专利摘要:
Tobaccos are cured in a manner so as to provide tobaccos having extremely low tobacco specific nitrosamine (TSNA) contents. Harvested Virginia tobacco is subjected to flue-curing so as to provide flue-cured tobacco. During the curing processing steps, contact of the tobacco with nitric oxide gases, such as those produced as combustion products of propane burning heating units, is avoided. Tobacco in curing barns is not subjected to direct-fire curing techniques, but rather, heat for tobacco curing can be provided by heat exchange or electrical heating methods.
公开号:US20010000386A1
申请号:US09/735,177
申请日:2000-12-12
公开日:2001-04-26
发明作者:David Peele
申请人:Peele David Mccray;
IPC主号:A24B15-245
专利说明:
[1] 1. The present invention relates to tobacco, and in particular, to the post-harvest treatment of tobacco.
[2] 2. Nitrosamines are known to be present in air, foods, beverages, cosmetics, and even pharmaceuticals. Preussman et al., Chemical Carcinogens, 2nd Ed., Vol. 2, Searle (Ed.) ACS Monograph 182, 829-868 (1984). Tobacco and tobacco smoke also are known to contain nitrosamines. Green et al., Rec. Adv. Tob. Sci., 22, 131 (1996). Tobacco is known to contain a class of nitrosamines known as tobacco specific nitrosamines (TSNA). Hecht, Chem. Res. Toxicol., 11(6), 559-603 (1998); Hecht, Mut. Res., 424(1,2), 127-142 (1999). TSNA have been reported to be present in smokeless tobacco, Brunnemann et al., Canc. Lett., 37, 7-16 (1987), Tricker, Canc. Lett., 42, 113-118 (1988), Andersen et al., Canc. Res., 49, 5895-5900 (1989); cigarette smoke, Spiegelhalder et al., Euro. J. Canc. Prev., 5(1), 33-38 (1996); Hoffmann et al., J Toxicol. Env. Hlth., 50, 307-364 (1997); Borgerding et al., Food Chem. Toxicol., 36, 169-182 (1997); nicotine-containing gum, Osterdahl, Food Chem. Toxic., 28(9). 619-622 (1990); and nicotine-containing transdermal patch, Adlkofer, In: Clarke et al. (Eds.), Effects of Nicotine on Biological Systems II, 17-25 (1995).
[3] 3. Green and freshly harvested tobaccos have reported to be virtually free of TSNA. Parsons, Tob. Sci., 30, 81-82 (1986); Spiegelhalder et al., Euro. J Canc. Prev., 5(1), 33-38 (1996); Brunnemann et al., J Toxicol.-Clin. Toxicol., 19(6&7), 661-668 (1982-3); Andersen et al., J Agric. Food Chem., 37(1), 44-50 (1989); Djordjevic et al., J Agric. Food Chem., 37, 752-756 (1989). However, it has been observed that TSNA form during the post-harvest processing to which tobacco is subjected. Tricker, Canc. Lett., 42, 113-118 (1988); Chamberlain et al., J Agric. Food Chem., 36, 48-50 (1988). TSNA are recognized as being formed when tobacco alkaloids, such as nicotine, are nitrosated. Hecht, Chem. Res. Toxicol., 11(6), 559-603 (1998). There has been considerable effort expended toward studying the mechanism of formation of TSNA.
[4] 4. Significant efforts have been expended towards studying the mechanism of TSNA formation during tobacco curing, particularly for Burley tobacco. As a result, it has been postulated that TSNA form during the air-curing of Burley tobacco as a result of microbial mediated conversion of nitrate to nitrite, and the subsequent reaction of nitrate-derived chemical species with alkaloids present in the tobacco. Hamilton et al., Tob. Sci., 26, 133-137 (1982); Burton et al., J. Agric. Food Chem., 40, 1050-1055 (1992); Bush et al., Coresta Bulletin Information, Abstract 9814 (1995); Wiernik et al., Rec. Adv. Tob. Sci., 21, 39-80 (1995); Cui et al., TCRC (1996). It also has been suggested that the mechanism by which TSNA form during the flue-curing of Virginia tobaccos is similar to that mechanism postulated for air-cured Burley tobacco. See, Djordjevic et al., J. Agric. Food Chem., 37, 752-756 (1989) and Peele et al., Coresta Bulletin Information, Abstract 9822 (1995). See also, PCT WO 98/05226 and PCT WO 98/58555, and U.S. Pat. No. 5,803,801 to O'Donnell et al.
[5] 5. It has been known practice to cure certain types of tobaccos, particularly specialty tobaccos, using a so-called fire-curing process. Legg et al., TCRC (1986). It also has been common practice to flue-cure certain tobaccos, such as Virginia tobaccos, in barns using a so-called flue-curing process. Cooper et al., VPI Bull., 37(6), 3-28 (1939); Brown et al., Agric. Eng., 29(3), 109-111 (1948); Johnson et al., Tob. Sci., 4, 49-55 (1960); Peele et al., Rec. Adv. Tob. Sci., 21, 81-123 (1995). Tobacco leaf is harvested, placed in barns, and subjected to the application of heat. In recent years, it has been common practice, particularly in North America, to cure tobacco using a so-called direct-fire curing technique. Typical direct-fire heating units are powered by propane, and during use, those heating units produce exhaust gases that come into contact with the tobacco being cured. As a result, it is common for tobacco being cured to be exposed to propane combustion products, including nitric oxides that are present in those exhaust gases; and it is not uncommon for tobacco within a curing barn to be exposed to about 0.5 to about 2 kilogram of nitric oxide during a typical curing cycle of about 6 days in duration.
[6] 6. Tobaccos of a particular type that are cured using flue-curing techniques have been reported to provide higher levels of TSNA relative to similar tobaccos of like type that are air-cured. Chamberlain et al., Beitr. Tabak., 15(2), 87-92 (1992). Furthermore, potential relationships between so-called direct-fire heating techniques and the formation of nitrosamines have been investigated in industries outside of the tobacco industry. LARC Monograph, 17, 35-47 (1978); Stehlik et al., Ecotoxicol. Envir. Saf., 6, 495-500 (1982); Scanlan et al., In: Loeppky et al. (Eds.) Nitrosamines and Related N-Nitroso Compounds, 34-41 (1994). However, direct-fire heating techniques have not always been associated with the formation of nitrosamines. Larsson et al., Swedish J Agric. Sci., 20(2), 49-56 (1990). In addition, those references have not reported any correlation between contact of tobacco with nitric oxides during curing and levels of TSNA in direct-fire flue-cured tobacco. However, it has been observed that TSNA form during the flue-curing processes commonly employed in the curing of Virginia tobaccos. Peele et al., Rec. Adv. Tob. Sci., 21, 81-123 (1995).
[7] 7. Typically, in North America, tobaccos such as Virginia tobacco are flue-cured using curing barns equipped with direct-fire heating units that burn propane. However, tobacco flue-curing using curing barns equipped with heat exchange units that burn diesel fuel have been employed to a limited degree within North America. Heat exchangers currently are employed to a significant extent outside of North America, particularly where coal and wood are the prominent fuels. Teague et al., Coresta Bulletin Information, Abstract 9824 (1995). For example, curing barns equipped with heat exchange units have been employed in countries including Japan, Turkey, Brazil and Zimbabwe. Tobacco curing barns equipped with non-direct-fire heating units, such as heat exchange units, provide for a so-called indirect heating of the tobacco being cured; and as such, when indirect heating techniques are used to flue-cure tobacco, exhaust gases generated by the heat source do not come into contact with that tobacco to any significant degree.
[8] 8. Attempts have been made to reduce the TSNA levels within tobacco. For example, it has been suggested that control of the temperature and moisture during air-curing may have an effect upon lowering TSNA levels within air-cured tobaccos, such as Burley tobacco. See, IARC Monograph, 84, 451-455 (1986). It has been proposed to process tobacco to remove TSNA; such as by the manner that is described in U.S. Pat. No. 5,810,020 to Northway et al. It also has been proposed to cure tobacco in conjunction with the application of microwave radiation and high temperature treatment in order to provide a tobacco possessing extremely low TSNA levels. See, PCT WO 98/05226 and PCT WO 98/58555, and U.S. Pat. No. 5,803,801 to O'Donnell et al.
[9] 9. It would be desirable to provide a manner for treating tobacco in order that TSNA levels within that tobacco are provided at very low levels. It would be particularly desirable to provide an efficient and effective manner or method for inhibiting TSNA formation within tobacco during curing, and particularly during flue-curing. SUMMARY OF THE INVENTION
[10] 10. The present invention relates to the curing of tobacco and cured tobaccos. Of particular interest is a tobacco curing method that provides a suitably cured tobacco that possesses extremely low levels of tobacco specific nitrosamines (TSNA). Preferred tobaccos that are processed in accordance with the present invention are Virginia tobaccos, and the preferred method for curing those tobaccos is the flue-curing method.
[11] 11. In one aspect, the present invention involves flue-curing tobacco under conditions such that the tobacco that is being subjected to cure is subjected to minimal contact with gaseous nitric oxides. Thus, in a preferred embodiment, steps are taken to avoid contact of tobacco being flue-cured with exhaust gases produced by the heating units that provide the source of heat for the flue-curing process. The present invention allows for a method to prevent formation of TSNA during curing, and allows for tobaccos so cured to possess significantly reduced levels of TSNA relative to similar tobaccos similarly cured using direct-fire curing techniques.
[12] 12. In another aspect, the present invention relates to a method for curing tobacco using a tobacco curing barn. The method is carried out for the purpose of providing cured tobacco possessing an extremely low TSNA content. The method involves the steps of: providing green tobacco; placing the green tobacco in the curing barn; subjecting the tobacco to application of heat from a heating source that is not a direct-fire heating source under conditions suitable to cure that tobacco; and avoiding contact of the tobacco during curing with nitric oxide gases, such as those nitric oxide gases that are present in the exhaust gases of direct-fire heating units (e.g., those by products of combustion of propane). Thus, the method involves activities than are purposefully taken to avoid contact with, or exposure to, tobacco being subjected to flue-curing processing steps with nitric oxide gases.
[13] 13. In yet another aspect, the present invention relates to a method for modifying a tobacco curing barn for the purpose of providing conditions suitable for curing tobacco such that resulting cured tobacco obtained from such barn possesses a TSNA content lower than that of similar tobacco cured using that barn prior to such modification. The method involves the steps of: providing a tobacco curing barn equipped with a direct fire heating unit; removing the direct fire heating unit from the barn; equipping the barn with a heating unit that does not provide contact of tobacco within the barn with nitric oxide gases (e.g., as are provided by exhaust gases containing nitric oxide by products of combustion, such as are provided by the combustion of propane) during cure; and equipping the barn such that the barn is operational for tobacco cure. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[14] 14. The tobacco that is cured in accordance with the present invention can vary. Typically, the tobacco that is cured in accordance with the present invention is Virginia tobacco, and that tobacco is subjected to flue-curing conditions. The varieties of Virginia tobacco that can be grown and cured in accordance with the present invention will be readily apparent to those skilled in the art of tobacco growing, harvesting and processing, and tobacco product manufacture. The manner in which Virginia tobacco is grown, harvested and processed is well known. See, Garner, USDA Bulletin No. 143, 7-54 (1909); Darkis et al., Ind. Eng. Chem., 28, 1214-1223 (1936); Bacon et al., USDA Tech. Bulletin No. 1032 (1951); Darkis et al., Ind. Eng. Chem., 44, 284-291 (1952); and Bacon et al., Ind. Eng. Chem., 44, 292-309 (1952). See, also, Flue-Cured Tobacco Information 1993, N. C. Coop. Ext. Serv.; and Peele et al., Rec. Adv. Tob. Sci., 21, 81-123 (1995). Although not strictly necessary, tobaccos that are grown can be selected on the basis of cultivar type and breeding practices, in order to assist in providing tobaccos that, when cured, possess extremely low TSNA levels. Additionally, although not strictly necessary, tobaccos can be grown under agronomic conditions aimed towards providing tobaccos that, when cured, possess extremely low TSNA levels. See, Tso et al., Beitr. Tabak., 8(1), 34-38 (1975); Andersen et al., Canc. Res., 45, 5287-5293 (1985); Chamberlain et al., Tob. Sci., 30, 81-82 (1986); Bhide et al., Beitr. Tabak., 14(1), 29-32 (1987) and Chamberlain et al., Beitr. Tabak., 15(2), 87-92 (1992).
[15] 15. The tobacco that is cured has been harvested. Tobacco that is cured in accordance with the present invention typically is grown under well known and accepted agronomic conditions, and is harvested using known techniques. Such tobacco typically is referred to as green tobacco. Most preferably, the harvested tobacco is adequately ripe or mature. Peele et al., Rec. Adv. Tob. Sci., 21, 81-123 (1995). Ripe or mature tobacco typically requires shorter cure times than does unripe or immature tobacco. Harvested green tobacco typically possesses virtually no, or extremely low levels of, TSNA; and as such, the preferred green tobacco can be characterized being essentially absent of TSNA.
[16] 16. The green tobacco is placed in the curing barn. Typically, the tobacco can be placed within the barn in racks; or in the case of bulk barns, the tobacco can be placed in boxes. The green tobacco can be placed in the barn in a variety of ways, and typically is carried out as a manner of personal preference. As such, there is wide discretion in the particular determination of the amount of tobacco placed within the barn, the packing density of that tobacco within a box, the spacing of the tobacco within the barn, and the location of various tobacco samples within the barn.
[17] 17. The tobacco is subjected to curing conditions. For the flue-curing of Virginia tobaccos, the temperature to which the tobacco is exposed typically is in the range of about 35°C. to about 75°C.; and the time over which the tobacco is exposed to those elevated temperatures usually is at least about 120 hours, but usually is less than about 200 hours. Curing temperatures reported herein are air temperatures that are representative of the average air temperature within the curing barn during curing process steps. Average air temperatures can be taken at one or more points or locations within the curing barn that give an accurate indication of the temperature that the tobacco experiences during curing steps. Typically, Virginia tobacco first is subjected to a yellowing treatment step whereby the tobacco is heated at about 35° C. to about 40° C. for about 24 to about 72 hours, preferably about 36 to about 60 hours; then is subjected to a leaf drying treatment step whereby the tobacco is heated at about 40° C. to about 57° C. for about 48 hours; and then is subjected to a midrib drying treatment step whereby the tobacco is heated at about 57° C. to about 75° C. for about 48 hours. Thus, it is preferred that tobacco processed in accordance with the present invention be cured for a total period of about 5 days to about 8 days, typically about 6 days to about 7 days. Temperatures to which the tobacco is exposed during cure typically do not exceed about 90° C., frequently do not exceed about 85° C., and preferably do not exceed about 80° C. Exposing Virginia tobacco to temperatures above about 70° C. to about 75° C. during curing is not desirable, as exposure of the tobacco to exceedingly high temperatures, even for short periods of time, can have the effect of decreasing the quality of the cured tobacco. Typically, some ambient air preferably is introduced into the barn during the yellowing stage, significantly more ambient air preferably is introduced into the barn during the leaf drying stage, and heated air preferably is recirculated within the barn during midrib drying stage. The relative humidity within the barn during curing varies, and is observed to change during curing. Typically, a relative humidity of about 85 percent is maintained within the curing barn during the yellowing stage, but then is observed to decrease steadily during leaf drying and midrib drying stages.
[18] 18. After the tobacco is exposed to curing conditions, heating is ceased. Typically, the fresh air dampers of the barn are opened in order to allow contact of ambient air with that tobacco. As such, moisture within the ambient air is allowed to moisten the tobacco; and the very dry freshly cured tobacco is rendered not quite so brittle. The cooled tobacco then is taken down, and the tobacco is removed from the curing barn. Cured tobacco is collected, and normally is prepared for sale. After sale, the tobacco typically is de-stemmed in a conventional manner. The tobacco can be stored and aged as is conventional for flue-cured tobacco. Then, the tobacco can be further processed for use in the manufacture of tobacco products. The cured, aged and processed tobacco can be used in a conventional manner for the manufacture of tobacco products, including smoking products such as cigarettes.
[19] 19. The particular curing barn that is used in accordance with the present invention can vary. Exemplary curing barns are of the type described in U.S. Pat. Nos. 3,937,227 to Azumano; 4,114,288 to Fowler; 4,192,323 to Home; 4,206,554 to Fowler; 4,247,992 to MacGregor; 4,424,024 to Wilson et al. and 5,685,710 to Martinez Sagrera et al.; and Canadian Patent No. 1,026,186. In North America, and particularly in the U.S.A., tobacco curing barns are manufactured and supplied by various companies, including Long Manufacturing Inc., Taylor Manufacturing Company, Powell Manufacturing Company, Tharrington Industries, and DeCloet Ltd. Other curing barns are available throughout the world, and exemplary barns can be provided by Vencon-Varsos of Greece. Tobacco curing barns have been manufactured and operated in traditional manners for many years, and the design, manufacture and use of such barns will be readily apparent to those skilled in the art of tobacco curing.
[20] 20. In one aspect, the process of the present invention involves modifying a curing barn, particularly a curing barn equipped with a direct-fire heating unit. The particular manner in which the curing barn can be modified can vary. Typically, the direct-fire heating unit is removed from the curing barn. The manner of removal can vary. It is possible to physically remove the heating unit from the curing barn. For purposes of the present invention, it also is possible to remove the heating unit by disabling the operation of that unit or by simply not operating that unit during the curing process conditions. However, as a practical matter, and in order to facilitate installation of a different heating unit, it is preferred to physically remove the direct-fire heating unit from the curing barn. In addition, the fan that is associated with the direct-fire burner, and that is used to circulate heated air throughout the barn, can be removed. Most preferably, the fan is physically removed along with the direct-fire burner.
[21] 21. The curing barn is equipped with a heating unit that is not a direct-fire heating unit. In such a manner, when the heating unit is employed, the tobacco being cured does not come into contact with significant amounts of exhaust gases containing combustion products including nitric oxides. The heating unit most preferably does not provide any significant contact of nitric oxide exhaust gases with tobacco that is being cured. Exemplary heating units are electrical heating units and heat exchange units. Exemplary heating units are obtained from Vencon-Varsos of Greece. Other heating units are employed throughout the world, including the U.S.A., and include heat exchange units that are powered by propane fuels, diesel fuel, coal or wood. The selection of an adequate heating unit depends upon the energy requirements to heat and maintain the tobacco to be cured at the desired temperatures, at the desired rates, for the desired periods of time, and the availability of fuel at a reasonable cost. The selection of a particular heating unit, and the manner of its operation, will be apparent to those skilled in the art of tobacco barn design and manufacture, and in the art of tobacco curing. It also is desirable to employ electrical heating units and heat exchange units, because energy is not required to heat the added moisture within the curing barn that results from combustion of fuel used in direct-fire heating units.
[22] 22. The curing barn is equipped such that the barn is operational for tobacco cure. As such, tobacco within such a barn can be efficiently and effectively cured; and efficient use of energy consumption is achieved. Most preferably, the barn is equipped with a fan of appropriate capability to provide adequate circulation of heated air throughout the barn during curing process steps. If desired, the barn can be equipped with a temperature and relative humidity control unit, or a conventional type of temperature control unit can be employed in conjunction with a manually controlled fresh air damper. In addition, it is possible for the barn to be sealed so as to not have significant air leakage, insulated with acceptable insulation, subjected to metal work so as to provide a well-sealed barn that operates properly, or the like. In addition, the burning zones of a heating unit that burns propane or a similar fuel can be equipped with an oxygen ring, and the combustion zone can subjected to exposure to pure oxygen during operation in order that exposure of nitrogen within environmental air to the burning zone is avoided. Furthermore, temperatures within the heating unit itself can be controlled in order that formation of nitric oxide is minimized.
[23] 23. If desired, new tobacco curing barns can be designed and manufactured in order to carry out the present invention. Such barns can be designed to be equipped with heating units that do not have a propensity to cause contact of the tobacco being cured with significant levels of nitric oxide gases.
[24] 24. During cure, steps are taken to avoid contact of gaseous nitric oxides with the tobacco that is being cured. Typically, steps are taken to avoid exposure of the tobacco to gaseous nitric oxides that are the combustion products of the heat sources used in the curing process. For purposes of the present invention, nitric oxides include those chemical species that are products of combustion of direct-fire heating units; and are those normally gaseous chemical species that can interact with alkaloids present in the tobacco being subjected to cure in order to produce TSNA. Exemplary nitric oxides include NO, N2O, NO2, N2O5 and N2O3. For most applications, the level of nitric oxides present in the atmosphere within the barn is, on average, not significantly different from that level within the ambient, environmental air in the region surrounding the barn during the cure period; and that level can approximate, or be lower than, that level in the ambient, environmental air. In addition, it is desirable that the level of nitrogen oxides present in the atmosphere with the barn does not, at any time during the cure period, exceed that normally present in non-polluted, ambient, environmental air. It is desirable to ensure that during the curing period, tobacco being cured has the potential to be contacted by less than 0.1 kilogram of nitric oxide, preferably less than 0.01 kilogram of nitric oxide, and most preferably an amount of nitric oxide that is essentially no different than (or even less than) that amount in ambient, environmental air.
[25] 25. Optionally, further steps can be taken to ensure that the nitric oxide level within the curing barn during cure is maintained as low as possible. For example, the curing barn can be equipped with suitable catalytic conversion units, scrubbers, selectively absorbent materials, selective filtration materials, and the like, in order to provide further removal of nitric oxides from the atmosphere within the curing barn during curing stages. It is desirable to employ relatively pure ambient air, as normally non-polluted environmental air typically possesses extremely low (if not undetectable) levels of nitric oxides. It is desirable to prevent exhaust gases from vehicles, heating units, etc. from entering the barn. In this regard, exhaust from heating units can be directed in such a manner so as to not be introduced into the barn, a positive pressure can be maintained in the barn, and reactions of nitrogen in the air within the combustion zone of heating units (which results in the formation of nitric oxides) can be avoided.
[26] 26. Tobaccos cured in accordance with the present invention possess good chemical and physical properties. The tobaccos preferably possess a moisture content that can be considered uniform, and are not overly dry (and hence are suitable for reordering). The physical integrity of the cured tobacco is very good, and the tobaccos are not overly brittle. The tobacco can be further handled and aged in a conventional manner. The tobaccos exhibit a desirable aroma, and possess sugar contents that are in a desirable range (e.g., sugar contents of about 12 to about 20 percent, on a dry weight basis). The smoking quality of such tobaccos is at least comparable to that of similar tobaccos that are cured using traditionally employed curing techniques.
[27] 27. Tobacco cured in accordance with the process of the present invention possesses extremely low TSNA levels. Total TSNA contents are reported as the sum of the levels of N′-nitrosonornicotine (NNN), 4-(N-methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), N′-nitrosoanabasine (NAB) and N′-nitrosoanatabine (NAT); and typically can be determined using the types of analytical procedures described in Risner et al., Tob. Sci., 38, 1-6 (1994). Virginia tobaccos cured in accordance with the present invention usually possess total TSNA levels less than 2 parts per million (ppm), typically less than 1.5 ppm, and frequently less than 1 ppm, based on the dry weight of the cured tobacco. Total TSNA levels even can be below 0.5 ppm, and preferably can be undetectable. Individual NNN levels preferably are less than 0.5 ppm, and can be at levels that are essentially not detectable; and NNK levels preferably are less than 0.5 ppm, and can be at levels that are essentially not detectable. Tobacco cured in accordance with the present invention typically possess total TSNA contents of at least 5 times lower, frequently at least 7 times lower, and preferably at least 10 times lower, than comparable tobacco, comparably cured using the direct-fire curing methods that cause exposure of the tobacco to nitric oxide gases during curing process steps.
[28] 28. The present invention provides several advantages to those personnel desirous of providing processed tobacco for use within the tobacco industry, and particularly for use in cigarette manufacture. As a result, tobaccos that are used traditionally for manufacturing tobacco products can be used. That is, it is not necessary to breed or otherwise genetically alter tobaccos in order to provide tobaccos that, when cured, can have extremely low levels of TSNA. Tobaccos can be grown in traditional manners, and as a result, it is not necessary to alter the manner in which tobacco is grown. Thus, it is possible to grow tobaccos under conventional agronomic conditions, using conventional agronomic techniques (e.g., fertilization types and levels, and using traditional agricultural chemicals and pesticides), and using traditional harvesting techniques.
[29] 29. Tobaccos possessing a wide range of alkaloid and nitrate levels can be cured. That is, it is not necessary to strictly control the composition of the tobacco that is cured. For example, tobacco that is cured or has been cured in accordance with the present invention does not need to be specially bred or processed so as to possess reduced or low alkaloid and/or nitrate levels. However, if desired, it is possible to process tobacco so as to reduce its nitrogen content, including its nitrate content. Thus, it is possible to process tobaccos that are cured in accordance with the present invention in any of a wide variety of known manners and methods. See, for example, U.S. Pat. Nos. 3,616,801 to Hind; 3,847,164 to Mattina et al.; 4,141,117 to Kite et al.; 4,141,118 to Gellatly et al.; 4,301,817 to Keritsis; 4,302,308 to Keritsis; 4,302,317 to Bokelman; 4,364,401 to Keritsis; 4,566,469 to Semp et al.; 4,651,759 to Uydess; 4,685,468 to Malik et al.; 4,941,484 to Clapp et al., and 5,230,354 to Smith et al.
[30] 30. Tobaccos can be cured without the necessity of special processing steps. Tobaccos can be cured without special pre-drying or rehydrating steps. Tobaccos do not need to be pre-wet prior to curing (and it is desirable that pre-wetting of tobacco prior to curing be avoided). That is, there is no need to pre-treat the tobacco with water, chemicals (e.g., anti-bacterial agents), or the like. No special precautions have to be utilized when re-ordering the tobacco at the completion of the curing stages. Thus, no special over-wetting or special reordering is necessary. Tobaccos do not need to be subjected to special drying processing steps, either prior to or upon completion of curing. Tobacco can be cured without special physical processing. Tobacco leaf can be cured in leaf form, and the leaf does not need to be subjected to any pre-cure cutting or other pre-cure processing. For example, lamina does not need to be removed from stem prior to curing, and the tobacco does not need to be pressed or rolled prior to processing.
[31] 31. Tobaccos can be cured in essentially conventional manners after harvest. There is no need to cure the tobacco at specially selected and controlled periods of time after harvest. As such, it is not necessary to take special care to control time, tobacco moisture level, tobacco physical character, or cell integrity within the tobacco. Using the process of the present invention, the tobacco can be observed during cure; that is, yellowing and drying can be observed and monitored. Normal periods of curing stages, temperature increase ramp rates, and curing completion times can be employed. It is not necessary that there be a special window of time to initiate curing in order to provide cured tobaccos possessing extremely low TSNA levels. Thus, many of the aspects of the art of tobacco curing are maintained and are not significantly effected as a result of the present invention. Thus, the process of the present invention can be readily employed in an essentially traditional manner by those who have had experience in growing and curing tobaccos.
[32] 32. Tobaccos can be cured in traditional manners using conventional equipment, techniques and curing conditions. Cured tobaccos are subjected to curing times, curing temperatures and other curing conditions that are essentially identical to those that have been traditionally used in North America. That is, a virtually one-step curing process can be employed; that is, the tobacco can be cured for a period of about 120 to about 200 hours in an essentially uninterrupted fashion. Tobacco can be cured without unusual interruptions in the curing process (e.g., tobacco can be subjected to heat treatment associated with curing without interruption so as to subject that tobacco to treatment using electromagnetic radiation). In addition, tobacco can be cured without the necessity of interruption for the purpose of making special measurements of the tobacco during cure. Furthermore, there is no necessity to carry out special processing steps during or after the yellowing or browning phases of the curing process. The conditions employed to carry out the present invention provide tobacco of an overall chemical composition, character and smoking quality that is very similar to that of conventionally flue-cured tobaccos.
[33] 33. Tobacco processed in accordance with the present invention can be subjected to irradiation, if desired. However, it is not necessary to subject tobaccos to curing processes that employ expensive irradiation processes or curing conditions that do not provide desirable curing times, temperatures and curing conditions. In addition, it is not necessary to subject the tobacco to treatment with electromagnetic radiation, such as microwave radiation. From a resource standpoint, it is preferred that the tobacco that is processed in accordance with the present invention not be cured in conjunction with microwave radiation processing techniques. In particular, the types of tobacco curing techniques described in PCT WO 98/05226 and PCT WO 98/58555, and U.S. Pat. No. 5,803,801 to O'Donnell et al., in order to provide low TSNA content tobaccos are not necessary, and preferably are avoided, in carrying out the method of the present invention.
[34] 34. Tobacco can be cured using traditional curing techniques and without the necessity of employing special recirculating air modifications. The tobacco does not need to be subjected to special convective heating. The tobacco does not need to be subjected to special heating steps or special types of heating at particular times in the curing process, such as the type of high temperature convective heating steps described in PCT WO 98/58555. It is particularly preferred to avoid subjecting the tobacco being cured, even for extremely short periods of time, to average air temperatures in excess of about 90° C. That is, it is preferable that the tobacco being cured in accordance with the present invention does not experience exposure to temperatures in excess of about 90° C.
[35] 35. Tobaccos can be cured so as to possess extremely low TSNA levels without the necessity of taking significant effort to control conditions associated with the bacterial or microbial mediated formation of TSNA. Thus, it is not necessary to take steps to ensure that the tobacco that is cured possesses a specific nitrate content, and it is not necessary to ensure that the tobacco is not subjected to conditions that may cause nitrate present in the tobacco to be reduced to nitrite. However, in order to ensure that tobaccos cured in accordance with the present invention possess desirably low TSNA levels when those tobaccos are used for the manufacture of tobacco products, steps can be taken (both before and after the curing process steps of the present invention) to ensure that TSNA formation does not occur as a result of other mechanisms (e.g., through natural processes). For example, prior to the curing process steps of the present invention, it is desirable to handle and treat the tobacco in such a manner that potential microbial mediated formation of TSNA is avoided or prevented. Thus, the tobacco can be maintained at suitable temperatures and moisture levels. As another example, cured tobacco can be handled, aged, stored and processed such that TSNA formation is minimized, avoided or prevented. It is known that processing and storage conditions can have an effect upon the formation of TSNA in cured tobacco. See, for example, Andersen et al., Canc. Res., 45, 5287-5293 (1985); Tricker, Canc. Lett., 42, 113-118 (1988); Burton et al., J Agric. Food Chem., 37, 1372-1377 (1989); Andersen et al., Canc. Res., 49, 5895-5900 (1989) and Djordjevic et al., TCRC (1992).
[36] 36. The following examples are provided to further illustrate the present invention, but should not be construed as limiting the scope thereof. Unless otherwise noted, all parts and percentages are by weight; and all levels of TSNA reported in parts per million (ppm) are on a dry weight basis, based on the weight of a moisture free tobacco sample. EXAMPLE 1
[37] 37. Two 8-rack tobacco curing barns equipped with electrically powered heating units were provided. The heating units each were about 20 kilowatts resistance heaters. About 1,000 pounds of freshly harvested green upper stalk Virginia tobacco was placed in each of those barns. The tobacco in each barn was subjected to curing conditions. During the yellowing phase, the air temperature in each barn was maintained at 35° C. for 48 hours. During the last 24 hours of the yellowing phase, 4 pounds of nitric oxide (obtained from Praxair Distribution Inc., Product No. 2.5-K, 99.5% Nitric Oxide) was introduced into one of the barns at a relatively constant rate. Except for introduction of nitric oxide gases into one of the barns, the tobacco in each barn was allowed to cure under similar curing schedules with respect to temperature and time until the completion of curing. The specifics of each curing schedule are as follows: yellowing stage, 48 total hours at 35°C.; leaf drying stage, 1°C. temperature increase per hour to 49° C., maintenance of temperature at 49° C. for an additional 10 hours, 1° C. temperature increase per hour to 57° C., and maintenance of temperature at 57° C. for an additional 14 hours; midrib drying stage, 1° C. temperature increase per hour to 74°C., followed by maintenance at 74° C. for 31 hours until midribs are dry. Then, the heat was turned off, the doors of the barn were opened, and the tobacco was allowed to reorder as a result of contact with ambient air. The tobacco then was removed from the barns.
[38] 38. After cure was complete, the tobacco from each barn was evaluated for TSNA content using analytical techniques of the type described in Risner et al., Tob. Sci., 38, 1-6 (1994). The cured tobacco that was subjected to contact with the nitric oxide gases exhibited a total TSNA content of about 174 ppm; while the tobacco taken from the other barn exhibited a total TSNA content of about 1 ppm. For this example, total TSNA content is reported as the sum of the levels of NNN, NNK and NAT. Thus, avoidance of contact Virginia tobacco with nitric oxide gases during flue-curing resulted in a cured tobacco that possessed an extremely low level of TSNA. EXAMPLE 2
[39] 39. Two 8-rack tobacco curing barns equipped with direct fire liquid propane gas heating units were provided. The heating units provided 45,000 BTUs per hour. About 1,000 pounds of freshly harvested green upper stalk Virginia tobacco was placed in each of those barns. The tobacco in each barn was subjected to curing conditions. During the yellowing phase, the air temperature in each barn was maintained at 35°C. for 48 hours. During the last 24 hours of the yellowing phase, 4 pounds of nitric oxide (obtained from Praxair Distribution Inc., Product No. 2.5-K, 99.5% Nitric Oxide) was introduced into one of the barns at a relatively constant rate. Except for introduction of nitric oxide gases into one of the barns, the tobacco in each barn was allowed to cure under similar curing schedules with respect to temperature and time until the completion of curing. The specifics of each curing schedule are as follows: yellowing stage, 48 total hours at 35°C.; leaf drying stage, 1° C. temperature increase per hour to 49° C., maintenance of temperature at 49° C. for an additional 10 hours, 1° C. temperature increase per hour to 57° C., and maintenance of temperature at 57° C. for an additional 14 hours; midrib drying stage, 1° C. temperature increase per hour to 74°C., followed by maintenance at 74°C. for 31 hours until midribs are dry. Then, the heat was turned off, the doors of the barn were opened, and the tobacco was allowed to reorder as a result of contact with ambient air. The tobacco then was removed from the barns.
[40] 40. After cure was complete, the tobacco from each barn was evaluated for TSNA content using analytical techniques of the type described in Example 1. The cured tobacco that was subjected to contact with the nitric oxide gas exhibited a TSNA content (as evidenced by NNN, NNK and NAT) of 107 ppm; while the tobacco taken from the other barn exhibited a TSNA content of 5 ppm. The flue-cured tobacco provided using direct-fire heating techniques possessed a higher level of TSNA than that tobacco cured using the electrically powered heating units and techniques described in Example 1. In addition, Virginia tobacco exposed to nitric oxide gases during flue-curing results in a cured tobacco that possesses an increased level of TSNA. EXAMPLE 3
[41] 41. A commercial size tobacco curing barn equipped with a heat exchanger that burns diesel fuel was filled with freshly harvested green upper stalk Virginia tobacco. The tobacco in that barn was subjected to tobacco cure under typical yellowing, leaf drying and midrib drying conditions of the type described in Example 1. That is, steps were taken to avoid exposure of the tobacco being cured to nitric oxide gases, and the tobacco was cured in a manner and for the purpose of providing a cured tobacco having an extremely low TSNA content. The flue-cured tobacco removed from that barn was evaluated for TSNA content using analytical techniques of the type described in Example 1. On average, the cured tobacco exhibited a total TSNA content of about 1 ppm.
[42] 42. A commercial size tobacco curing barn equipped with a heat exchanger that burns propane gas was filled with freshly harvested green Virginia tobacco. The tobacco in that barn was subjected to tobacco cure under typical yellowing, leaf drying and midrib drying conditions of the type described in Example 1. That is, steps were taken to avoid exposure of the tobacco being cured to nitric oxide gases, and the tobacco was cured in a manner and for the purpose of providing a cured tobacco having an extremely low TSNA content. The flue-cured tobacco removed from that barn was evaluated for TSNA content using analytical techniques of the type described in Example 1. On average, the cured tobacco exhibited a total TSNA content of that was essentially undetectable.
[43] 43. A commercial size tobacco curing barn equipped with a direct-fire propane gas burner was filled with freshly harvested green upper stalk Virginia tobacco. The tobacco in that barn was subjected to tobacco cure under typical yellowing, leaf drying and midrib drying conditions of the type described in Example 1. That is, no steps were taken to avoid exposure of the tobacco being cured to nitric oxide gases, and the tobacco was cured in a manner not designed to provide a cured tobacco having an extremely low TSNA content. The flue-cured tobacco removed from that barn was evaluated for TSNA content using analytical techniques of the type described in Example 1. On average, the cured tobacco exhibited a TSNA content of about 11 ppm. Thus, Virginia tobacco cured using direct-fire heating techniques (i.e., such that exhaust gases comprising nitric oxide are contacted that tobacco during cure) exhibited a significantly higher TSNA content, relative to those tobacco samples cured using controlled heat exchange techniques.
权利要求:
Claims (13)
[1" id="US-20010000386-A1-CLM-00001] 1. A method for modifying a tobacco curing barn for the purpose of providing conditions suitable for curing tobacco such that resulting cured tobacco obtained from such barn possesses a tobacco specific nitrosamine content lower than that prior to such modification, the method comprising the steps of:
providing a tobacco curing barn equipped with a direct fire heating unit, removing the direct fire heating unit from the barn, equipping the barn with a heating unit that does not provide contact of tobacco within the barn with exhaust gases containing nitric oxide combustion products during cure, and equipping the barn such that the barn is operational for tobacco cure.
[2" id="US-20010000386-A1-CLM-00002] 2. The method of
claim 1 whereby the direct-fire heating unit burns propane.
[3" id="US-20010000386-A1-CLM-00003] 3. The method of
claim 1 whereby the direct-fire heating unit is physically removed from the barn.
[4" id="US-20010000386-A1-CLM-00004] 4. The method of
claim 1 whereby the direct-fire heating unit is disabled from use during curing.
[5" id="US-20010000386-A1-CLM-00005] 5. The method of
claim 1 whereby nitric oxide levels within the barn during curing approximate that of ambient, environmental air surrounding the barn.
[6" id="US-20010000386-A1-CLM-00006] 6. The method of
claim 1 whereby the barn is equipped with a heat exchange unit.
[7" id="US-20010000386-A1-CLM-00007] 7. The method of
claim 1 whereby the barn is equipped with an electrical heating unit.
[8" id="US-20010000386-A1-CLM-00008] 8. A method for curing tobacco using a tobacco curing barn for the purpose of providing cured tobacco possessing a tobacco specific nitrosamine content of less than 2 parts per million, based on the dry weight of the cured tobacco, the method comprising the steps of: providing green tobacco, placing the green tobacco in the curing barn, subjecting the tobacco to application of heat from a non-direct-fire heating source so as to cure the tobacco, and avoiding exposure of the tobacco during curing to nitric oxide gases.
[9" id="US-20010000386-A1-CLM-00009] 9. The method of
claim 8 whereby the cured tobacco possesses at tobacco specific nitrosamine content of less than 1 part per million, based on the dry weight of the cured tobacco.
[10" id="US-20010000386-A1-CLM-00010] 10. The method of
claim 8 whereby the cured tobacco possesses a tobacco specific nitrosamine content that is essentially undetectable.
[11" id="US-20010000386-A1-CLM-00011] 11. The method of
claim 8 whereby the non-direct-fire heating source is a heat exchange unit.
[12" id="US-20010000386-A1-CLM-00012] 12. The method of
claim 8 whereby the non-direct-fire heating source is an electrically powered heating unit.
[13" id="US-20010000386-A1-CLM-00013] 13. The method of
claim 8 further comprising equipping the barn with means to remove nitric oxide from air within that barn.
类似技术:
公开号 | 公开日 | 专利标题
US6805134B2|2004-10-19|Tobacco processing
CA2748321C|2013-09-03|Tobacco curing method
US6202649B1|2001-03-20|Method of treating tobacco to reduce nitrosamine content, and products produced thereby
US7293564B2|2007-11-13|Method for chemically modifying tobacco during curing
EP3453265B1|2021-10-20|Cured tobacco
KR100458420B1|2004-11-26|Method of treating tobacco to reduce nitrosamine content, and products produced thereby
US4516590A|1985-05-14|Air-cured bright tobacco filler, blends and smoking articles
WO1998005226A9|1998-07-02|Method of treating tobacco to reduce nitrosamine content, and products produced thereby
CA2344063C|2006-07-04|Tobacco curing barn
USRE38123E1|2003-05-27|Tobacco products having reduced nitrosamine content
US9521863B2|2016-12-20|Methods of reducing tobacco-specific nitrosamines | and/or improving leaf quality in tobacco
Nestor et al.2003|Role of oxides of nitrogen in tobacco-specific nitrosamine formation in flue-cured tobacco
US20210360960A1|2021-11-25|Hybrid air and fire curing combination process to reduce harmful and potentially harmful constituents in cured tobacco
MXPA99001292A|1999-06-01|Method of treating tobacco to reduce nitrosamine content, and products produced thereby
同族专利:
公开号 | 公开日
US20030047190A1|2003-03-13|
US6805134B2|2004-10-19|
US6895974B2|2005-05-24|
US7404406B2|2008-07-29|
US20050022832A1|2005-02-03|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US514370A||1894-02-06||Tobacco-drying apparatus |
US1017713A|1911-04-26|1912-02-20|James M Vaughan|Tobacco-treating machinery.|
US1543245A|1917-03-14|1925-06-23|Buensod Alfred Charles|Variable-temperature method of curing and treating tobacco|
US1545811A|1917-03-14|1925-07-14|Buensod Alfred Charles|Constant-temperature method of curing and treating tobacco|
US1568316A|1921-12-30|1926-01-05|Tobacco Treating Co Inc|Process for artificially curing green tobacco|
US2124012A|1936-11-02|1938-07-19|Thermal Engineering Corp|Drying process|
US2343345A|1940-12-11|1944-03-07|Wurton Machine Company|Method of curing green tobacco|
US2475568A|1945-01-23|1949-07-05|Jr James B Moore|Method of curing bright-leaf tobacco|
US2758603A|1950-10-24|1956-08-14|Heljo Runar Rafael|Process and apparatus for curing tobacco|
US2989057A|1957-11-20|1961-06-20|Rush D Touton|Method of curing green tobacco|
US3039475A|1958-04-11|1962-06-19|Sasmoco Sa|Tobacco process, and product|
US3024792A|1961-06-28|1962-03-13|Rush D Touton|Method of curing green tobacco|
US3202157A|1961-07-17|1965-08-24|Wurton Machine Company|Apparatus for treating or conditioning tobacco|
US3134583A|1961-09-22|1964-05-26|Bouligny Inc R H|Apparatus for bulk curing tobacco|
US3251620A|1963-09-30|1966-05-17|Bouligny Inc R H|Apparatus for bulk curing tobacco|
US3394709A|1964-04-13|1968-07-30|Inca Inks|Treatment of tobacco|
US3494723A|1967-12-05|1970-02-10|Gray Ind Inc|Method and apparatus for controlling microorganisms and enzymes|
US3494724A|1968-03-27|1970-02-10|Gray Ind Inc|Method and apparatus for controlling microorganisms and enzymes|
US3503137A|1968-12-18|1970-03-31|Bouligny Inc R H|Automatic tobacco curing apparatus|
US3699976A|1969-01-27|1972-10-24|Japan Monopoly Corp|Method for killing tobacco leaf bug inhabitants and their eggs|
US3901248A|1970-07-22|1975-08-26|Leo Ab|Chewable smoking substitute composition|
US3877468A|1970-07-22|1975-04-15|Leo Ab|Chewable tobacco substitute composition|
US3664034A|1970-09-23|1972-05-23|Bouligny Inc R H|Tobacco bulk curing system with improved curing air flow rate control|
US3669429A|1971-03-26|1972-06-13|Stration & Terstegge Co Inc|Tobacco curing apparatus|
US3845774A|1971-07-28|1974-11-05|T Tso|Process for curing tobacco|
US3785384A|1971-11-08|1974-01-15|Carreras Rothmans Ltd|Method of treating tobacco|
US3773055A|1972-04-17|1973-11-20|Brown & Williamson Tobacco|Microwave treatment of cigarettes on a making machine|
US3870053A|1972-06-06|1975-03-11|Brown & Williamson Tobacco|Enhancement of flavor and aroma by microwave treatment|
US4021928A|1973-12-18|1977-05-10|Research Corporation|Cross-flow modular tobacco curing system|
US3937227A|1974-02-28|1976-02-10|Sansyu Sangyo Co., Ltd.|Tobacco leaf curing system|
US4011041A|1975-06-16|1977-03-08|Tifcon Company|Tobacco curing and drying apparatus|
US4114288A|1976-10-14|1978-09-19|Fowler Joe W|Bulk cure tobacco barn with improvements in construction for optimizing heating efficiency|
US4192323A|1977-09-21|1980-03-11|Gas-Fired Products, Inc.|Apparatus and method for automatically controlling curing conditions in a tobacco curing barn|
US4566469A|1978-04-25|1986-01-28|Philip Morris Incorporated|Process for dissimilatory denitrification of tobacco materials|
US4212634A|1978-06-05|1980-07-15|Harrington Manufacturing Company|Auxiliary heating system for a bulk tobacco barn|
US4556073A|1978-06-15|1985-12-03|Brown & Williamson Tobacco Corporation|Process for reduction of nitrate content of tobacco by microbial treatment|
US4557280A|1978-06-15|1985-12-10|Brown & Williamson Tobacco Corporation|Process for reduction of nitrate and nicotine content of tobacco by microbial treatment|
US4709710A|1978-09-05|1987-12-01|Fabriques De Tabac Reunies S.A.|Process for improving tobacco|
US4206554A|1978-09-18|1980-06-10|Fowler Joe W|Heat cycling apparatus and method for bulk curing tobacco|
US4572219A|1979-01-19|1986-02-25|Fabriques De Tabac Reunies S.A.|Process for improving tobacco|
US4247992A|1979-04-30|1981-02-03|Consolidated Energy Products Company|Grain-tobacco curing barn|
US4622982A|1979-08-20|1986-11-18|Fabriques De Tabac Reunies S.A.|Continuous method of denitrating tobacco extracts|
US4267645A|1979-10-22|1981-05-19|Hill Edwin W|Burner-fired combined with wood-fired apparatus for drying crops|
US4470422A|1980-01-22|1984-09-11|Modsa Limited|Curing of tobacco leaf|
US4364401A|1980-03-05|1982-12-21|Philip Morris Incorporated|Method for selective denitration of tobacco|
US4301817A|1980-03-05|1981-11-24|Philip Morris Incorporated|Method for selective denitration of tobacco|
US4317837A|1980-11-25|1982-03-02|Life Savers, Inc.|Tobacco-flavored chewing gum|
US4499911A|1980-12-09|1985-02-19|Johnson William H|Energy efficient curing and drying system|
US4355648A|1980-12-09|1982-10-26|Philip Morris, Incorporated|Method of curing tobacco|
US4685478A|1981-10-01|1987-08-11|Philip Morris Incorporated|Thermophilic denitrification of tobacco|
US4430806A|1981-11-10|1984-02-14|Hopkins Harry C|Microwave agricultural drying and curing apparatus|
US4424024A|1981-11-16|1984-01-03|Powell Manufacturing Company, Inc.|Bulk curing with solid fuel|
US4559956A|1982-03-29|1985-12-24|Modsa Limited|Method of and apparatus for curing tobacco|
US4874000A|1982-12-30|1989-10-17|Philip Morris Incorporated|Method and apparatus for drying and cooling extruded tobacco-containing material|
US4651759A|1983-04-12|1987-03-24|Philip Morris Incorporated|Start-up process for the thermophilic denitrification of tobacco|
US4620556A|1983-04-12|1986-11-04|Conwood Corporation|Loose leaf chewing tobacco|
US4756317A|1983-06-15|1988-07-12|Hallmark Fabricators, Inc.|Tobacco separation pretreatment system|
US4482315A|1983-09-12|1984-11-13|Day Harding W|Bulk tobacco barn furnace|
US4590954A|1984-09-11|1986-05-27|Gooden Eldon D|Process for packaging leaf tobacco|
US4907605A|1985-05-24|1990-03-13|Advanced Tobacco Products, Inc.|Oral tabacco substitute|
US4821747A|1986-04-23|1989-04-18|R. J. Reynolds Tobacco Company|Process for treating tobacco and similar organic materials|
US4790335A|1987-05-15|1988-12-13|Marley James A|Tobacco curer|
US4802498A|1987-07-02|1989-02-07|Warren Ogren|Resin-based chewing tobacco|
US4898189A|1987-07-11|1990-02-06|Korber Ag|Method of and apparatus for treating uncured tobacco|
US4805642A|1987-09-08|1989-02-21|Rainer Norman B|Process for removing inorganic nitrate from agricultural products|
US4906274A|1987-11-06|1990-03-06|Rohm And Haas Company|Organic stabilizers|
US5127934A|1988-05-16|1992-07-07|Rohm And Haas Company|Stabilized compositions comprising isothiazolones and epoxides|
US4836222A|1988-07-06|1989-06-06|Livingston Larry J|Process for treating tobacco|
US4836222B1|1988-07-06|1991-05-28||Process for treating tobacco|
US5139035A|1989-03-18|1992-08-18|Korber Ag|Method of and apparatus for manipulating bales of condensed tobacco particles|
US5023376A|1989-07-17|1991-06-11|Interox America|Reduction of nitrosamine formation|
US5125420A|1990-04-06|1992-06-30|Livingston Larry J|Process for utilizing ethylene and heat to accelerate the yellowing of tobacco in a tobacco curing and drying process|
US5488962A|1990-10-10|1996-02-06|Perfetti, S.P.A.|Chewing gum which is a substitute for tobacco smoke|
US5018281A|1990-11-15|1991-05-28|Bulluck Jr S Thomas|Tobacco barn with heat exchanger system|
US5372149A|1992-03-25|1994-12-13|Roth; David S.|Sterilization process in the manufacturing of snuff|
US5515775A|1992-10-30|1996-05-14|Philip Morris Incorporated|Apparatus for treatment of solid material|
US5335590A|1992-10-30|1994-08-09|Philip Morris Incorporated|Apparatus for treatment of solid material|
US5810020A|1993-09-07|1998-09-22|Osmotek, Inc.|Process for removing nitrogen-containing anions and tobacco-specific nitrosamines from tobacco products|
US5431175A|1994-01-26|1995-07-11|Beckett; John M.|Process for controlling wet bulb temperature for curing and drying an agricultural product|
US5685710A|1994-05-12|1997-11-11|Martinez Sagrera; Jorge|Barn and procedure for Virginia type tobacco curing|
US5791353A|1995-09-25|1998-08-11|Brown & Williamson Tobaccco Corporation|Method and apparatus for denitrating tobacco stem material|
US5803081A|1996-06-28|1998-09-08|Regent Court Technologies|Tobacco and related products|
US6202649B1|1996-12-02|2001-03-20|Regent Court Technologies|Method of treating tobacco to reduce nitrosamine content, and products produced thereby|
US5803801A|1997-04-02|1998-09-08|Devro-Teepak, Inc.|Method for continous stuffing of shirred tubular sausage casings|US6425401B1|1996-12-02|2002-07-30|Regent Court Technologies Llc|Method of treating tobacco to reduce nitrosamine content, and products produced thereby|
USRE38123E1|1996-06-28|2003-05-27|Regent Court Technologies, Llc.|Tobacco products having reduced nitrosamine content|
US20040250821A1|2003-06-11|2004-12-16|R. J. Reynolds Tobacco Company|Method for chemically modifying tobacco during curing|
US20060225751A1|2005-03-31|2006-10-12|Japan Tobacco Inc.|Method of reducing nitrite and/or nitrosamine in tobacco leaves using microorganism having denitrifying ability|
US20060225750A1|2005-03-31|2006-10-12|Japan Tobacco Inc.|Method of reducing nitrosamine content in tobacco leaves|
US7650891B1|2004-09-03|2010-01-26|Rosswil Llc Ltd.|Tobacco precursor product|
US20100154810A1|2008-12-23|2010-06-24|Williams Jonnie R|Tobacco Curing Method|
US20100326454A1|2009-06-30|2010-12-30|Fuisz Richard C|Smokeless Tobacco Product|
CN102058148A|2011-01-13|2011-05-18|云南省烟草公司昆明市公司|Process for baking Hongda tobacco leaves|
WO2012125245A1|2011-03-15|2012-09-20|R.J. Reynolds Tobacco Company|Cured tobacco and method therefor|
WO2013035505A1|2011-09-05|2013-03-14|日本たばこ産業株式会社|Method for preventing increase in tobacco specific nitrosamines during storage|
WO2014047333A1|2012-09-19|2014-03-27|Lusso Marcos Fernando De Godoy|METHODS OF REDUCING TOBACCO-SPECIFIC NITROSAMINESAND/OR IMPROVING LEAF QUALITY IN TOBACCO|
WO2014078858A1|2012-11-19|2014-05-22|Altria Client Services Inc.|Hyperspectral imaging system for monitoring agricultural products during processing and manufacturing|
CN104397867A|2014-11-24|2015-03-11|重庆大学|Three-section and six-step type dense tobacco curing room coal energy-saving curing method|
CN104839877A|2015-04-27|2015-08-19|红塔烟草有限责任公司|Method for primarily flue-curing tobacco stems in segmented mode|
CN109043642A|2018-09-27|2018-12-21|上海烟草集团有限责任公司|A kind of production method and its product of high TSNAs content raw tobacco material|GB706052A|1950-10-24|1954-03-24|Helvar Oy|Method of treating tobacco and apparatus therefor|
US3309475A|1964-10-20|1967-03-14|Electronics Res Corp|Switch construction for use with safety belts|
DE1767677A1|1968-06-04|1971-11-25|Heimo Dr Scherz|Process for the treatment of tobacco and tobacco products|
ZA75351B|1974-02-15|1976-01-28|Hoffmann La Roche|Treatment of smoking material|
CA1026186A|1974-03-04|1978-02-14|Sansyu Sangyo Co.|Tobacco leaf curing system|
DE2942544A1|1979-10-20|1981-04-30|TKR Dritte Tabak-Forschungs-GmbH, 8000 München|ADDITIVE FOR SMOKING TOBACCO|
GR862434B|1986-09-24|1986-10-02|Nikolaidis Eustathios|Furnace for drying tobacco|
DE3904169A1|1989-02-11|1990-08-16|Gajic Branco R|Process for reducing the content of carcinogenic nitrosamines in tobacco|
SE501394C2|1992-10-01|1995-02-06|Svenska Tobaks Ab|Procedures for the treatment of green tobacco and the resulting product|
CN1135070C|1997-06-20|2004-01-21|里金特考特技术公司|Method of treating tobacco to reduce nitrosamine content, and products produced thereby|
US6135121A|1996-06-28|2000-10-24|Regent Court Technologies|Tobacco products having reduced nitrosamine content|
EP1121026A4|1998-09-15|2002-01-16|Star Scient Inc|Improved method of treating tobacco to reduce nitrosamine content, and products produced thereby|
US6805134B2|1999-04-26|2004-10-19|R. J. Reynolds Tobacco Company|Tobacco processing|
US7568081B2|2000-11-15|2009-07-28|Doug Carson & Associates, Inc.|Authenticating a data storage medium using predetermined inter-sector relationships|
CN100542084C|2003-01-15|2009-09-16|索尼株式会社|Signal processing system, recording method, program, recording medium, transcriber and information processor|CN1135070C|1997-06-20|2004-01-21|里金特考特技术公司|Method of treating tobacco to reduce nitrosamine content, and products produced thereby|
US6805134B2|1999-04-26|2004-10-19|R. J. Reynolds Tobacco Company|Tobacco processing|
DE102005005175A1|2005-02-01|2006-08-10|Reemtsma Cigarettenfabriken Gmbh|Filter cigarette|
US8791329B2|2005-02-28|2014-07-29|22Nd Century Limited Llc|Reducing levels of nicotinic alkaloids in plants|
US7992575B2|2005-02-28|2011-08-09|U.S. Smokeless Tobacco Company|Use of chlorate, sulfur or ozone to reduce tobacco specific nitrosamines|
CA2606527C|2005-04-29|2013-09-10|Philip Morris Products S.A.|Tobacco pouch product|
US9044049B2|2005-04-29|2015-06-02|Philip Morris Usa Inc.|Tobacco pouch product|
US7463892B2|2005-08-12|2008-12-09|Toshiba America Research, Inc.|Latency-aware service opportunity window-basedscheduling|
US8685478B2|2005-11-21|2014-04-01|Philip Morris Usa Inc.|Flavor pouch|
US7810507B2|2006-02-10|2010-10-12|R. J. Reynolds Tobacco Company|Smokeless tobacco composition|
CN101873809B|2007-07-23|2014-11-12|R.J.雷诺兹烟草公司|Smokeless tobacco compositions|
US20080029116A1|2006-08-01|2008-02-07|John Howard Robinson|Smokeless tobacco|
US20080029117A1|2006-08-01|2008-02-07|John-Paul Mua|Smokeless Tobacco|
US9551003B2|2006-09-13|2017-01-24|22Nd Century Limited, Llc|Increasing levels of nicotinic alkaloids in plants|
PL2450446T3|2006-09-13|2015-10-30|22Nd Century Ltd Llc|Increasing levels of nicotinic alkaloids|
US7726320B2|2006-10-18|2010-06-01|R. J. Reynolds Tobacco Company|Tobacco-containing smoking article|
US9102948B2|2006-11-17|2015-08-11|22Nd Century Limited, Llc|Regulating alkaloids|
US8616221B2|2007-02-28|2013-12-31|Philip Morris Usa Inc.|Oral pouch product with flavored wrapper|
US20080308115A1|2007-06-08|2008-12-18|Philip Morris Usa Inc.|Oral pouched products including tobacco beads|
US9888712B2|2007-06-08|2018-02-13|Philip Morris Usa Inc.|Oral pouch products including a liner and tobacco beads|
WO2009010878A2|2007-07-16|2009-01-22|Philip Morris Products S.A.|Method of flavor encapsulation of oral pouch products through the use of a drum coater|
US8950408B2|2007-07-16|2015-02-10|Philip Morris Usa Inc.|Oral pouch product having soft edge|
WO2009010881A2|2007-07-16|2009-01-22|Philip Morris Products S.A.|Oral pouch products with immobilized flavorant particles|
US8424541B2|2007-07-16|2013-04-23|Philip Morris Usa Inc.|Tobacco-free oral flavor delivery pouch product|
US7946295B2|2007-07-23|2011-05-24|R. J. Reynolds Tobacco Company|Smokeless tobacco composition|
US8061362B2|2007-07-23|2011-11-22|R. J. Reynolds Tobacco Company|Smokeless tobacco composition|
US9271524B1|2007-09-07|2016-03-01|U.S. Smokeless Tobacco Company|Tobacco having reduced tobacco specific nitrosamine content|
US20100018882A1|2008-07-28|2010-01-28|St Charles Frank K|Smokeless tobacco products and processes|
US20100018541A1|2008-07-28|2010-01-28|Anthony Richard Gerardi|Smokeless tobacco products and processes|
US20100018539A1|2008-07-28|2010-01-28|Paul Andrew Brinkley|Smokeless tobacco products and processes|
US20100018540A1|2008-07-28|2010-01-28|David James Doolittle|Smokeless tobacco products and processes|
US20100116281A1|2008-11-07|2010-05-13|Jerry Wayne Marshall|Tobacco products and processes|
US8377215B2|2008-12-18|2013-02-19|Philip Morris Usa Inc.|Moist botanical pouch processing|
US8863755B2|2009-02-27|2014-10-21|Philip Morris Usa Inc.|Controlled flavor release tobacco pouch products and methods of making|
US8434496B2|2009-06-02|2013-05-07|R. J. Reynolds Tobacco Company|Thermal treatment process for tobacco materials|
US8944072B2|2009-06-02|2015-02-03|R.J. Reynolds Tobacco Company|Thermal treatment process for tobacco materials|
US8747562B2|2009-10-09|2014-06-10|Philip Morris Usa Inc.|Tobacco-free pouched product containing flavor beads providing immediate and long lasting flavor release|
US20110220130A1|2009-12-15|2011-09-15|John-Paul Mua|Tobacco Product And Method For Manufacture|
US20130014771A1|2011-01-13|2013-01-17|R. J. Reynolds Tobacco Company|Tobacco-derived components and materials|
US8955523B2|2010-01-15|2015-02-17|R.J. Reynolds Tobacco Company|Tobacco-derived components and materials|
US10051884B2|2010-03-26|2018-08-21|Philip Morris Usa Inc.|Controlled release mentholated tobacco beads|
US9039839B2|2010-04-08|2015-05-26|R.J. Reynolds Tobacco Company|Smokeless tobacco composition comprising tobacco-derived material and non-tobacco plant material|
US9402415B2|2010-04-21|2016-08-02|R. J. Reynolds Tobacco Company|Tobacco seed-derived components and materials|
US9155321B2|2010-08-11|2015-10-13|R.J. Reynolds Tobacco Company|Meltable smokeless tobacco composition|
US11116237B2|2010-08-11|2021-09-14|R.J. Reynolds Tobacco Company|Meltable smokeless tobacco composition|
US10028520B2|2010-09-02|2018-07-24|R.J. Reynolds Tobacco Company|Apparatus for manufacturing a smokeless tobacco product incorporating an object, and associated method|
US9675102B2|2010-09-07|2017-06-13|R. J. Reynolds Tobacco Company|Smokeless tobacco product comprising effervescent composition|
US8931493B2|2010-11-01|2015-01-13|R.J. Reynolds Tobacco Co.|Smokeless tobacco products|
US9775376B2|2010-12-01|2017-10-03|R.J. Reynolds Tobacco Company|Smokeless tobacco pastille and moulding process for forming smokeless tobacco products|
US9204667B2|2010-12-01|2015-12-08|R.J. Reynolds Tobacco Company|Smokeless tobacco pastille and injection molding process for forming smokeless tobacco products|
US9220295B2|2010-12-01|2015-12-29|R.J. Reynolds Tobacco Company|Tobacco separation process for extracting tobacco-derived materials, and associated extraction systems|
US20120152265A1|2010-12-17|2012-06-21|R.J. Reynolds Tobacco Company|Tobacco-Derived Syrup Composition|
US9107453B2|2011-01-28|2015-08-18|R.J. Reynolds Tobacco Company|Tobacco-derived casing composition|
US9458476B2|2011-04-18|2016-10-04|R.J. Reynolds Tobacco Company|Method for producing glycerin from tobacco|
US9254001B2|2011-04-27|2016-02-09|R.J. Reynolds Tobacco Company|Tobacco-derived components and materials|
US9192193B2|2011-05-19|2015-11-24|R.J. Reynolds Tobacco Company|Molecularly imprinted polymers for treating tobacco material and filtering smoke from smoking articles|
US9474303B2|2011-09-22|2016-10-25|R.J. Reynolds Tobacco Company|Translucent smokeless tobacco product|
US20130118512A1|2011-11-16|2013-05-16|R.J. Reynolds Tobacco Company|Smokeless tobacco products with starch component|
US20130125907A1|2011-11-17|2013-05-23|Michael Francis Dube|Method for Producing Triethyl Citrate from Tobacco|
US20130125904A1|2011-11-18|2013-05-23|R.J. Reynolds Tobacco Company|Smokeless tobacco product comprising pectin component|
US10881132B2|2011-12-14|2021-01-05|R.J. Reynolds Tobacco Company|Smokeless tobacco product comprising effervescent composition|
US9212290B2|2012-01-27|2015-12-15|Celanese Acetate Llc|Substituted cellulose acetates and uses thereof|
US9167830B2|2012-01-27|2015-10-27|Celanese Acetate Llc|Substituted cellulose acetates and uses thereof|
US20130192613A1|2012-01-27|2013-08-01|Celanese Acetate Llc|Substituted Cellulose Acetates and Uses Thereof|
US9023757B2|2012-01-27|2015-05-05|Celanese Acetate Llc|Substituted cellulose acetates and uses thereof|
US20130206150A1|2012-02-10|2013-08-15|R.J. Reynolds Tobacco Company|Multi-layer smokeless tobacco composition|
US9420825B2|2012-02-13|2016-08-23|R.J. Reynolds Tobacco Company|Whitened tobacco composition|
US20130255702A1|2012-03-28|2013-10-03|R.J. Reynolds Tobacco Company|Smoking article incorporating a conductive substrate|
US20130269719A1|2012-04-11|2013-10-17|R.J. Reynolds Tobacco Company|Method for treating plants with probiotics|
US8800571B2|2012-06-01|2014-08-12|R.J. Reynolds Tobacco Company|Method and system for moist tobacco extract isolation|
US9485953B2|2012-07-19|2016-11-08|R.J. Reynolds Tobacco Company|Method for treating tobacco plants with enzymes|
US9289011B2|2013-03-07|2016-03-22|R.J. Reynolds Tobacco Company|Method for producing lutein from tobacco|
US9155334B2|2013-04-05|2015-10-13|R.J. Reynolds Tobacco Company|Modification of bacterial profile of tobacco|
US9980509B2|2013-04-05|2018-05-29|R.J. Reynolds Tobacco Company|Modification of bacterial profile of tobacco|
CN103271428B|2013-05-06|2015-04-08|广东省烟草南雄科学研究所|Flue-cured tobacco accurate intensive curing technology for tobacco high-temperature induced maturity|
US20150034109A1|2013-08-02|2015-02-05|R.J. Reynolds Tobacco Company|Process for Producing Lignin from Tobacco|
US10357054B2|2013-10-16|2019-07-23|R.J. Reynolds Tobacco Company|Smokeless tobacco pastille|
CN103564635B|2013-11-07|2015-05-20|河南农业大学|Baking process of comb-type tobacco clamps|
US9265284B2|2014-01-17|2016-02-23|R.J. Reynolds Tobacco Company|Process for producing flavorants and related materials|
CN103815535B|2014-03-07|2015-09-30|江西省烟叶科学研究所|A kind of rainy cigarette district bulk curing barn picking and roasting method|
CN103798940B|2014-03-11|2015-10-21|云南省烟草公司大理州公司|The intensive barn curing baking method of the excessive tobacco leaf of a kind of safflower large gold dollar fertilizer|
CN103892430A|2014-03-24|2014-07-02|钟启德|Tobacco leaf curing process of intensive curing barn|
US10906726B2|2014-04-01|2021-02-02|R. J. Reynolds Tobacco Company|Dispensing system for a tobacco-related product, and associated method|
CN103919265A|2014-04-24|2014-07-16|遵义市烟草公司余庆县分公司|Flue-cured tobacco covering kang baking method|
US10111458B1|2014-05-16|2018-10-30|R.J. Reynolds Tobacco Company|Process for inhibiting formation of nitrosamines|
CN104013093B|2014-06-20|2015-12-02|福建中烟工业有限责任公司|The baking method of tobacco leaf|
US20160044955A1|2014-08-13|2016-02-18|R.J. Reynolds Tobacco Company|Smokeless tobacco products|
CN104366686B|2014-11-18|2016-04-13|河南农业大学|The special flue-cured tobacco method of cigarette mode is clamped for bulk curing barn cigarette|
CN104432459B|2014-12-29|2017-02-01|广东中烟工业有限责任公司|Tobacco leaf baking method|
US10881133B2|2015-04-16|2021-01-05|R.J. Reynolds Tobacco Company|Tobacco-derived cellulosic sugar|
US20170059554A1|2015-09-02|2017-03-02|R. J. Reynolds Tobacco Company|Method for monitoring use of a tobacco product|
CN105455187A|2015-12-02|2016-04-06|云南省农业科学院农业环境资源研究所|Intensive curing method for flue-cured tobacco variety NC102|
US10499684B2|2016-01-28|2019-12-10|R.J. Reynolds Tobacco Company|Tobacco-derived flavorants|
US11154087B2|2016-02-02|2021-10-26|R.J. Reynolds Tobacco Company|Method for preparing flavorful compounds isolated from black liquor and products incorporating the flavorful compounds|
US9795162B2|2016-02-08|2017-10-24|R. J. Reynolds Tobacco Company|System for monitoring environmental conditions of a tobacco curing site|
CN105831791B|2016-04-14|2017-11-07|广东省烟草南雄科学研究所|A kind of intensive baking process of flue-cured tobacco|
US10721957B2|2016-10-04|2020-07-28|R.J. Reynolds Tobacco Company|Tobacco-derived colorants and colored substrates|
US10813383B2|2016-12-12|2020-10-27|R.J. Reynolds Tobacco Company|Dehydration of tobacco and tobacco-derived materials|
CN106539120B|2017-01-21|2018-07-10|段钧元|A kind of improved tobacco flue-curing house|
US11091446B2|2017-03-24|2021-08-17|R.J. Reynolds Tobacco Company|Methods of selectively forming substituted pyrazines|
US10470487B2|2017-04-06|2019-11-12|R.J. Reynolds Tobacco Company|Smoke treatment|
CN109380759A|2017-08-08|2019-02-26|中国烟草中南农业试验站|Cigarette 3, the Luzhou-flavor flue-cured tobacco cultivars Hunan slow roasting method of delay|
CN111328347A|2017-09-11|2020-06-23|R.J.雷诺兹烟草公司|Methods and compositions for increasing expression of a gene of interest in a plant by co-expression with P21|
CN108065447B|2017-11-24|2020-05-12|云南省烟草公司大理州公司|Baking method of striking-green tobacco leaves of Honghuadajinyuan flue-cured tobacco variety|
CN108142975B|2017-11-24|2020-04-14|云南省烟草公司大理州公司|Method for collecting and baking flue-cured tobacco of K326 variety with excessive fertilizer|
CN108095181B|2017-11-24|2020-10-16|云南省烟草公司大理州公司|Method for baking Honghuadajinyuan rainy and short-day tobacco leaves|
CN109164009A|2018-11-13|2019-01-08|云南农业大学|A kind of tobacco flue-curing real time on-line monitoring record system|
US20200196658A1|2018-12-20|2020-06-25|R.J. Reynolds Tobacco Company|Method for whitening tobacco|
CN109674083A|2019-02-15|2019-04-26|重庆肯佐鹏发智能科技有限公司|A kind of environmentally friendly barn staying heat with dehumidifying|
CN109875091A|2019-04-19|2019-06-14|云南省烟草农业科学研究院|It is a kind of to promote the baking method for heating novel tobacco perfume quantity of not burning and its application|
CN109892683A|2019-04-19|2019-06-18|云南省烟草农业科学研究院|A kind of baking of flue-cured tobacco technique of suitable yatas6 kind tobacco flue-curing|
US11213062B2|2019-05-09|2022-01-04|American Snuff Company|Stabilizer for moist snuff|
US20210015171A1|2019-07-18|2021-01-21|R.J. Reynolds Tobacco Company|Thermal energy absorbers for tobacco heating products|
CN110506969B|2019-07-31|2021-08-03|贵州省烟草公司黔西南州公司|Method for enhancing aroma and baking tobacco leaves|
WO2021048770A1|2019-09-11|2021-03-18|Nicoventures Trading Limited|Alternative methods for whitening tobacco|
US20210068448A1|2019-09-11|2021-03-11|Nicoventures Trading Limited|Method for whitening tobacco|
US20210068447A1|2019-09-11|2021-03-11|R. J. Reynolds Tobacco Company|Pouched products with enhanced flavor stability|
US20210068446A1|2019-09-11|2021-03-11|R. J. Reynolds Tobacco Company|Oral product with cellulosic flavor stabilizer|
US20210076731A1|2019-09-13|2021-03-18|Nicoventures Trading Limited|Method for whitening tobacco|
US20210076730A1|2019-09-18|2021-03-18|American Snuff Company, Llc|Method for fermenting tobacco|
WO2021086367A1|2019-10-31|2021-05-06|Nicoventures Trading Limited|Oral product and method of manufacture|
US20210169785A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Oral compositions with reduced water activity|
US20210169868A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Oral compositions with reduced water content|
WO2021116916A1|2019-12-09|2021-06-17|Nicoventures Trading Limited|Oral product with multiple flavors having different release profiles|
US20210169890A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Oral composition with polymeric component|
US20210169123A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Pouched products with enhanced flavor stability|
US20210169129A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Lipid-containing oral composition|
WO2021116881A1|2019-12-09|2021-06-17|Nicoventures Trading Limited|Oral product in a pourous pouch comprising a fleece material|
WO2021116865A1|2019-12-09|2021-06-17|Nicoventures Trading Limited|Agents for oral composition|
US20210169121A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Liquid oral composition|
US20210169137A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Pouched products|
WO2021116834A1|2019-12-09|2021-06-17|Nicoventures Trading Limited|Nanoemulsion for oral use|
WO2021116856A2|2019-12-09|2021-06-17|Nicoventures Trading Limited|Oral products|
US20210169786A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Oral composition with beet material|
US20210169867A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Moist oral compositions|
WO2021116852A1|2019-12-09|2021-06-17|Nicoventures Trading Limited|Oral product with dissolvable component|
US20210169122A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Oral foam composition|
US20210169783A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Oral products with controlled release|
US20210169788A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Oral product and method of manufacture|
WO2021116855A1|2019-12-09|2021-06-17|Nicoventures Trading Limited|Oral compositions and methods of manufacture|
US20210170028A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Oral products with reduced irritation|
WO2021116895A2|2019-12-09|2021-06-17|Nicoventures Trading Limited|Stimulus-responsive pouch|
US20210169132A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Oral composition including gels|
WO2021116919A1|2019-12-09|2021-06-17|Nicoventures Trading Limited|Fleece for oral product with releasable component|
WO2021116884A1|2019-12-09|2021-06-17|Nicoventures Trading Limited|Layered fleece for pouched product|
US20210169126A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Oral composition with salt inclusion|
US20210169124A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Oral products with improved binding of active ingredients|
US20210169138A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Fibrous fleece material|
US20210169784A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Buffered oral compositions|
US20210170031A1|2019-12-09|2021-06-10|Nicoventures Trading Limited|Oral composition with nanocrystalline cellulose|
WO2021116894A1|2019-12-09|2021-06-17|Nicoventures Trading Limited|Pouched products with heat sealable binder|
WO2021116842A1|2019-12-09|2021-06-17|Nicoventures Trading Limited|Oral products with controlled release|
CN111084403A|2019-12-23|2020-05-01|贵州省烟草公司黔南州公司|Medium-temperature moisture-preserving yellowing intensive hanging rod baking method for middle-upper tobacco leaves|
US20210259299A1|2020-02-24|2021-08-26|Nicoventures Trading Limited|Beaded Tobacco Material and Related Method of Manufacture|
CN112611129A|2021-01-28|2021-04-06|湖北沄禾泽生态农业开发有限公司|Energy-conserving heat pump flue-cured tobacco curing barn of compressor echelon start|
法律状态:
2003-09-22| AS| Assignment|Owner name: JP MORGAN CHASE BANK, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:R.J. REYNOLDS TOBACCO;REEL/FRAME:014499/0517 Effective date: 20030709 |
2004-09-30| STCF| Information on status: patent grant|Free format text: PATENTED CASE |
2005-02-21| AS| Assignment|Owner name: R. J. REYNOLDS TOBACCO COMPANY, NORTH CAROLINA Free format text: CHANGE OF NAME;ASSIGNOR:BROWN & WILLIAMSON U.S.A., INC.;REEL/FRAME:015696/0990 Effective date: 20040730 Owner name: R. J. REYNOLDS TOBACCO COMPANY, NORTH CAROLINA Free format text: MERGER;ASSIGNORS:BROWN & WILLIAMSON U.S.A., INC.;R. J. REYNOLDS TOBACCO COMPANY;REEL/FRAME:015697/0001 Effective date: 20040730 |
2005-06-15| AS| Assignment|Owner name: R. J. REYNOLDS TOBACCO COMPANY, NORTH CAROLINA Free format text: MERGER;ASSIGNORS:BROWN & WILLIAMSON U.S.A., INC.;R. J. REYNOLDS TOBACCO COMPANY;REEL/FRAME:016135/0720 Effective date: 20040730 Owner name: R. J. REYNOLDS TOBACCO COMPANY, NORTH CAROLINA Free format text: CHANGE OF NAME;ASSIGNOR:BROWN & WILLIAMSON U.S.A., INC.;REEL/FRAME:016135/0743 Effective date: 20040730 |
2006-06-28| AS| Assignment|Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT,NEW Free format text: SECURITY INTEREST;ASSIGNOR:R.J. REYNOLDS TOBACCO COMPANY;REEL/FRAME:017906/0671 Effective date: 20060526 Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, NE Free format text: SECURITY INTEREST;ASSIGNOR:R.J. REYNOLDS TOBACCO COMPANY;REEL/FRAME:017906/0671 Effective date: 20060526 |
2007-10-31| FPAY| Fee payment|Year of fee payment: 4 |
2012-01-10| FPAY| Fee payment|Year of fee payment: 8 |
2016-03-10| FPAY| Fee payment|Year of fee payment: 12 |
优先权:
申请号 | 申请日 | 专利标题
US29940399A| true| 1999-04-26|1999-04-26||
US09/735,177|US6805134B2|1999-04-26|2000-12-12|Tobacco processing|US09/735,177| US6805134B2|1999-04-26|2000-12-12|Tobacco processing|
US10/223,752| US6895974B2|1999-04-26|2002-08-19|Tobacco processing|
US10/931,197| US7404406B2|1999-04-26|2004-09-01|Tobacco processing|
[返回顶部]