US-20010002060-A1-CLM-00033] 33. The inductance-multiplying method of
claim 25 , wherein said providing comprises:
fabricating a MOSFET having a gate, a drain, and a source;
fabricating said one of the pair of conductors to be larger than the other of the pair of inductors and connected to the gate; and
fabricating said other of the pair of inductors to be connected to the source.
[34" id="US-20010002060-A1-CLM-00034] 34. An inductance-multiplying method comprising:
providing a first spiral-type inductor disposed over a semiconductive substrate;
providing a second spiral-type inductor disposed over the semiconductive substrate and operably proximate the first spiral-type inductor;
sampling the output of the first spiral-type inductor with a field effect transistor;
driving the second spiral-type inductor with the field effect transistor; and
providing an effective increase in the inductance of the first spiral-type inductor.
[35" id="US-20010002060-A1-CLM-00035] 35. The inductance-multiplying method of
claim 34 , wherein the sampling of the output of the first spiral-type inductor comprises coupling the gate of the field effect transistor with a node of the first spiral-type inductor.
[36" id="US-20010002060-A1-CLM-00036] 36. The inductance-multiplying method of
claim 34 further comprising forming the field effect transistor to comprise a portion of the semiconductive substrate.
[37" id="US-20010002060-A1-CLM-00037] 37. The inductance-multiplying method of
claim 34 further comprising fabricating the first and second spiral-type inductors and the field effect transistor over the semiconductive substrate.
[38" id="US-20010002060-A1-CLM-00038] 38. The inductance-multiplying method of
claim 34 further comprising fabricating the first and second spiral-type inductors and the field effect transistor over the semiconductive substrate, wherein the semiconductive substrate comprises a monocrystalline, silicon-containing substrate.
类似技术:
公开号 | 公开日 | 专利标题
US6201287B1|2001-03-13|Monolithic inductance-enhancing integrated circuits, complementary metal oxide semiconductor | inductance-enhancing integrated circuits, inductor assemblies, and inductance-multiplying methods
JP4421301B2|2010-02-24|Power amplifier device
US6348391B1|2002-02-19|Monolithic inductor with guard rings
US6531929B2|2003-03-11|Monolithic integrated circuit oscillators, complementary metal oxide semiconductor | voltage-controlled oscillators, integrated circuit oscillators, oscillator-forming methods, and oscillation methods
JPH0897375A|1996-04-12|Microwave integrated circuit device and manufacture thereof
US20050282347A1|2005-12-22|Semiconductor device with inductive component and method of making
EP0720185A1|1996-07-03|Adiabatic MOS oscillators
JP2002531948A|2002-09-24|High frequency power transistor device
JPH0582736A|1993-04-02|Inductor
US6259332B1|2001-07-10|Microwave oscillator for obtaining the low phase noise characteristic
US6714112B2|2004-03-30|Silicon-based inductor with varying metal-to-metal conductor spacing
JPH0583017A|1993-04-02|Microwave integrated circuit device
US6737944B2|2004-05-18|Active inductor
JPH08162331A|1996-06-21|Variable inductor and semiconductor integrated circuit using it
US6650220B2|2003-11-18|Parallel spiral stacked inductor on semiconductor material
US8058950B1|2011-11-15|Highly selective passive filters using low-Q planar capacitors and inductors
CN1327611C|2007-07-18|Wave filter
CN111540712A|2020-08-14|Integrated device manufacturing method and related product
EP0064323A1|1982-11-10|An electronic circuit, such as an electronically tunable oscillator circuit, including an LC resonant circuit
EP1350313A2|2003-10-08|Gain and bandwidth enhancement for rf power amplifier package
JPH1083998A|1998-03-31|Semiconductor device
JP4322985B2|2009-09-02|Integrated circuit motherboard
JPH08172161A|1996-07-02|Inductor element and its manufacture and monolithic microwave integrated circuit using the same
US6768400B2|2004-07-27|Microstrip line having a linear conductor layer with wider and narrower portions
JPH08222695A|1996-08-30|Inductor element and manufacture thereof
同族专利:
公开号 | 公开日
US6593201B2|2003-07-15|
US20030075764A1|2003-04-24|
US6201287B1|2001-03-13|
US6680518B2|2004-01-20|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US20050258507A1|2004-05-21|2005-11-24|Taiwan Semiconductor Manufacturing Co. Ltd.|Q-factor with electrically controllable resistivity of silicon substrate layer|
US20070216510A1|2005-01-03|2007-09-20|Samsung Electronics Co., Ltd.|Inductor and method of forming the same|
US20120140432A1|2010-12-01|2012-06-07|Nxp B.V.|Radio frequency circuit with impedance matching|
CN103489852A|2013-09-30|2014-01-01|江阴长电先进封装有限公司|Structure and method for packaging radio-frequency inductor|
CN105244367A|2014-06-24|2016-01-13|日月光半导体制造股份有限公司|Substrate structure and manufacturing method thereof|US4135168A|1978-02-02|1979-01-16|Microwave Semiconductor Corporation|Reverse channel GaAsFET oscillator|
FR2547136B1|1983-06-01|1985-07-12|Labo Electronique Physique|FREQUENCY STABILIZATION CIRCUIT OF A FREE OSCILLATOR AS A FUNCTION OF TEMPERATURE|
US4661785A|1985-05-22|1987-04-28|S. T. Research Corporation|Balanced feedback oscillators|
US4767980A|1987-10-22|1988-08-30|Reliance Comm/Tec Corporation|Inductance multiplier circuit|
JPH0377360A|1989-08-18|1991-04-02|Mitsubishi Electric Corp|Semiconductor device|
US5047728A|1990-07-18|1991-09-10|Anadigics|Amplifier having a low noise active GaAs MESFET load|
US5067890A|1990-11-08|1991-11-26|Plastipak Packaging, Inc.|In-mold label supply system for plastic blow molding machine|
US5087896A|1991-01-16|1992-02-11|Hughes Aircraft Company|Flip-chip MMIC oscillator assembly with off-chip coplanar waveguide resonant inductor|
US5087897A|1991-03-04|1992-02-11|Motorola, Inc.|Oscillator tunable by varying current in spiral inductor on ferrite substrate|
JPH04284005A|1991-03-13|1992-10-08|Sharp Corp|Oscillation circuit|
US5138285A|1991-07-19|1992-08-11|Anadigics, Inc.|Method for reducing phase noise in oscillators|
US5164682A|1991-07-24|1992-11-17|Taralp Guener|Two-port wideband bipolar transistor amplifiers|
US5303394A|1991-08-09|1994-04-12|Rockwell International|Feedback stabilized Q multiplier filter circuit|
EP0596522A1|1992-11-06|1994-05-11|AVANCE TECHNOLOGY, Inc.|High frequency crystal resonator|
WO1994017558A1|1993-01-29|1994-08-04|The Regents Of The University Of California|Monolithic passive component|
US5559360A|1994-12-19|1996-09-24|Lucent Technologies Inc.|Inductor for high frequency circuits|
US5726613A|1995-02-01|1998-03-10|Nippon Telegraph And Telephone Corporation|Active inductor|
US5610433A|1995-03-13|1997-03-11|National Semiconductor Corporation|Multi-turn, multi-level IC inductor with crossovers|
US5760456A|1995-12-21|1998-06-02|Grzegorek; Andrew Z.|Integrated circuit compatible planar inductors with increased Q|
JP2904086B2|1995-12-27|1999-06-14|日本電気株式会社|Semiconductor device and manufacturing method thereof|
US5736913A|1996-02-14|1998-04-07|Anadigics, Inc.|Method and apparatus for providing grounding to microwave circuit by low impedance means|
DE69817414T2|1997-02-14|2004-06-17|Nippon Telegraph And Telephone Corp.|Voltage controlled oscillator|
US6236101B1|1997-11-05|2001-05-22|Texas Instruments Incorporated|Metallization outside protective overcoat for improved capacitors and inductors|
JP3922773B2|1997-11-27|2007-05-30|三菱電機株式会社|Power amplifier|
TW363278B|1998-01-16|1999-07-01|Winbond Electronics Corp|Preparation method for semiconductor to increase the inductive resonance frequency and Q value|
US6211738B1|1998-01-30|2001-04-03|Conexant Systems, Inc.|Stability and enhanced gain of amplifiers using inductive coupling|
US6215360B1|1998-02-23|2001-04-10|Motorola, Inc.|Semiconductor chip for RF transceiver and power output circuit therefor|
US5952893A|1998-03-06|1999-09-14|International Business Machines Corporation|Integrated circuit inductors for use with electronic oscillators|
US6320474B1|1998-12-28|2001-11-20|Interchip Corporation|MOS-type capacitor and integrated circuit VCO using same|US6249191B1|1998-11-23|2001-06-19|Micron Technology, Inc.|Monolithic integrated circuit oscillators, complementary metal oxide semiconductorvoltage-controlled oscillators, integrated circuit oscillators, oscillator-forming methods, and oscillation methods|
US6274937B1|1999-02-01|2001-08-14|Micron Technology, Inc.|Silicon multi-chip module packaging with integrated passive components and method of making|
US6815220B2|1999-11-23|2004-11-09|Intel Corporation|Magnetic layer processing|
US6870456B2|1999-11-23|2005-03-22|Intel Corporation|Integrated transformer|
US6891461B2|1999-11-23|2005-05-10|Intel Corporation|Integrated transformer|
US6452247B1|1999-11-23|2002-09-17|Intel Corporation|Inductor for integrated circuit|
US6856228B2|1999-11-23|2005-02-15|Intel Corporation|Integrated inductor|
US6586309B1|2000-04-24|2003-07-01|Chartered Semiconductor Manufacturing Ltd.|High performance RF inductors and transformers using bonding technique|
US6535101B1|2000-08-01|2003-03-18|Micron Technology, Inc.|Low loss high Q inductor|
US6890829B2|2000-10-24|2005-05-10|Intel Corporation|Fabrication of on-package and on-chip structure using build-up layer process|
US6667217B1|2001-03-01|2003-12-23|Taiwan Semiconductor Manufacturing Company|Method of fabricating a damascene copper inductor structure using a sub-0.18 um CMOS process|
US6864558B2|2001-05-17|2005-03-08|Broadcom Corporation|Layout technique for C3MOS inductive broadbanding|
US20030036351A1|2001-08-16|2003-02-20|Leonard Forbes|Portable memory module, and method of portable data transfer|
US6635948B2|2001-12-05|2003-10-21|Micron Technology, Inc.|Semiconductor device with electrically coupled spiral inductors|
KR100466542B1|2002-11-13|2005-01-15|한국전자통신연구원|Stacked Variable Inductor|
US6852605B2|2003-05-01|2005-02-08|Chartered Semiconductor Manufacturing Ltd.|Method of forming an inductor with continuous metal deposition|
US7852185B2|2003-05-05|2010-12-14|Intel Corporation|On-die micro-transformer structures with magnetic materials|
SE0302107D0|2003-07-18|2003-07-18|Infineon Technologies Ag|Electromagnetic device and method of operating the same|
US7148535B2|2003-08-25|2006-12-12|Lsi Logic Corporation|Zero capacitance bondpad utilizing active negative capacitance|
US7067882B2|2003-08-28|2006-06-27|Lsi Logic Corporation|High quality factor spiral inductor that utilizes active negative capacitance|
KR100548388B1|2004-07-20|2006-02-02|삼성전자주식회사|Inductor element having high quality factor and a fabrication mentod thereof|
US7355282B2|2004-09-09|2008-04-08|Megica Corporation|Post passivation interconnection process and structures|
US8008775B2|2004-09-09|2011-08-30|Megica Corporation|Post passivation interconnection structures|
US8134548B2|2005-06-30|2012-03-13|Micron Technology, Inc.|DC-DC converter switching transistor current measurement technique|
WO2008018832A1|2006-08-08|2008-02-14|Agency For Science, Technology And Research|Cmos power oscillator with frequency modulation|
US8237531B2|2007-12-31|2012-08-07|Globalfoundries Singapore Pte. Ltd.|Tunable high quality factor inductor|
US7868393B2|2008-02-26|2011-01-11|Freescale Semiconductor, Inc.|Space efficient integrated circuit with passive devices|
US8031019B2|2009-02-02|2011-10-04|Qualcomm Incorporated|Integrated voltage-controlled oscillator circuits|
JP5407404B2|2009-02-19|2014-02-05|ソニー株式会社|WIRING BOARD AND METHOD FOR MANUFACTURING THE SAME, TUNER MODULE, AND ELECTRONIC DEVICE|
US8736392B2|2009-03-18|2014-05-27|Qualcomm Incorporated|Transformer-based CMOS oscillators|
JP5496541B2|2009-04-20|2014-05-21|ルネサスエレクトロニクス株式会社|Semiconductor device|
GB2493562B|2011-08-12|2018-10-17|E2V Tech Uk Limited|Drive circuit and method for a gated semiconductor switching device|
KR101565569B1|2013-11-12|2015-11-03|에프씨아이|Feedback Amplifier By Using Differential Inductor|
TWI731409B|2019-09-09|2021-06-21|國立清華大學|Micro tactility simulating sensing device and method to produce the device|
法律状态:
2003-12-30| STCF| Information on status: patent grant|Free format text: PATENTED CASE |
2007-06-22| FPAY| Fee payment|Year of fee payment: 4 |
2010-01-04| AS| Assignment|Owner name: ROUND ROCK RESEARCH, LLC,NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416 Effective date: 20091223 Owner name: ROUND ROCK RESEARCH, LLC, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:023786/0416 Effective date: 20091223 |
2011-06-22| FPAY| Fee payment|Year of fee payment: 8 |
2015-07-08| FPAY| Fee payment|Year of fee payment: 12 |
优先权:
申请号 | 申请日 | 专利标题
US09/179,544|US6201287B1|1998-10-26|1998-10-26|Monolithic inductance-enhancing integrated circuits, complementary metal oxide semiconductorinductance-enhancing integrated circuits, inductor assemblies, and inductance-multiplying methods|
US09/769,554|US6680518B2|1998-10-26|2001-01-24|Monolithic inductance-enhancing integrated circuits, complementary metal oxide semiconductorinductance-enhancing integrated circuits, inductor assemblies, and inductance-multiplying methods|US09/769,554| US6680518B2|1998-10-26|2001-01-24|Monolithic inductance-enhancing integrated circuits, complementary metal oxide semiconductorinductance-enhancing integrated circuits, inductor assemblies, and inductance-multiplying methods|
[返回顶部]