专利摘要:
本發明的解決手段在於一種陶瓷磁性光學材料,其特徵為:由以下述式(1) (TbxRe1-x)2O3 (1) (式中,Re表示由鈧、釔、鑭、銪、釓、鐿、鈥、鎦中所選出之至少1個元素,0.4≦x≦1.0)所示之氧化物為主成分之氧化物陶瓷所構成,於25℃之上述氧化物陶瓷結晶之粒界的折射率與主相的折射率之差為0.004以下。效果為若依照本發明,則可確實地提供偏光狀態良好、消光比大之光隔離器法拉第旋轉器用等之陶瓷磁性光學材料,可提供加工機用纖維雷射中使用的光隔離器之小型化。
公开号:TW201302658A
申请号:TW101109113
申请日:2012-03-16
公开日:2013-01-16
发明作者:Tadakatsu Shimada
申请人:Shinetsu Chemical Co;
IPC主号:C01F17-00
专利说明:
陶瓷磁性光學材料及其選定方法
本發明關於光隔離器等之構成磁性光學裝置(例如法拉第旋轉器)所用之陶瓷磁性光學材料及其選定方法。
近年來,隨著雷射加工機之進展,利用光與磁性的相互作用之磁性光學裝置係受到注目。其1個為隔離器,此係抑制當自雷射光源所振盪的光被途中的光學系反射而返回到光源時,擾亂自雷射光源所振盪的光,成為不安定的振盪狀態之現象。因此,利用該作用,光隔離器係配置於雷射光源與光學零件之間而利用。
光隔離器具有法拉第旋轉器、配置於法拉第旋轉器之光入射側的偏光鏡、與配置於法拉第旋轉器之光出射側的檢偏鏡這3個零件。光隔離器係利用在與光的行進方向呈平行地對法拉第旋轉器施加磁場之狀態下,將光入射於法拉第旋轉器時,在法拉第旋轉器之中偏光面旋轉之性質,即所謂法拉第效果。即,於入射光之中,具有與偏光鏡相同的偏光面之光係通過偏光鏡,入射於法拉第旋轉器。此光係在法拉第旋轉器之中,相對於光的行進方向而言,被旋轉+45度而出射。
相對於其,自與入射方向相反的方向,入射於法拉第旋轉器而返回的光,在最初通過檢偏鏡時,僅具有與檢偏鏡相同的偏光面之成分的光穿透檢偏鏡,入射於法拉第旋轉器。其次,在法拉第旋轉器之中,返回的光之偏光面,由於自最初的+45度進一步旋轉+45度,故成為與偏光鏡的+90度直角之偏光面,返回的光係無法穿透偏光鏡。
作為如上述之光隔離器的法拉第旋轉器使用之材料,必須法拉第效果大,而且在其使用的波長中,穿透率高。
又,若在出射光內發生與入射光不同的偏光成分,則由於此不同的偏光成分穿透偏光鏡,而返回的光之遮斷變不充分。
作為此不同的偏光成分之發生狀態的評價,對於作為法拉第旋轉器使用的材料,入射0度~90度的偏光,使出射光通過偏光鏡而入射於受光器,以受光器測定光的強度,自最大值(Imax)與最小值(Imin),藉由下式來計算消光比(S)而評價。
S=-10 log(Imin/Imax) [單位dB]
消光比宜為大者,一般要求30dB以上。
於特開2010-285299號公報(專利文獻1)中,揭示作為費爾德(Verdet)常數大的素材,(TbxR1-x)2O3:0.4≦x≦1.0之氧化物單結晶及透明氧化物陶瓷。
透明氧化物陶瓷與氧化物單結晶比較下,由於壓低反應溫度,而可用單純設備進行大量生產,由於便宜,工業上前途有望。
例如,日本發明專利第4033451號公報(專利文獻2)中,記載通式R2O3(R為稀土類元素)所示之稀土類氧化物,係其結晶構造為立方晶,沒有雙折射。因此,藉由完全去除氣孔或雜質的偏析,可得到透明性優異之燒結體。
又,如特開平5-330913號公報(專利文獻3)所示,為了去除氣孔,燒結助劑之添加係有效。再者,如在日本發明專利第2638669號公報(專利文獻4)中,亦揭示在進行熱作等向加壓成形步驟後,進行再燒結,而去除氣孔之方法。
另一方面,若增加燒結助劑,長時間進行熱處理,則在粒界發生燒結助劑等的偏析,在某一情況下,於結晶粒子的主相之折射率與粒界之折射率發生差異。
如此地,於主相與粒界的折射率發生差異時,所穿透的光之偏光狀態係變化,具體地消光比變小,使用此所製造的光隔離器之光分離度係有變差之問題。 [先前技術文獻] [專利文獻]
[專利文獻1]特開2010-285299號公報
[專利文獻2]日本發明專利第4033451號公報
[專利文獻3]特開平5-330913號公報
[專利文獻4]日本發明專利第2638669號公報
本發明之目的在於提供偏光狀態良好、消光比大之陶瓷磁性光學材料及其選定方法。
本發明者為了解決上述問題,重複專心致力的檢討,結果以費爾德常數大且常磁性元素的鋱氧化物與稀土類(鈧、釔、鑭、銪、釓、鐿、鈥及鎦)氧化物為主成分,於其中加入一或複數的燒結助劑,混合、成形、初步焙燒後,在真空下燒結,更在HIP處理後退火處理,於製造陶瓷時,各式各樣地改變各步驟的時間、溫度、環境等之條件,調查所得之陶瓷的粒子主相與粒界的折射率差和消光比之關係,結果發現折射率差若小於0.004,則燒結助劑等對粒界的偏析亦少,為非常地均質,得到消光比優異的材料之點,終於完成本發明。
因此,本發明提供下述所示之陶瓷磁性光學材料及其選定方法。
[1]一種消光比大之陶瓷磁性光學材料之選定方法,其特徵為:自以下述式(1)(TbxRe1-x)2O3 (1)(式中,Re表示由鈧、釔、鑭、銪、釓、鐿、鈥、鎦中所選出之至少1個元素,0.4≦x≦1.0)所示的氧化物為主成分之氧化物陶瓷中,選定在25℃之上述氧化物陶瓷結晶之粒界的折射率與主相的折射率之差為0.004以下的氧化物陶瓷。
[2]如[1]記載之選定方法,其中陶瓷磁性光學材料係光隔離器法拉第旋轉器用。
[3]一種陶瓷磁性光學材料,其特徵為:由以下述式(1)(TbxRe1-x)2O3 (1)(式中,Re表示由鈧、釔、鑭、銪、釓、鐿、鈥、鎦中所選出之至少1個元素,0.4≦x≦1.0)所示的氧化物為主成分之氧化物陶瓷所構成,在25℃的上述氧化物陶瓷結晶之粒界的折射率與主相的折射率之差為0.004以下。
[4]如[3]記載之陶瓷磁性光學材料,其係光隔離器法拉第旋轉器用。
依照本發明,可確實地提供偏光狀態良好、消光比大之光隔離器法拉第旋轉器用等之陶瓷磁性光學材料,可提供加工機用纖維雷射中使用的光隔離器之小型化。[實施發明的形態]
本發明的光隔離器法拉第旋轉器用陶瓷磁性光學元件之特徵為:由以下述式(1)(TbxRe1-x)2O3 (1)(式中,Re表示由鈧、釔、鑭、銪、釓、鐿、鈥、鎦中所選出之至少1個元素,0.4≦x≦1.0)所示的氧化物為主成分,較佳在波長1.065μm的費爾德常數為0.18min/Oe.cm以上的氧化物陶瓷所構成,於25℃之該氧化物陶瓷結晶之粒界的折射率與結晶主相的折射率之差為0.004以下,較佳為消光比25dB以上,更佳為30dB以上,尤其35dB以上。
上述式(1)中,x可為0.4以上,較佳為0.5~0.9,更佳為0.5~0.7。Re為上述元素,特佳為Y、Gd。
此時,氧化物陶瓷含有鈦、鋯、鉿、鈣等的氧化物、氟化物或氮化物等的燒結助劑,而且按照需要,相對於式(1)的氧化物100質量份而言,可含有0.0001~0.01質量份的氧化鎂、氧化鍶、氧化鋇等的鹼土類金屬之氧化物。
上述氧化物陶瓷基本上可採用特開2010-285299號公報中記載的方法,藉由習用的一般方法,以費爾德常數大且常磁性元素的鋱氧化物與稀土類(鈧、釔、鑭、銪、釓、鐿、鈥及鎦)氧化物為主成分,作為燒結助劑,例如添加一或複數的特開平5-330913號公報等所揭示之燒結助劑,尤其鈦、鋯、鉿、鈣等的氧化物、氟化物或氮化物等之燒結助劑,混合、成形、初步焙燒後,在真空下燒結,更進行HIP處理,而可製造。
於此情況下,在本發明中,於所得之氧化物陶瓷之中,選定採取該氧化物陶瓷之結晶粒界的折射率與結晶主相的折射率整差為0.004以下者,當作均質性高、消光比大者。
主相與粒界的折射率差之測定,由於反射光強度隨著折射率而變化,故藉由圖1所示的以下之方法來求得。
將所測定的陶瓷(被測定物)1之端面予以鏡面研磨,設置於移動其之台2上。此移動台2係安裝在裝配於馬達3的滾珠螺桿4上,而成為可移動。再者,5為基台。
而且,對上述被測定物1,將來自光源6的測定光自斜上方照射。測定光係被光束擴展器7擴大後,被鏡面8反射,藉由物鏡9照射在被測定物1,而使微小區域的測定成為可能。又,測定波長愈短,愈可測定更微小的區域。而且,以受光器(功率計)10接受所反射的光,檢測強度。
若一邊移動被測定物,一邊以檢測器觀察所得之信號,則當粒界的折射率變化時,受光器的信號係變化。在被測定物與空氣的界面之反射率R,若以被測定物的折射率為n,則以R=(n-1)2/(n+1)2表示。
因此,可自受光器的信號之變化量來求得折射率。
再者,圖2係顯示來自馬達的位置資訊與來自功率計的反射光強度之關係的一例。
取決於測定光學系統,由於折射率的變化量與受光器之信號的變化量之關係改變,故貼合已知折射率的材料,與該貼合面呈垂直地鏡面研磨,藉由測定此樣品,可校正兩者的關係。
又,折射率差係可使被測定物成為薄片,藉由顯微鏡觀察,也可目視來定性地評價。
另外,藉由目視比較以上述的反射光測定折射率差的標準樣品與被測定物,可大致評價。 [實施例]
以下顯示實施例來具體地說明本發明,惟本發明係不受下述的實施例所限制。
以所用的莫耳比(40~70%:60~30%)之比例使用各種粒子大小之氧化鋱粉末與Y2O3或Gd2O3粉末,於其中添加0.5質量%作為燒結助劑的ZrO2、HfO2或TiO2,更添加有效量之作為分散劑及黏結劑的乙基纖維素與聚乙烯醇後,藉由球磨機將此等混合而得到混合物。接著,藉由將上述混合物噴霧乾燥,而得到粒徑數十微米的顆粒。使用前述顆粒,作為一次成形,進行模具成形後,作為二次成形,進行CIP而得到成形體。將所得之成形體在大氣中以400~1,000℃初步焙燒後,在指定的環境中以1,600~1,800℃燒成(正式燒成)。再者,對所得之燒成體,更進行HIP處理,視需要藉由退火處理,得到15種類的陶瓷(尺寸:直徑6mmΦ,長度10mm)。對於所得之陶瓷,測定其粒界的折射率與主相的折射率之折射率差及消光比。圖3中顯示結果。
再者,折射率係依照上述方法,使用「橢圓偏光計」當作折射率計,測定在25℃的布魯斯特角(Brewster angle),求得折射率。又,消光比之評價,係對於作為法拉第旋轉器使用的材料,入射0度~90度的偏光,使出射光通過偏光鏡而入射於受光器,以受光器測定光的強度,自最大值(Imax)與最小值(Imin),藉由下式計算消光比(S),進行評價。S=-10 log(Imin/Imax) [單位dB]圖3中顯示結果。
藉由成為折射率差0.004以下,消光比變為30dB以上,確認折射率差愈小,消光比愈升高。
1‧‧‧陶瓷(被測定物)
2‧‧‧移動台
3‧‧‧馬達
4‧‧‧滾珠螺桿
5‧‧‧基台
6‧‧‧光源
7‧‧‧光束擴展器
8‧‧‧鏡面
9‧‧‧物鏡
10‧‧‧受光器
圖1係粒界及主相之折射率測定裝置之說明圖。
圖2係顯示位置資訊與反射光強度的關係之一例之說明圖。
圖3係顯示折射率差與消光比的關係之圖。
权利要求:
Claims (4)
[1] 一種消光比大之陶瓷磁性光學材料之選定方法,其特徵為:自以下述式(1)(TbxRe1-x)2O3 (1)(式中,Re表示由鈧、釔、鑭、銪、釓、鐿、鈥、鎦中所選出之至少1個元素,0.4≦x≦1.0)所示的氧化物為主成分之氧化物陶瓷中,選定在25℃的上述氧化物陶瓷結晶之粒界的折射率與主相的折射率之差為0.004以下的氧化物陶瓷。
[2] 如申請專利範圍第1項之選定方法,其中陶瓷磁性光學材料係光隔離器法拉第旋轉器用。
[3] 一種陶瓷磁性光學材料,其特徵為:由以下述式(1)(TbxRe1-x)2O3 (1)(式中,Re表示由鈧、釔、鑭、銪、釓、鐿、鈥、鎦中所選出之至少1個元素,0.4≦x≦1.0)所示的氧化物為主成分之氧化物陶瓷所構成,在25℃的上述氧化物陶瓷結晶之粒界的折射率與主相的折射率之差為0.004以下。
[4] 如申請專利範圍第3項之陶瓷磁性光學材料,其係光隔離器法拉第旋轉器用。
类似技术:
公开号 | 公开日 | 专利标题
TWI547464B|2016-09-01|Ceramic magnetic optical materials and their selection methods
US11067835B2|2021-07-20|Method for producing transparent ceramic,transparent ceramic, magneto-optical device and rare earth oxide powder for sintering
TWI609998B|2018-01-01|透明陶瓷及其製造方法以及磁性光學裝置
EP3045958B1|2019-04-24|Magnetooptical material, manufacturing method therefor, and magnetooptical device
KR102262771B1|2021-06-08|자기 광학 재료 및 그 제조 방법과 자기 광학 디바이스
EP3269695B1|2020-09-30|Magneto-optical material, method for producing same and magneto-optical device
JP2015212210A|2015-11-26|磁気光学材料及び磁気光学デバイス
同族专利:
公开号 | 公开日
EP2687501A4|2014-09-10|
JP5692127B2|2015-04-01|
KR101899587B1|2018-11-02|
DK2687501T3|2019-10-14|
EP2687501A1|2014-01-22|
CN103502179B|2016-05-18|
US20140001424A1|2014-01-02|
JP2012206934A|2012-10-25|
EP2687501B1|2019-07-24|
KR20140011370A|2014-01-28|
TWI547464B|2016-09-01|
WO2012124753A1|2012-09-20|
CN103502179A|2014-01-08|
US9052415B2|2015-06-09|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
JPS6363488B2|1984-07-13|1988-12-07|||
US5013696A|1989-09-25|1991-05-07|General Electric Company|Preparation of high uniformity polycrystalline ceramics by presintering, hot isostatic pressing and sintering and the resulting ceramic|
JPH05330913A|1992-05-29|1993-12-14|Kurosaki Refract Co Ltd|レーザ用多結晶透明y2o3セラミックス|
JPH085960A|1994-06-17|1996-01-12|Tokin Corp|2段型光アイソレータ|
US5781299A|1996-09-24|1998-07-14|Phase Metrics|Determining the complex refractive index phase offset in interferometric flying height testing|
JP2001322871A|2000-03-07|2001-11-20|Shin Etsu Chem Co Ltd|希土類元素を含有する酸化物焼結体およびその製造方法|
JP3703737B2|2001-05-30|2005-10-05|住友電気工業株式会社|光半導体気密封止容器及び光半導体モジュール|
US6825144B2|2001-07-05|2004-11-30|Konoshima Chemical Co., Ltd.|Translucent rare earth oxide sintered article and method for production thereof|
JP4033451B2|2001-07-05|2008-01-16|神島化学工業株式会社|透光性希土類酸化物焼結体及びその製造方法|
JP2006282447A|2005-03-31|2006-10-19|Fuji Photo Film Co Ltd|透光性材料およびその製造方法|
JP2007277034A|2006-04-05|2007-10-25|Sumitomo Electric Ind Ltd|多結晶Al2O3焼結体およびその製造方法|
DE102006027957A1|2006-06-14|2007-12-20|Schott Ag|Optische Elemente sowie Abbildungsoptiken|
CN101446688A|2008-12-15|2009-06-03|中国科学院上海技术物理研究所|利用金属平面反射镜对光学系统消偏振的方法|
JP5393271B2|2009-06-09|2014-01-22|信越化学工業株式会社|酸化物及び磁気光学デバイス|
JP5526313B2|2009-12-14|2014-06-18|株式会社オキサイド|磁気光学素子用透光性酸化テルビウム焼結体|
JP5762715B2|2010-10-06|2015-08-12|信越化学工業株式会社|磁気光学材料、ファラデー回転子、及び光アイソレータ|
DK2500763T3|2011-03-16|2015-09-07|Shinetsu Chemical Co|A process for producing a Faraday rotator|WO2015008553A1|2013-07-19|2015-01-22|信越化学工業株式会社|磁気光学材料及びその製造方法並びに磁気光学デバイス|
KR20170127479A|2015-03-11|2017-11-21|신에쓰 가가꾸 고교 가부시끼가이샤|자기 광학 재료, 그 제조 방법 및 자기 광학 디바이스|
EP3290997B1|2016-09-02|2020-07-01|Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.|Magneto-optical light modulator|
JP6848904B2|2018-03-09|2021-03-24|信越化学工業株式会社|透明セラミックスの製造方法、透明セラミックス並びに磁気光学デバイス|
JP2019156712A|2018-03-09|2019-09-19|信越化学工業株式会社|透明複合酸化物焼結体の製造方法、透明複合酸化物焼結体並びに磁気光学デバイス|
CN111138192A|2020-01-03|2020-05-12|上海应用技术大学|一种氧化镥铽磁光透明陶瓷的真空热压制备方法|
KR102346665B1|2020-08-27|2022-01-03|선문대학교 산학협력단|사이알론계 자성재료 및 그 제조방법|
法律状态:
优先权:
申请号 | 申请日 | 专利标题
JP2011057783||2011-03-16||
JP2012058146A|JP5692127B2|2011-03-16|2012-03-15|セラミックス磁気光学材料の選定方法|
[返回顶部]