专利摘要:
本發明提供了一種薄膜太陽能電池及其製造方法。此薄膜太陽能電池包括一底電極層、一半導體光吸收層、一頂電極層與保護性之一水氣阻障層。於部分實施例中,此水氣阻障層係由非水溶性材料所形成。此水氣阻障層有助於保護此頂電極層免於受到水氣與氧氣的接觸與毀損。
公开号:TW201324819A
申请号:TW101147366
申请日:2012-12-14
公开日:2013-06-16
发明作者:Wen-Chin Lee;Yung-Sheng Chiu;Wen-Tsai Yen;Liang-Sheng Yu
申请人:Taiwan Semiconductor Mfg;
IPC主号:H01L31-00
专利说明:
薄膜太陽能電池及其製造方法
本發明係關於光電太陽能電池(photovoltaic solar cells),且特別地是關於薄膜太陽能電池(thin film solar cells)及其製造方法。
薄膜太陽能電池為眾多能源裝置中之一種,其係為利用將光轉變成電能形態之一種能量之可再生來源,並適用於眾多應用之中。薄膜太陽能電池係為藉由於基板上沈積多個半導體以及其他材料之薄膜層與薄膜所構成之一多重膜層半導體結構。此些太陽能電池可按照具有數個分隔之電性連結之電池形態而製作形成於一輕量化之可撓基板上。輕量化與可撓性等特性使得薄膜太陽能電池可用於做為可攜式電子產品、航空、及居家與商用大樓之電力來源,因而具有極為廣大之未來應用性,其可應用於如屋頂、外觀及天窗等不同之建築結構處。
薄膜太陽能電池之半導體封裝物通常包括形成於基板上之一底接觸物或電極以及位於底電極之上之一頂接觸物或電極。頂電極可採用如透明導電氧化物(light transmittance conductive oxide,TCO)材料所製成。透明導電氧化物材料易受到包括水氣(water)、氧氣(oxygen)與二氧化碳(carbon dioxide)等環境因子的攻擊與劣化。因此,透明導電氧化物材料的劣化將會引起高串聯電阻(series resistance,Rs)並造成太陽能電池之較低太陽能轉化效率等問題。
因此,便需要一種較佳之太陽能電池,以解決上述問題。
依據一實施例,本發明提供了一種薄膜太陽能電池,包括:一底電極層,形成於一基板上;一光吸收層,形成於該底電極層上;一緩衝層,形成於該光吸收層上;一頂電極層,形成於該緩衝層上,該頂電極層經由一切割道而電性連結於該底電極層,其中該切割道定義出穿透該緩衝層與該光吸收層之一垂直通道;保護性之一第一水氣阻障層,形成於該頂電極層上,以保護頂電極層免於受到環境中水氣與氧氣的毀損,其中該第一水氣阻障層係由不溶於水之一材料所形成;以及一密封層,形成於該第一水氣阻障層上。
依據另一實施例,本發明提供了一種薄膜太陽能電池,包括:一底電極層,形成於一基板上;一光吸收層,形成於該底電極層上;一緩衝層,形成於該光吸收層上;一頂電極層,形成於該緩衝層上且由一透明導電氧化物材料所形成,該頂電極層經由一切割道而電性連結於該底電極層,其中該切割道定義出穿透該緩衝層與該光吸收層之一垂直通道;以及一第一水氣阻障層,形成於該頂電極層上,以保護該頂電極層免於受到環境中水氣與氧氣的毀損,其中該第一水氣阻障層係由不溶於水之一材料所形成,該第一水氣阻障層覆蓋了位於該切割道內之該頂電極層之材料之部分以保護該頂電極層之材料免於受到水氣與氧氣的毀損。
依據又一實施例,本發明提供了一種薄膜太陽能電池之製造方法,包括:沉積導電之一底電極層於一基板上;沉積一光吸收層於該底電極層上;沉積一緩衝層於該光吸收層上;切割該吸收層以形成開放之一切割道,該切割道形成了具有露出之該光吸收層側壁、露出之該光吸收層部分與該緩衝層部分之一開口通道;於切割形成該切割道之後,沉積一頂電極層於該緩衝層之上,而該頂電極層之材料至少部分填入該切割道內;沉積由非水溶性材料所製成之一第一水氣阻障層於該頂電極層上;以及採用第一水氣阻障層之材料以覆蓋該切割道內之該頂電極之材料之部分,以保護於該切割道內之該頂電極層之材料免於受到水氣與氧氣的毀損。
為讓本發明之上述目的、特徵及優點能更明顯易懂,下文特舉一較佳實施例,並配合所附的圖式,作詳細說明如下:
下文中提供了用以施行本發明之不同特徵之多個實施例或範例。以下描述之特定構件及設置情形之範例係用於簡單描述本發明,而非用以限制本發明。於下文中將使用如”低於”、”高於”、”水平的”、”垂直的”、”之上”、”之下”、”上”、”下”、”頂”、”底”或相似描述等詞彙以解釋所描述或所圖示之走向。此些空間相關詞彙係用於包含除圖式所示之方位以外之元件於使用或操作時之不同方位。除非特別的描述,否則如”依附的”、”固定的”、”連接的”、與”內連的”等相關詞彙係用於描述結構係直接地固定或附著於另一結構,或透過中間結構而間接地固定或附著於另一結構,且兩者皆為可動或處於固定附著之情形或關係。關於此處所使用之鄰近”詞彙係用於描述結構/構件之間之關係,包括各結構/構件之間之直接接觸情形以及於各結構/構件之間具有其他插入的結構/構件出現之情形。再者,本發明之特徵與優點係藉由較佳實施例所顯示。如此,本發明明確地並非受限於較佳實施例所顯示之特定可能之非限制的特徵的組合,其可能單獨存在或結合存在,本發明之範疇係由下述申請專利範圍所定義。
第1圖顯示了依據本發明之第一實施例之一種薄膜太陽能電池100,其具有於形成此太陽能電池封裝物之製程中臨場地形成之一水氣阻障層(moisture barrier layer)。在此,薄膜太陽能電池100包括一基板110、形成於基板110上之一底電極層120、形成於底電極層120上之一光吸收層(ab sorber layer)130、形成於吸收層130上之一緩衝層(buffer layer)140、形成於緩衝層140上之透明導電氧化物(transmittance conductive oxide,TCO)材質之一頂電極層150、以及形成於透明導電氧化物材質之頂電極層150上之如水氣阻障層160之一第一保護性護層。此護層或水氣阻障層160有助於保護透明導電氧化物材料免於受到水氣(water)與氧氣(oxygen)的攻擊,上述水氣與氧氣的攻擊恐負面地影響了太陽能電池的表現與可靠度。
薄膜太陽能電池100更包括數個微通道(micro-channels),其係圖案化與切割半導體結構以內部連結不同之導電材料層以及分隔相鄰之太陽能電池。於習知技術中,依據於半導體太陽能電池製程中之步驟與其功能,此些微通道或”切割道(scribe lines)”通常命名為”P”。其中P1與P3等切割道係用於電池隔離之必要通道。而P2切割道則形成了一連接情形。P1切割道係內連於銅銦鎵硒光吸收層(CIGS absorber layer)與基板,並將透明導電氧化物面板圖案化成為各別之電池。P2切割道移除了光吸收材料以內連透明導電氧化物材質之頂電極與底電極,進而避免了位於中間之緩衝層構成了頂電極與底電極間之阻障情形。P3切割道則延伸並完全穿透了透明導電氧化物材料、緩衝層、以及光吸收層至底電極,以隔離由P1與P2切割道所定義出之各別電池。
於下文中將藉由第2圖以詳細描述太陽能電池100及依據一實施例之此太陽能電池100之製造方法。
請參照第1圖與第2圖,於步驟200中首先採用任一習知裝置以潔淨基板110,使得基板110可用於容置一底電極層。於一實施例中,基板110可採用清潔劑或化學品之一刷洗機台或一超音波潔淨機台而潔淨之。
基板110可採用適當之習知材料所形成,包括如鈉鈣玻璃之玻璃、陶瓷、如不鏽鋼與鋁之薄板的金屬、或如聚醯胺(polyamides)、聚對苯二甲二乙酯(Polyethylene terephthalate)、聚萘二甲酸乙二酯(Polyethylene Naphthalate,PEN)、碳氫聚合物(polymeric hydrocarbons)、纖維聚合物(cellulosic polymers)、(polycarbonates)、聚碳酸酯(Polycarbonate)、聚醚(polyethers)及其他材料,但並不以上述材料為限。於一較佳實施例中,基板110可使用玻璃。
接著,可藉由包括濺鍍、原子層沉積、化學氣相沉積、或其他技術之任何習知方法以形成一底電極層120於基板110上(步驟205)。
於一實施例中,底電極層120可由鉬(Mo)所製成,但亦可為習知所使用之其他適當導電金屬與半導體材料,例如為鋁、銀、錫、鈦、鎳、不銹鋼、碲化鋅(ZnTe)等。
於部分實施例中,底電極層120可較佳地具有介於約0.1-1.5微米之厚度,但並不以其為限。於一實施例中,底電極層120具有約0.5微米之一厚度。
請繼續參考第1圖與第2圖,接著於底電極層120內形成圖案化之P1切割道(步驟210),以露出基板110之頂面。其可採用通常使用的任何適當切割方法,例如採用尖筆之機械切割或雷射切割。
接著於底電極層120之頂面形成P型摻雜半導體材質之一光吸收層130(步驟215)。光吸收層130之材料更填入於P1切割道內並接觸了基板110之露出的頂面,進而內連了P型摻雜半導體材質之光吸收層130與基板110,如第1圖所示。
於一實施例中,P型摻雜半導體材質之光吸收層130可為習知常用之一P型摻雜琉屬化物,且於部份實施例中較佳地包括銅銦鎵硒(CIGS)與Cu(In,Ga)Se2。其他可能使用之材料包括了Cu(In,Ga)(Se,S)2(或稱CIGSS)、CuInSe2、CuGaSe2、CuInS2與Cu(In,Ga)S2,但並不以上述材料為限。
常用於形成光吸收層130之其他P型摻雜硫屬化物材料包括了Cu(In,Ga)Se2、Ag(In,Ga)Se2、Cu(In,Al)Se2、Cu(In,Ga)(Se,S)2、CuInSe2、CuGaSe2、CuInS2與Cu(In,Ga)S2或其他週期表內之II、III或VI族之元素。
由銅銦鎵硒(CIGS)所形成之P型摻雜半導體材質之光吸收層130可藉由任何適當之真空或非真空製程等習知製程所形成。上述製程包括硒化、於硒化後之硫化(SAS)、蒸鍍、濺鍍、電沉積、化學氣相沉積、或噴墨法(ink spraying)等。
於部分實施例中,光吸收層130較佳地具有約為0.5-5.0微米之一厚度,但並不以上述範圍為限。於一實施例中,光吸收層130具有約為2微米之一代表厚度。
請繼續參照第1圖與第2圖,接著於光吸收層130上形成N型之緩衝層140,以製造出電性活化之一N-P接面(步驟220)。緩衝層140可由適當之習知方法所形成。於一實施例中,緩衝層140可藉由習知之包括硫之電解質溶液之電解質化學浴沈積(chemical bath deposition,CBD)製程所形成。於一實施例中,緩衝層140較佳地具有介於約0.005-0.15微米之一厚度,但並不以上述厚度為限。於一實施例中,緩衝層140可具有約為0.015微米之一代表厚度。
於形成如硫化鎘(CdS)材質之緩衝層140後,接著切割形成一P2切割道,使之穿透光吸收層130以露出位於此開放之切割道或通道內之底電極層120之頂面。可採用包括機械或雷射切割前述任何適當方法以切割形成P2切割道。可接著自頂電極層150處填入一導電材料至P2切割道內,以內部連接頂電極層與底電極層120。
請繼續參照第1圖與第2圖,於形成P2切割道之後,接著於緩衝層140之頂面上形成較佳地由一透明導電氧化物(TCO)材料所構成之透光N型摻雜之一頂電極層150,以收集電池之電流(電),且較佳地吸收穿透了光吸收層130之最小量光線(步驟230)。如此便可製作出用於由頂電極收集電流之主動表面區域並使之將電荷傳至一外部電路。此P2切割道亦至少部分地為如第1圖所示之透明導電氧化物材料所填入,此透明導電氧化物材料覆蓋了P2切割道內之垂直側壁以及其內底電極層120之頂面上,以形成頂電極層150與底電極120間之電性連結以及一電子流路徑(electron flow path)。
鋁與硼為太陽能電池內常用於頂電極之透明導電氧化物材質之可能的兩種N型摻質,但並不以其為限,亦可使用如鋁、硼、鎵、銦或週期表之其他III族元素之其他適當摻質。
於一實施例中,用於頂電極層150之透明導電氧化物可包括應用薄膜太陽能電池之習知材料所形成。所使用之適當透明導電氧化物包括氧化鋅(ZnO)、硼摻雜之氧化鋅(BZO)、鋁摻雜之氧化鋅(AZO)、鎵摻雜之氧化鋅(GZO)、銦摻雜之氧化鋅(IZO)、氟摻雜氧化錫(FTO)、銦摻雜氧化錫(ITO)、銦摻雜氧化鋅、銻摻雜氧化錫、碳奈米管,或其他具有頂電極之特性之適當塗佈材料。於一較佳實施例中,所使用之透明導電氧化物為硼摻雜之氧化鋅(BZO)。
於部份之實施例中,頂電極層150可由硼摻雜之氧化鋅(或稱BZO)所製成,值得注意的是可於於形成較厚之N型摻雜透明導電氧化物之頂電極層150時,於光吸收層130之上形成薄的本徵氧化鋅薄膜(未顯示)。
請繼續參照第1圖與第2圖,接著於頂電極層150之頂面形成一第一保護膜層,例如為保護性之一水氣阻障層160(步驟235)。較佳地,水氣阻障層160係由非水溶性材料所形成,且於部份實施例中較佳地採用非水溶性之氧化物化合物,其相較於透明導電氧化物材質之頂電極層150之材料而言可大幅降低水氣及/或氧氣之穿透容忍度與穿透率,因而形成了一有效阻障。如此便可保護了透明導電氧化物材質之頂電極層150免於受到習知之水氣及/或氧氣的攻擊,及其對於太陽能電池裝置之可靠度與表現的劣化情形。
本案發明人已發現了可用於水氣阻障層160之適當穩定氧化物,其可形成有效之水氣與氧氣阻障,且其可基於此些材料化合物之熱動力學特性而做出選擇。於部份實施例中,做為保護性之水氣阻障層160之特定材料之溶解度與可靠度可基於如吉布斯自由能(Gibbs Free Energy,G)之焓或稱為自由焓(free enthalpy)的熱力學特性而量化。吉布斯自由能為對於組成物對於化學反應與改變之平衡與穩定狀態的量測。一般來說,標準之吉布斯自由能的資訊係量化為於來自於構成元素於其標準狀態下形成標準狀態之一莫爾之物質或化合物(最穩定狀態之元素於1bar氣壓下以及如298.15K或25℃之一溫度下)之自由能的改變量。吉布斯自由能的概念為習知的而不在此多做描述。
吉布斯自由能可定義為下述公式:G(p,T)=H-TS
其中,G=吉布斯自由能,H為焓(enthalpy),p為壓力,S為熵(entropy)。
如第3圖所示之表格顯示了多種氧化物化合物之吉布斯自由能。請參照第3圖,發明人揭露了具有約為-600KJ/mol(採用一摩爾氧氣於298.15K與一bar壓力下)或更高(即為更高之負值)之多種元素之氧化物之吉布斯自由能或氧化反應焓,其為可提供做為保護性之水氣阻障層160之適當氧化物化合物。此些材料為不溶於水之穩定氧化物。如此,於部分實施例中,適用於保護性之水氣阻障層160之氧化物可包括MgO、In2O3、CaO、Ga2O3、Cr2O3、Ta2O5、TiO2、ZrO2、Al2O3、HfO2、La2O3、與Lu2O3,但不以其為限。基於前述材料化合物,於部分實施例中,用於水氣阻障層160之適當材料可包括具有介於約-600 KJ/mole至-1200 KJ/mole之吉布斯自由能。具有可使用之吉布斯自由能之其他適當穩定氧化物包括SiONx、SiNx與SiOx。於一實施例中,可使用二氧化鈦(TiO2),其為便宜的且適用於目前工業化之薄膜太陽能電池製程。
於部分實施例中,保護性之水氣阻障層160可包括兩種或多種材料,其可依照包括兩個或兩個以上前述材料之組成而以薄膜形態而沉積形成於頂電極層150上。
請繼續參照第3圖,具有吉布斯自由能少於-600 KJ/mole(即更為正值)之氧化物化合物通常缺少適當之穩定度及/或對於水之不溶解度,因而較不適用於做為水氣阻障層160。
於部分實施例中,保護性之水氣阻障層160可具有至少10奈米或更多之一厚度。於部分實施例中,膜層160之厚度可約介於10-150奈米。當水氣阻障層160使用兩個或兩個以上化合物時,此些膜層之總結合厚度較佳地約為10-150奈米。
保護性之水氣阻障層160可藉由用於形成膜層之任一適當方法所形成。於部分實施例中,水氣阻障層160可採用原子層沉積、化學氣相沉積、蒸鍍或濺鍍程序所形成,但並不以其為限。
值得注意的是,水氣阻障層160材料的沉積不僅形成於如第1圖所示之頂電極層150之上,且於部分實施例中其較佳地沿著頂電極層150之露出的垂直側壁部而形成於早先形成之P2切割道內以及形成於頂電極層150之水平頂面之上而形成於底電極層120之上。因此,水氣阻障層160保護了所有早先沉積之頂電極層150之頂面。
請繼續參照第1圖與第2圖,於形成保護性之水氣組障層160之後,接著於薄膜太陽能電池100內形成P3切割道(步驟240)。此P3切割道延伸向下穿透(從上至下)水氣阻障層160、頂電極層150、緩衝層140、光吸收層130以及底電極層120至基板100之頂面,如圖所示。
於形成在此顯示之太陽能電池結構之後,可施行額外之習知後段導線製程與層疊情形,但並不以其為限。其可包括層疊一上蓋玻璃至太陽能電池結構之上,且具有一適當之封裝材料(未顯示)位於其間以密封此太陽能電池(第2圖之步驟245與250),例如為一乙烯酯酸乙烯酯(ethylene vinyl acetate,EVA)。上述乙烯酯酸乙烯酯的封裝材料為常用的且可於本實施例中直接施行於水氣阻障層160上,並接著將上蓋玻璃層疊於其上。
可接著完成其他適用之後續後段製程(步驟255),其可包括依照習知方式所形成位於頂電極150之上前側導電之柵狀接觸物(grid contacts)以及一或多個抗反射塗層(未顯示)。此柵狀接觸物可朝上突出且超過任一抗反射塗層之頂面以連結外部電路。太陽能電池製程形成了一最終且製作完畢之一太陽能電池模組100(步驟260)。
值得注意的是,保護性之水氣阻障層160係於第1圖與第2圖中之討論與顯示之形成多重不同半導體層的製程時臨場地形成。故於部分情形中,相較於太陽能電池封裝物形成用於層疊上蓋玻璃之乙烯酯酸乙烯酯與乙酸乙酯之非臨場製程之習知製程而言,上述製程可較佳地提供了對於導電透明氧化物材質之頂電極的有效之水氣與氧氣之阻擋保護阻障功效。此透明導電氧化物材質之頂電極薄膜係露出於水氣與氧氣中環境之直至與將頂玻璃形成於封裝物上並密封之。
第4圖與第5圖分別顯示了依據本發明之一第二實施例之一種薄膜太陽能電池200及其製造方法。此實施例相似於前述實施例之薄膜太陽能電池100及其製造方法,其已經經藉由如第1圖與第2圖所示之臨場形成水氣阻障層。然而,如第2圖與第5圖所示之相同製造步驟的順序則可能稍做改變。
請參照第4圖與第5圖,於本實施例中,於透明導電氧化物頂電極層150形成後(步驟S230)立即地形成P3切割道(步驟245),且其係早於形成保護水氣阻障層160之前施行(步驟S235)。對比於第1圖所示之實施例,如第5圖內所示之步驟順序製造出了一水氣阻障層160,其覆蓋並保護了於P3切割道內露出側壁與底面,使得太陽能電池封裝物免於受到水氣與氧氣的攻擊(請參照第4圖)。
第6圖與第7圖分別顯示了依據本發明之第三實施例之一種薄膜太陽能電池300及其製造方法,其具有兩層之保護性之水氣阻障層結構。本實施例及其製造方法相似於如第1圖與第2圖所示之具有臨場地形成之水氣阻障層之薄膜太陽能電池100。然而,於本實施例中,如第2圖與第7圖所示之相同形成步驟之順序則經過改變以提供如第6圖所示之形成保護性之第二水氣阻障層165(步驟237)。第三實施例之製程為如第2圖與第5圖所示之第一實施例與第二實施例之混合,保護性之水氣阻障層係早於與晚於P3切割道的形成而形成。如第6圖所示,保護性之水氣阻障層160之頂面及其位於P2切割道內之垂直與水平部分皆具有雙重保護膜層或塗層。薄膜太陽能電池300之封裝物位於P3切割道內之露出的垂直與水平表面僅包含了第二水氣阻障層165之單一保護膜層或塗層。
採用具有雙重之水氣阻障物之第三實施例,不僅可保護透明導電氧化物免於環境水氣的毀損,亦可保護形成於P3側壁之透明導電氧化物之表面。此些之分隔之兩個膜層可藉由原子層沉積、化學氣相沉積、蒸鍍或濺鍍等所形成,但不以其為限。
可以理解的是本發明之薄膜太陽能電池及其製造方法不僅提供了適用銅銦鎵硒基吸收層(CIGS based absorber layer)之太陽能電池的保護性之水氣阻障層,且應用於碲化鎘基(CdTe based)以及其他類型之薄膜太陽能電池時亦具有相同功效。
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此項技藝者,在不脫離本發明之精神和範圍內,當可作更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100、200、300‧‧‧薄膜太陽能電池
110‧‧‧基板
120‧‧‧底電極層
130‧‧‧光吸收層
140‧‧‧緩衝層
150‧‧‧頂電極層
160‧‧‧第二水氣阻障層
165‧‧‧第二水氣阻障層
200、205、210、215、220、225、230、235、237、240、250、255、260‧‧‧步驟
P1、P2、P3‧‧‧切割道
第1圖為一剖面圖,顯示了依據本發明之第一實施例之一種薄膜太陽能電池;第2圖為一流程圖,顯示了依據本發明之一實施例之一種薄膜太陽能電池之製造方法的步驟;第3圖為一表格,顯示了不同材料之摩爾標準氧化物生成焓之吉布斯自由能;第4圖為一剖面圖,顯示了依據本發明之第二實施例之一種薄膜太陽能電池;第5圖為一流程圖,顯示了依據本發明之另一實施例之一種薄膜太陽能電池之製造方法的步驟;第6圖為一剖面圖,顯示了依據本發明之第三實施例之一種薄膜太陽能電池;以及第7圖為一流程圖,顯示了依據本發明之又一實施例之一種薄膜太陽能電池之製造方法的步驟。
100‧‧‧薄膜太陽能電池
110‧‧‧基板
120‧‧‧底電極層
130‧‧‧光吸收層
140‧‧‧緩衝層
150‧‧‧頂電極層
160‧‧‧水氣阻障層
权利要求:
Claims (11)
[1] 一種薄膜太陽能電池,包括:一底電極層,形成於一基板上;一光吸收層,形成於該底電極層上;一緩衝層,形成於該光吸收層上;一頂電極層,形成於該緩衝層上,該頂電極層經由一第一切割道而電性連結於該底電極層,其中該第一切割道定義出穿透該緩衝層與該光吸收層之一垂直通道;保護性之一第一水氣阻障層,形成於該頂電極層上,以保護頂電極層免於受到環境中水氣與氧氣的毀損,其中該第一水氣阻障層係由不溶於水之一材料所形成;以及一密封層,形成於該第一水氣阻障層上。
[2] 如申請專利範圍第1項所述之薄膜太陽能電池,其中該第一切割道至少為該頂電極層之材料所部分填入,以接觸該底電極層,而該第一水氣阻障層覆蓋了該頂電極層之材料於該第一切割道內之露出側壁部分。
[3] 如申請專利範圍第1項所述之薄膜太陽能電池,其中形成該第一水氣阻障層之材料係為具有至少-600KJ/mole之吉布斯自由能之一穩定氧化物化合物。
[4] 如申請專利範圍第1項所述之薄膜太陽能電池,更包括一第二切割道,該第二切割道形成穿透該太陽能電池至該基板之一垂直通道,其中該第一水氣阻障層延伸至該第二切割道內。
[5] 如申請專利範圍第1項所述之薄膜太陽能電池,更包括一第二水氣阻障層,形成於該第一水氣阻障層上,該第二水氣阻障層係由相同或相異於該第一水氣阻障層之材料所組成,且該第二水氣阻障層延伸至該第一切割道內。
[6] 一種薄膜太陽能電池,包括:一底電極層,形成於一基板上;一光吸收層,形成於該底電極層上;一緩衝層,形成於該光吸收層上;一頂電極層,形成於該緩衝層上且由一透明導電氧化物材料所形成,該頂電極層經由一第一切割道而電性連結於該底電極層,其中該第一切割道定義出穿透該緩衝層與該吸收層之一垂直通道;以及一第一水氣阻障層,形成於該頂電極層上,以保護該頂電極層免於受到環境中水氣與氧氣的毀損,其中該第一水氣阻障層係由不溶於水之一材料所形成,該第一水氣阻障層覆蓋了位於該第一切割道內之該頂電極層之材料之部分以保護該頂電極層之材料免於受到水氣與氧氣的毀損。
[7] 如申請專利範圍第6項所述之薄膜太陽能電池,更包括一第二切割道,該第二切割道為穿透該太陽能電池至該基板之一垂直通道,其中該第一水氣阻障層延伸至該第二切割道內。
[8] 如申請專利範圍第6項所述之薄膜太陽能電池,更包括:一第二切割道,形成穿透該太陽能電池至該基板之一垂直通道;以及一第二水氣阻障層,形成於該第一水氣阻障層上,該第二水氣阻障層係由相同或相異於該第一水氣阻障層之材料所形成,其中該第二水氣阻障層延伸至該第二切割道內並覆蓋其內之該頂電極層之露出部分。
[9] 一種薄膜太陽能電池之製造方法,包括:沉積導電之一底電極層於一基板上;沉積一光吸收層於該底電極層上;沉積一緩衝層於該光吸收層上;切割該吸收層以形成開放之一第一切割道,該第一切割道形成了具有露出之該光吸收層側壁、露出之該光吸收層部分與該緩衝層部分之一開口通道;於切割形成該第一切割道之後,沉積一頂電極層於該緩衝層之上,而該頂電極層之材料至少部分填入該第一切割道內;沉積由非水溶性材料所製成之一第一水氣阻障層於該頂電極層上;以及採用第一水氣阻障層之材料以覆蓋該第一切割道內之該頂電極之材料之部分,以保護於該第一切割道內之該頂電極層之材料免於受到水氣與氧氣的毀損。
[10] 如申請專利範圍第9項所述之薄膜太陽能電池之製造方法,更包括於沉積該第一水氣阻障層之前,形成一第二切割道,其中沉積該第一水氣阻障層時亦覆蓋了位於該第二切割道內之該頂電極層之露出側壁。
[11] 如申請專利範圍第9項所述之薄膜太陽能電池之製造方法,更包括:於沉積該第一水氣阻障層之後,切割形成一第二切割道;於切割形成該第二切割道之後,沉積一第二水氣阻障層於該第一水氣阻障層上;以及使該第二水氣阻障層覆蓋位於該第二切割道內之該頂電極層之露出側壁部分,以保護位於第二切割道內之該頂電極層之材料免於受到水氣與氧氣的毀損。
类似技术:
公开号 | 公开日 | 专利标题
TWI487129B|2015-06-01|薄膜太陽能電池及其製造方法
TWI493736B|2015-07-21|薄膜太陽能電池及其製造方法
TWI509820B|2015-11-21|薄膜太陽能電池及其製造方法
JP2013506991A|2013-02-28|太陽光発電装置及びその製造方法
JP2013507766A|2013-03-04|太陽光発電装置及びその製造方法
KR20110035715A|2011-04-06|태양전지 및 이의 제조방법
JP2014033202A|2014-02-20|薄膜太陽電池モジュール及びその製造方法
US20150287843A1|2015-10-08|Solar cell with dielectric layer
JP5840213B2|2016-01-06|太陽光発電装置及びその製造方法
KR101440896B1|2014-09-18|박막 태양전지 모듈 및 이의 제조방법
US10134932B2|2018-11-20|Solar cell and method of fabricating the same
JP2013115233A|2013-06-10|光電変換モジュール
KR101428146B1|2014-08-08|태양전지 모듈 및 이의 제조방법
TW201322476A|2013-06-01|薄膜太陽能電池內形成互連的方法及薄膜太陽能電池
KR20110043358A|2011-04-27|태양전지 및 이의 제조방법
JP2011103425A|2011-05-26|光電変換装置
US9570636B2|2017-02-14|Solar cell and method of fabricating the same
KR101231284B1|2013-02-07|태양전지 및 이의 제조방법
KR101034146B1|2011-05-13|태양전지 및 이의 제조방법
JP2011233639A|2011-11-17|光電変換装置
KR20100109310A|2010-10-08|태양전지 및 이의 제조방법
EP2876692A1|2015-05-27|Solar cell and method for manufacturing the same
JP2014099613A|2014-05-29|太陽電池及びその製造方法
JP2013522926A|2013-06-13|太陽光発電装置及びその製造方法
JP5642023B2|2014-12-17|光電変換モジュール
同族专利:
公开号 | 公开日
CN103165712A|2013-06-19|
TWI487129B|2015-06-01|
DE102012107588A1|2013-06-20|
US9166094B2|2015-10-20|
CN103165712B|2016-09-14|
US20130153015A1|2013-06-20|
US20140227822A1|2014-08-14|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
TWI477342B|2013-09-12|2015-03-21|Nexpower Technology Corp|雷射切割方法|US4262161A|1980-01-16|1981-04-14|Shell Oil Company|Covered solar cell assembly|
US5821597A|1992-09-11|1998-10-13|Semiconductor Energy Laboratory Co., Ltd.|Photoelectric conversion device|
DE10136743B4|2001-07-27|2013-02-14|Epcos Ag|Verfahren zur hermetischen Verkapselung eines Bauelementes|
JP4194468B2|2003-10-10|2008-12-10|シャープ株式会社|太陽電池およびその製造方法|
DE102004055333A1|2004-11-16|2006-05-18|Technische Universität Dresden|Barriereschichtsystem zur zuverlässigen Verkapselung von funktionellen Elementen|
US7759158B2|2005-03-22|2010-07-20|Applied Materials, Inc.|Scalable photovoltaic cell and solar panel manufacturing with improved wiring|
US20070068571A1|2005-09-29|2007-03-29|Terra Solar Global|Shunt Passivation Method for Amorphous Silicon Thin Film Photovoltaic Modules|
KR101053790B1|2007-07-10|2011-08-03|주성엔지니어링|태양 전지 및 그 제조 방법|
KR101000057B1|2008-02-04|2010-12-10|엘지전자 주식회사|다층 투명전도층을 구비한 태양전지 이의 제조방법|
WO2010002005A1|2008-07-04|2010-01-07|株式会社アルバック|太陽電池セルの製造方法及び太陽電池セル|
KR20110091683A|2008-10-20|2011-08-12|이데미쓰 고산 가부시키가이샤|광기전력 소자 및 그 제조 방법|
JP5334645B2|2009-03-31|2013-11-06|富士フイルム株式会社|可撓性太陽電池モジュール|
CN102804399A|2009-06-16|2012-11-28|Lg伊诺特有限公司|太阳能电池及其制造方法|
KR20110014913A|2009-08-06|2011-02-14|삼성전자주식회사|태양 전지 모듈 및 그 제조 방법|
EP2497123A2|2009-11-05|2012-09-12|Dow Global Technologies LLC|Manufacture of n-type chalcogenide compositions and their uses in photovoltaic devices|
TWI435457B|2010-01-22|2014-04-21|Nexpower Technology Corp|薄膜太陽能電池電極佈設方法及其薄膜太陽能電池結構|
US20130118569A1|2011-11-14|2013-05-16|Taiwan Semiconductor Manufacturing Co., Ltd.|Method for forming thin film solar cell with buffer-free fabrication process|
US20130153015A1|2011-12-15|2013-06-20|Taiwan Semiconductor Manufacturing Co., Ltd.|Method for forming solar cells|
US20140076392A1|2012-09-18|2014-03-20|Tsmc Solar Ltd.|Solar cell|US10060180B2|2010-01-16|2018-08-28|Cardinal Cg Company|Flash-treated indium tin oxide coatings, production methods, and insulating glass unit transparent conductive coating technology|
US10000411B2|2010-01-16|2018-06-19|Cardinal Cg Company|Insulating glass unit transparent conductivity and low emissivity coating technology|
US10000965B2|2010-01-16|2018-06-19|Cardinal Cg Company|Insulating glass unit transparent conductive coating technology|
US20130153015A1|2011-12-15|2013-06-20|Taiwan Semiconductor Manufacturing Co., Ltd.|Method for forming solar cells|
JP6261844B2|2012-02-20|2018-01-17|株式会社ディスコ|レーザー加工方法およびレーザー加工装置|
US20140203322A1|2013-01-23|2014-07-24|Epistar Corporation|Transparent Conductive Structure, Device comprising the same, and the Manufacturing Method thereof|
US20140251420A1|2013-03-11|2014-09-11|Tsmc Solar Ltd.|Transparent conductive oxide layer with localized electric field distribution and photovoltaic device thereof|
US20140261657A1|2013-03-14|2014-09-18|Tsmc Solar Ltd.|Thin film solar cell and method of forming same|
US20150083212A1|2013-09-23|2015-03-26|Markus Eberhard Beck|Thin-film photovoltaic devices with discontinuous passivation layers|
US20150236183A1|2014-02-19|2015-08-20|Tsmc Solar Ltd.|Solar cell and method of fabricating same|
US11028012B2|2018-10-31|2021-06-08|Cardinal Cg Company|Low solar heat gain coatings, laminated glass assemblies, and methods of producing same|
CN111463315B|2019-08-26|2021-08-20|杭州纤纳光电科技有限公司|一种太阳能电池切割钝化一体化加工方法及其太阳能电池|
法律状态:
优先权:
申请号 | 申请日 | 专利标题
US13/326,458|US20130153015A1|2011-12-15|2011-12-15|Method for forming solar cells|
[返回顶部]