![]() Alignment weight for floating pin field design
专利摘要:
An alignment weight is provided. The alignment weight includes a body of material having first and second opposing surfaces. A number of depressions are formed in the first surface. The depressions receive pins of a floating pin field when placed on a floating pin field during connection of the floating pin field to a printed circuit board. 公开号:US20010001889A1 申请号:US09/754,714 申请日:2001-01-04 公开日:2001-05-31 发明作者:Cheryl Waldron-Floyde;Brad Irwin 申请人:Intel Corp; IPC主号:H05K13-0465
专利说明:
[0001] The present invention relates generally to the field of electronic circuits and, in particular, to an alignment weight for an electronic circuit with a floating pin field design. [0001] BACKGROUND [0002] Integrated circuits are a common part of modern electronic equipment. Integrated circuits typically include a large number of transistors and other circuit elements that are interconnected on a common semiconductor chip or die. Typically, integrated circuits are packaged independently and interconnected on a printed circuit board for installation in an electronic system, such as a computer. [0002] [0003] A printed circuit board can be connected to an electronic system in a number of ways. For example, a printed circuit board can include a “floating pin field” on one side of the printed circuit board. The floating pin field includes a number of pins that are held in a fixed spatial relation by a pin field carrier through which the pins pass. The pins are electrically connected to circuit elements on the printed circuit board. A floating pin field design may be used, for example, with a printed circuit board containing an upgraded processor for a computer. [0003] [0004] When a floating pin field design is used, the printed circuit board may be connected to a system through a socket such as a socket located on a mother board of a computer system. The socket typically includes a number of receptacles that are placed around a perimeter of the socket. The receptacles receive the pins of the floating pin field. [0004] [0005] One problem with printed circuit boards that use a floating pin field design is in the process for soldering the pins to the bottom of the printed circuit board. Generally, the pins are held in place with a pin field carrier. The printed circuit board is patterned with a solder paste at the locations where the pins are to connect to the printed circuit board. The pins and the pin field carrier are placed on the board and the solder undergoes a reflow process. Unfortunately, sometimes not all of the solder joints created with this reflow process provide acceptable connection between the pin and the circuit elements on the printed circuit board. For example, so-called “solder bridges”— solder material that extends over a significant distance between a pin and the printed circuit board—can be formed, for example, when a pin moves away from the printed circuit board during the reflow process. These solder bridges provide a poor, brittle mechanical connection for the pin and can lead to open solder joints during use. Furthermore, when an open solder joint is detected after production, the part is typically disposed of since rework of the open solder joints is overly burdensome. This can result in a significant waste of resources in fabricating electronic modules using floating pin fields. [0005] [0006] For the reasons stated above, and for other reasons stated below which will become apparent to those skilled in the art upon reading and understanding the present specification, there is a need in the art for a more reliable technique for producing acceptable solder joints in an electronic module using a floating pin field design. [0006] SUMMARY [0007] The above mentioned problems with electronic modules using a floating pin field design and other problems are addressed by the present invention and will be understood by reading and studying the following specification. An alignment weight is described which is used to hold the pins in place during a reflow process. [0007] [0008] In one embodiment, an alignment weight is provided. The alignment weight includes a body of material having first and second opposing surfaces. A number of depressions are formed in the first surface. The depressions receive pins of a floating pin field when placed on a floating pin field during connection of the floating pin field to a printed circuit board. [0008] BRIEF DESCRIPTION OF THE DRAWINGS [0009] FIG. 1 is a perspective view of an illustrative embodiment of an alignment weight according to the teachings of the present invention. [0009] [0010] FIG. 2 is a bottom view of the alignment weight of FIG. 1. [0010] [0011] FIG. 3 is a cross-sectional view of a portion of an embodiment of an electronic module during production with an alignment weight in place according to the teachings of the present invention. [0011] [0012] FIG. 4 is a perspective view of an embodiment of an electronic system module with a floating pin field constructed using the alignment weight according to the teachings of the present invention. [0012] DETAILED DESCRIPTION [0013] The following detailed description refers to the accompanying drawings which form a part of the specification. The drawings show, and the detailed description describes, by way of illustration specific illustrative embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be used and logical, mechanical and electrical changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense. [0013] [0014] FIG. 1 is a perspective view of an illustrative embodiment of an alignment weight indicated generally at [0014] 100 and constructed according to the teachings of the present invention. Alignment weight 100 is used in a process for connecting pins of a floating pin field to a printed circuit board. Specifically, alignment weight 100 is designed to provide a downward force that helps to secure pins in place during a solder reflow process and to maintain the pins in a substantially straight-up alignment. Advantageously, alignment weight 100 also maintains the ends of the pins of the floating pin field substantially in the same plane. [0015] Alignment weight [0015] 100 is formed from a material that can withstand the heat of a solder reflow process without significant warping. Further, the material has sufficient weight to provide downward force on the pins to assure the creation of an acceptable solder joint. For example, in one embodiment, alignment weight 100 is formed from Ultem® PolyEtherImide material, e.g., Ultem® 2300, commercially available from Ensiger Corporation. Ultem is an amber transparent high performance polymer which combines high strength and rigidity at elevated temperatures with long term heat resistance. Other appropriate materials can be used to produce the body of alignment weight 100. [0016] Alignment weight [0016] 100 includes first and second opposing surfaces 104 and 106, respectively. Surface 106 includes a number of depressions 108. Depressions 108 are disposed in surface 106 in positions that correspond to the locations of pins in a floating pin field to be used with alignment weight 100. In one embodiment, depressions 108 are disposed in rows around the perimeter of surface 106 as shown in FIGS. 1 and 2. However, it is understood that depressions 108 can be disposed at other locations on surface 106 so as to accommodate the layout of other floating pin field designs. [0017] The size of depressions [0017] 108 may be selected to assure proper vertical alignment of the pins of the floating pin field. For example, when the pins have a diameter of approximately 0.01±0.001 inches, depressions 108 may be formed with an outer diameter at surface 106 of 0.065 inches with an interior angle of 82 degrees and an inner diameter of 0.55 inches. [0018] Alignment weight [0018] 100 further includes holes 110 that extend through a thickness of alignment weight 100 in center region 107. Holes 110 allow heat to flow through alignment weight 100 toward a printed circuit board located below alignment weight 100 during a reflow process. This allows elements other than pins to be soldered beneath the alignment weight when the pins are soldered in place. [0019] In this embodiment, holes [0019] 110 are laid out in an array in center region 107. However, it is understood that holes 110 can be located at other positions in alignment weight 100. Further, holes 110 are shown as cylindrical passages through alignment weight 100. Holes 110 can, however, have different sizes and shapes and are not limited to the embodiment shown. [0020] In some embodiments, holes [0020] 110 can be omitted when only pins are soldered during a reflow process and no other elements are placed on printed circuit board 304 beneath alignment weight 100. [0021] FIG. 3 is a cross-sectional view of a portion of an embodiment of an electronic module [0021] 300 during production with alignment weight 100 in place according to the teachings of the present invention. Alignment weight 100 is used to assure proper contact between pins 302 and printed circuit board 304 at solder contacts 306. Advantagously, alignment weight 100 maintains ends 314 of pins 302 in substantially the same plane. This reduces the likelihood that solder bridges will form at the base of any of pins 302. [0022] Pins [0022] 302 are held in a fixed alignment by field carrier 308. Field carrier 308 is formed from flame retardant 4 (FR4) material with holes for receiving pins 302. Field carrier 308 holds the pins in a position that is substantially normal to surface 307 of field carrier 308. Pins 302 and field carrier 308 form floating pin field 310. [0023] Floating pin field [0023] 310 is placed in contact with screen printed solder paste on surface 312 of printed circuit board 304 at connection points for pins 302. With floating pin field 310 in place, alignment weight 100 is placed over ends 314 of pins 302 such that depressions 108 align with ends 314 of pins 302. Electronic module 300 along with alignment weight 100 undergo a solder reflow process to form contacts 306. Alignment weight 100 is then removed. [0024] As shown in FIG. 4, additional circuit components [0024] 400 are coupled to printed circuit board 304 using, for example, surface mount technology. For example, an upgraded microprocessor can be coupled to the printed circuit board for insertion into a computer system on printed circuit board 304. [0025] Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. For example, the alignment weight can be used with floating pin fields for electronic modules other than a processor upgrade. Further, the location, depth, diameter, and interior angle of the depressions [0025] 108 can be varied as necessary for a particular pin field. Further, alignment weight 100 can be formed without holes 110. Further, circuit components 400 can be coupled to both sides of printed circuit board 304. Other materials that are resistant to warping at elevated temperatures and that provide sufficient weight to aid in improving the solder bonds can be used for the alignment weight 100 in place of the Ultem material described above. Other bonding materials can be used in place of solder to connect pins 302 with printed circuit board 304.
权利要求:
Claims (20) [1" id="US-20010001889-A1-CLM-00001] 1. A method for coupling a floating pin field with a printed circuit board, the method comprising: disposing a bonding material on selected portions of a surface of the printed circuit board; placing a plurality of pins in a field carrier; placing the field carrier and pins on the printed circuit board with the pins selectively aligned with the bonding material; placing an alignment weight on the pins of the pin field carrier such that the pins align with depressions in a surface of the alignment weight; and heating the bonding material to couple the pins with the circuit board. [2" id="US-20010001889-A1-CLM-00002] 2. The method of claim 1 , wherein the bonding material comprises solder. [3" id="US-20010001889-A1-CLM-00003] 3. The method of claim 1 , and further including aligning the alignment weight such that holes passing through a center region of the weight allow heat to pass through the weight to a surface of the printed circuit board. [4" id="US-20010001889-A1-CLM-00004] 4. The method of claim 1 , wherein placing the alignment weight comprises placing an alignment weight that includes rows of depressions formed around the perimeter of the surface of the alignment weight. [5" id="US-20010001889-A1-CLM-00005] 5. The method of claim 1 , wherein disposing the bonding material comprises screen printing solder paste in selected locations on a surface of the printed circuit board. [6" id="US-20010001889-A1-CLM-00006] 6. The method of claim 1 , and further comprising coupling circuit components to the printed circuit board. [7" id="US-20010001889-A1-CLM-00007] 7. An alignment weight, comprising: a body of material having first and second opposing surfaces; and a number of depressions formed in the first surface so as to receive pins of a floating pin field when placed on a floating pin field during connection of the floating pin field to a printed circuit board. [8" id="US-20010001889-A1-CLM-00008] 8. The alignment weight of claim 7 , wherein the number of depressions are formed in rows along the perimeter of the body. [9" id="US-20010001889-A1-CLM-00009] 9. The alignment weight of claim 7 , wherein the body comprises a material that exhibits substantially no warping during a solder reflow process. [10" id="US-20010001889-A1-CLM-00010] 10. The alignment weight of claim 7 , wherein the body comprises a PolyEtherImide material. [11" id="US-20010001889-A1-CLM-00011] 11. The alignment weight of claim 7 , wherein the body further includes a number of holes that pass through a thickness of the body. [12" id="US-20010001889-A1-CLM-00012] 12. The alignment weight of claim 11 , wherein the holes are disposed in a center region of the first surface of the body. [13" id="US-20010001889-A1-CLM-00013] 13. The alignment weight of claim 7 , wherein the depressions are disposed in locations to accommodate the pins of a floating pin field. [14" id="US-20010001889-A1-CLM-00014] 14. The alignment weight of claim 7 , wherein the depressions have a diameter at a surface of the body that is greater than a diameter of the depression inside the body. [15" id="US-20010001889-A1-CLM-00015] 15. A method for coupling a floating pin field with a printed circuit board, the method comprising: disposing a solder material on selected portions of a surface of the printed circuit board; placing a plurality of pins in a field carrier; placing the field carrier and pins on the printed circuit board with the pins selectively aligned with the solder material; placing an alignment weight on the pins of the pin field carrier such that the pins align with depressions in a surface, along a perimeter of the alignment weight; heating the solder material to couple the pins with the circuit board; and coupling a microprocessor circuit to the printed circuit board. [16" id="US-20010001889-A1-CLM-00016] 16. The method of claim 15 , and further including aligning the alignment weight such that holes formed in a center region of the weight allow heat to pass through the weight to a surface of the printed circuit board. [17" id="US-20010001889-A1-CLM-00017] 17. The method of claim 15 , wherein placing the alignment weight comprises placing an alignment weight that includes depressions formed in a number of rows around the perimeter of the surface of the alignment weight. [18" id="US-20010001889-A1-CLM-00018] 18. The method of claim 15 , wherein disposing a solder material comprises screen printing solder paste in selected locations on a surface of the printed circuit board. [19" id="US-20010001889-A1-CLM-00019] 19. The method of claim 15 , and further comprising coupling additional circuit components to the printed circuit board. [20" id="US-20010001889-A1-CLM-00020] 20. The method of claim 15 , and further comprising removing the alignment weight after heating the solder material.
类似技术:
公开号 | 公开日 | 专利标题 US20040041002A1|2004-03-04|Alignment weight for floating pin field design US5712768A|1998-01-27|Space-saving assemblies for connecting integrated circuits to circuit boards US5617990A|1997-04-08|Shield and method for selective wave soldering US6196871B1|2001-03-06|Method for adjusting differential thermal expansion between an electrical socket and a circuit board US6773269B1|2004-08-10|Circuit board assembly which utilizes a pin assembly and techniques for making the same JP2004523908A|2004-08-05|Adapters for plastic leaded chip carriers | and other surface mount technology | chip carriers US20130078825A1|2013-03-28|Method for connecting printed circuit boards US5978229A|1999-11-02|Circuit board US6410861B1|2002-06-25|Low profile interconnect structure US5362985A|1994-11-08|Packaged integrated circuit add-on card and method of manufacture EP1230829B1|2003-09-03|Apparatus and method for connecting printed circuit boards through soldered lap joints US7818879B2|2010-10-26|Method and apparatus for compliantly connecting stack of high-density electronic modules in harsh environments US6146155A|2000-11-14|Recyclable locater device for board mounted connectors RU2363070C2|2009-07-27|Independent electronic component and method of its mounting JPH0677644A|1994-03-18|Formation of terminal part for electronic component having three-dimensional structure JP2005251857A|2005-09-15|Printed circuit board and method of manufacturing the same JP2003508930A|2003-03-04|Printed circuit board with multiple connections JPH06334294A|1994-12-02|Printed wiring structure JPH08340164A|1996-12-24|Surface mounting structure of bga type package JP2004335682A|2004-11-25|Bonding structure of printed circuit board JP2000174161A|2000-06-23|Flexible substrate and method for mounting semiconductor device using the same WO2008117213A2|2008-10-02|An assembly of at least two printed circuit boards and a method of assembling at least two printed circuit boards JP3941593B2|2007-07-04|Bracket mounting structure for printed wiring boards JPH0642372Y2|1994-11-02|Hybrid integrated circuit device JP2006012897A|2006-01-12|Packaging structure and electronic component
同族专利:
公开号 | 公开日 US6648204B2|2003-11-18| US20040041002A1|2004-03-04| US6206272B1|2001-03-27|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US3444619A|1966-05-16|1969-05-20|Robert B Lomerson|Method of assembling leads in an apertured support| US3737998A|1972-01-21|1973-06-12|Carter Precision Electric Co|Method and apparatus for making electrical connector assemblies| US4010939A|1974-12-26|1977-03-08|Midland-Ross Corporation|Melting pot apparatus for use in a continuous casting process| US4506438A|1981-11-02|1985-03-26|Elfab Corporation|Apparatus for manufacturing integrated circuit connectors| US4705205A|1983-06-30|1987-11-10|Raychem Corporation|Chip carrier mounting device| FR2591810B1|1985-12-13|1988-02-19|Labo Electronique Physique|CENTERING DEVICE FOR REALIZING THE BLOCKING OF A MULTI-PIN HOUSING| JP2573225B2|1987-02-10|1997-01-22|株式会社東芝|Electronic component manufacturing method| US5029748A|1987-07-10|1991-07-09|Amp Incorporated|Solder preforms in a cast array| US4970781A|1989-08-10|1990-11-20|Olin Corporation|Process plate for plastic pin grid array manufacturing| US5656862A|1990-03-14|1997-08-12|International Business Machines Corporation|Solder interconnection structure| US4968263A|1990-03-28|1990-11-06|Molex Incorporated|Multi-pin electrical connector with floating terminal pins| JPH05183019A|1991-12-27|1993-07-23|Hitachi Ltd|Semiconductor device and manufacture thereof| JP3201047B2|1993-01-28|2001-08-20|安藤電気株式会社|Press-fit connector press-fitting device for printed circuit boards| US5663106A|1994-05-19|1997-09-02|Tessera, Inc.|Method of encapsulating die and chip carrier| US5743009A|1995-04-07|1998-04-28|Hitachi, Ltd.|Method of making multi-pin connector| US5868887A|1996-11-08|1999-02-09|W. L. Gore & Associates, Inc.|Method for minimizing warp and die stress in the production of an electronic assembly| AU6337998A|1997-02-28|1998-09-18|Cornell Research Foundation Inc.|Self-assembled low-insertion force connector assembly| US5927589A|1997-11-25|1999-07-27|Lucent Technologies Inc.|Method and fixture for use in bonding a chip to a substrate| US6131793A|1998-03-27|2000-10-17|Mcms, Inc.|Reflow soldering apparatus| US6623283B1|2000-03-08|2003-09-23|Autosplice, Inc.|Connector with base having channels to facilitate surface mount solder attachment|AU7802701A|2000-07-26|2002-02-05|Univ New York State Res Found|Method and system for bonding a semiconductor chip onto a carrier using micro-pins| US7047638B2|2002-07-24|2006-05-23|Formfactor, Inc|Method of making microelectronic spring contact array| TW200414858A|2003-01-15|2004-08-01|Senju Metal Industry Co|Apparatus and method for aligning and attaching solder columns to a substrate| US7242097B2|2003-06-30|2007-07-10|Intel Corporation|Electromigration barrier layers for solder joints| US20060022327A1|2004-07-30|2006-02-02|Texas Instruments Incorporated|Enhanced PGA interconnection| JP2007180456A|2005-12-28|2007-07-12|Toyota Industries Corp|Soldering method and method of manufacturing semiconductor module| JP2007180457A|2005-12-28|2007-07-12|Toyota Industries Corp|Soldering method, method of manufacturing semiconductor module, and soldering apparatus| JP2009233695A|2008-03-26|2009-10-15|Fujitsu Ltd|Hand press| TWM368908U|2009-02-23|2009-11-11|Hon Hai Prec Ind Co Ltd|Electrical connector|
法律状态:
2003-10-30| STCF| Information on status: patent grant|Free format text: PATENTED CASE | 2004-07-20| CC| Certificate of correction| 2007-05-14| FPAY| Fee payment|Year of fee payment: 4 | 2011-05-11| FPAY| Fee payment|Year of fee payment: 8 | 2015-05-06| FPAY| Fee payment|Year of fee payment: 12 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 US09/288,486|US6206272B1|1999-04-08|1999-04-08|Alignment weight for floating field pin design| US09/754,714|US6648204B2|1999-04-08|2001-01-04|Alignment weight for floating pin field design|US09/754,714| US6648204B2|1999-04-08|2001-01-04|Alignment weight for floating pin field design| US10/656,559| US20040041002A1|1999-04-08|2003-09-05|Alignment weight for floating pin field design| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|