专利摘要:
本発明は、発光装置の分野に関し、より詳細には、光透過要素2を有する発光装置1に関する。前記光透過要素は、更に、光を生成する半導体ダイオード構造3と、半導体ダイオード構造3からの光を光透過要素2内に反射する反射セクション22と、半導体ダイオード構造3の光を出力する出力セクション21とを有する。この発光装置1は、半導体ダイオード構造3からの光を出力セクション21に向かって反射する、光透過要素2の側部表面を少なくとも部分的に包囲している反射構造4を有する。
公开号:JP2011515846A
申请号:JP2011500339
申请日:2009-03-18
公开日:2011-05-19
发明作者:ヘンドリク;ジェイ;ビー ヤフト
申请人:コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ;
IPC主号:H01L33-60
专利说明:

[0001] 本発明は、半導体発光装置の分野に関し、より詳細には、光を生成する半導体ダイオード構造を有する光透過要素を有する発光装置に関する。]
背景技術

[0002] 発光ダイオード(LED)、高出力LED、有機発光ダイオード(OLED)及びレーザダイオードのような、半導体ダイオードは、小さいエタンデュ(即ち発光面積と光が発される立体角との積)を有するエネルギ効率的な小さい光源であることが、知られている。このことは、これらのダイオードが、限られた角度範囲(例えば、半球面)に限定された比較的小さい面積から光を発することを意味している。半導体ダイオードを使用することにより、小さく効率的な光学システムが、構築されることができる。このような光学システムは、典型的には、何らかの特定の用途によって必要とされる更なる処理のために光をコリメートする/指向する。用途の典型的な例は、投影システム、自動車の前方照明、カメラのLEDフラッシュ及びスポット照明である。これらの用途のほとんどに関して、前記LEDのエタンデュの更なる減少が、設計の改良された小型化に関して望ましい。しかしながら、単に、半導体ダイオード全体を縮小することによる前記半導体ダイオードの大きさの減少は、生成される光束を減少する。特定の光学設計の効率を増大させることのように、光の方向及び発光面積の位置を改善するための努力がなされている。例えば、装置のエッジに向かって発された光又は前記半導体ダイオードを包囲するリフレクタに向かって後方に発される光は、通常、コリメート光学系において使用し難く、当該半導体ダイオードのエタンデュを増大させる。]
発明が解決しようとする課題

[0003] 米国特許第5,528,057号において、傾斜した同心の表面部分(反射レンズ層)を有する光学的な反射表面を有する発光要素であって、発光領域内で生成された光を、この要素の出射窓に向かって集束させる発光要素が、開示されている。この発光要素は、活性層の領域が前記発光領域として機能するように、構成されている。不利なことには、前記発光要素の効率は、劣っている。]
[0004] 本発明の目的は、従来技術のこの問題を軽減することにある。]
課題を解決するための手段

[0005] この目的は、添付の独立請求項1に説明されている照明装置と添付の独立請求項15に説明されている照明システムとによって対処される。特定の実施例は、従属クレームにおいて規定されている。]
[0006] 本発明の見地によれば、光を生成する半導体ダイオード構造(又は半導体ダイオード)と、このダイオードからの光を光透過要素内に反射する反射セクションと、光をこのダイオード構造から出力する出力セクションとを有する前記光透過要素(又は、光透過アセンブリ)を有する発光装置が、提供される。更に、前記発光装置は、少なくとも部分的に前記光透過要素の側部表面を包囲している反射構造であって、前記ダイオード構造からの光を前記出力セクションに向かって反射する反射構造を更に有する。]
[0007] 本発明の他の見地によれば、本発明の実施例による発光装置を有している照明システムが、提供される。]
[0008] 本発明の思想は、光出力セクションを減少させることによって減少されたエタンデュを有すると共に、生成される光(又は光束)の量を維持している発光装置を提供することにある。この発光装置は、発光(又は透過)要素(又は発光アセンブリ)及び反射構造を有しており、前記反射構造は、少なくとも部分的に、前記発光要素及び少なくとも1つの半導体ダイオード構造(又は半導体ダイオードダイ)を含んでいる。前記光透過要素の(光が発される/抽出されることができる)(複数の)表面は、異なる特性を有する少なくとも2つのセクション又は領域(即ち(複数の)前記表面はパターン化されていても良い)に分割される。少なくとも1つの領域は、より高い抽出効率を有する一方で、少なくとも1つの他の領域は、高い反射効率(又は低い抽出効率)を有する。即ち、反射セクション及び/又は前記出力セクションは、前記発光要素の上部表面に及び/又は前記発光要素の1つ以上の側部表面に配されても良い。この上部表面は、前記発光要素が、自身の上部表面とサブマウントとの間に位置されるように、(この上に前記半導体ダイオード構造が配され得る)サブマウントに対向して配されても良い。高い反射効率を有する(少なくとも1つの)セクションは、このような光が(直接的にか、又は、例えば、反射構造における付加的な反射を介してかの何れかにおいて)前記出力セクションに向かって反射され、これによって前記発光装置からの光束に寄与することができるように、前記半導体ダイオードからの光を前記発光要素内に反射して戻すことを目的としている。(前記光透過要素を包囲している)前記反射構造も、直接的にか、又は、例えば、前記反射セクションにおける付加的な反射を介してかの何れかによって光を反射し、この結果、反射された光は、最終的に、前記出力セクション(出力表面)を介して発されることができる。]
[0009] 更に、抽出されない光は、前記反射構造及び前記半導体ダイオード構造(又は半導体ダイオード)における低損失条件を最適化することによって再利用される。従って、前記光は、前記光が発される抽出領域(又は、出力セクション)に当たるまで、前記キャビティ内ではね返る。結果として、全光束のうちの一部が失われ得るが、前記出力セクションにおける束密度(輝度)は、増大され得る。上述によれば、減少したエタンデュを有する発光装置が得られると共に、当該発光装置の光束をできるだけ高く保持することができる。有利には、規定されている出力セクションを介して発された光は、アプリケーションにおいてより容易に使用され、何らかの利用されている光学構造のより小さい設計をもたらす。]
[0010] 全光束の損失が生じるか否かは、当該装置の構造に依存し、特に、包囲サブマウントの構造に依存するかに留意されたい。低い反射率を有するサブマウントは、結果として、前記発光要素のエッジによって前記サブマウントに発される光に対する高い光損失をもたらす。従って、高い反射率の反射構造を利用し、これにより束密度が増大され得るのが好ましい。]
[0011] 更に、前記LEDによって発される全光束が減少し得る場合でさえも、光学構造(例えばコリメータ)における有効な全光束は、多くの光が当該用途において最も効果的に使用される方向において発されるほど、増大し得る。例えば、前記発光要素の上部表面(即ちセクションに分けられる上述の表面)に対して垂直な角度(0度)のうちの10—15%近くの輝度の上昇は、前記コリメータ(前記光学構造)内の光ゲインをもたらすが、より大きい角度(例えば、80〜90度)における前記光束は、前記コリメータによって効率的に使用されない。]
[0012] 「上」、「下」、「上部」、「底部」、「上側」、「下側」、「上方」、「下方」等は、前記半導体ダイオード構造に平行な平面を参照しているものととられるべきであり、単に明確さを向上させるために使用されている。従って、前記発光装置は、如何なる角度においても傾斜されることができ、これらの符号は、現在認められている特定の発光装置の実際の位置に関して再解釈される必要があることに留意されたい。]
[0013] 更に、前記光透過要素の側部表面が、前記出力セクションの平面に対して一般に垂直であることにも留意されたい。しかしながら、他の角度の方位は、如何なる特定の用途に関しても実現され得る。前記半導体ダイオード構造は、上部発光型のものであることが好ましい。]
[0014] 更に、前記リフレクタ構造は、例えば、反射層、反射コーティング、反射薄膜又はリフレクタ、(ダイクロック)ミラー、散乱リフレクタ、金属リフレクタ、ダイクロックリフレクタ又はこれらの組合せ等のような、如何なる適切なリフレクタ手段も有し得る。]
[0015] 「光を生成する半導体ダイオード構造」なる表現は、レーザダイオード、特に、VCSEL(垂直キャビティ面発光レーザ)又は発光ダイオード(LED)等を含むものとして理解されるべきである。VCSELは、一般に、上部表面を介したコリメートされた放出を有することに留意されたい。従って、一般に、VCSELは、上部表面を介するが側部表面は介さずに、光を発するのみである。しかしながら、VCSELを紫外線又は青色光を他の色に変換するための蛍光体と組み合わせる場合、光は散乱され、光は、場合によっては、前記側部表面を介して発される。]
[0016] 本発明による発光装置の実施例において、前記ダイオード構造の光生成領域は、できるだけ大きいほうが好ましいことが分かっている。更に、(複数の)前記出力セクションの領域は、当該光透過構造の上部表面の面積よりも小さい(及び前記ダイオード構造の(複数の)前記光生成領域の面積よりも小さい)ことが好ましい。好ましくは、(複数の)前記出力セクションの領域に対する(複数の)前記反射セクションの領域の比は、比較的小さく、即ち(複数の)前記出力セクションは、(複数の)前記反射セクションと比較して大きい。前記出力セクションは、光が生成される領域よりも小さく、前記エタンデュは減少され、前記反射構造によるリサイクルのため、輝度の利得が達成される。この態様において、前記発光装置のエタンデュは、減少され、即ち大きい光束が出力セクションから生成されて発され、前記出力セクションは、前記発光要素の上部表面の一部(又は前記発光要素の側部表面の一部)を構成し得る。更に、幾つかの実施例において、前記側部表面は、前記反射構造によって実質的に完全に包囲されているのが好ましい。]
[0017] 本発明による発光装置の実施例において、反射セクションは、前記光透過要素の屈折率未満の屈折率を有する材料を備えており、これにより、光は、内部全反射によって反射され得る。即ち、前記光透過要素の第1の屈折率から、前記反射セクションにおいて設けられている材料の前記第1の屈折率より低い屈折率への変化が提供される。この態様において、前記反射セクション上に入射した光の実質的な部分は、内部全反射によって反射される。このことは、特に、前記光透過要素の屈折率が、高い反射率(前記反射セクション)を備える領域と比較してより高い場合に、生じる。]
[0018] 本発明による発光装置の他の実施例において、前記反射構造は、更に、前記反射セクションを包囲しており、即ち前記反射セクションにおける反射手段は、前記光透過要素を少なくとも部分的に包囲している反射構造及び前記光透過要素の前記反射セクションによって提供されることができる。(前記出力セクションと比較して)低い抽出効率を有する(少なくとも1つの)このセクションは、更に、このセクション又はこれらのセクションに入射する光を殆ど損失(吸収)しないように、低い光学損失特性を有し得る。典型的には、前記反射セクションは、100%に近い反射係数を有している高い反射性のコーティング(又は層)を有している。例えば、拡散散乱コーティング、金属ミラー、ダイクロイックミラー又はこれらの組合せが、使用されても良い。]
[0019] 本発明による発光装置の他の実施例において、屈折率の遷移と反射構造との組合せを利用している反射セクションが、実現され得ることにも留意すべきである。]
[0020] 本発明による発光装置の更なる実施例において、前記出力セクションは、前方散乱領域又は前方散乱層/コーティング、マイクロ光学抽出構造体、マイクロプリズムピラミッド若しくは溝、拡散格子、ホログラフィー格子構造、フォトニック結晶若しくはフォトニック準結晶等、又はこれらの組合せのような、粗い領域を有している。このように、前記発光装置の抽出効率は、増大されることができる。]
[0021] 本発明による発光装置の更に他の実施例において、前記発光要素(又は光透過アセンブリ)は、更に、前記半導体ダイオードと出力セクションとの間に配された光ガイド層を更に有する。例えば、前記光ガイド層は、蛍光体材料、蛍光体セラミック材料、LED基板、透明YAG、ガラス、サファイア、アルミナ若しくは石英、又はこれらの組合せを有しても良い。前記光ガイド層が、蛍光体材料及び透明層(LED基板)を有する場合において、前記蛍光体材料及び前記透明層の全体の厚さは、前記半導体ダイオードの活性光生成層の厚さに調整されても良い。このような態様において、前記装置の効率は、一般に、前記光ガイド層が実質的に非損失性で非吸収である場合に、増大されることができる。]
[0022] 本発明による発光装置の更に他の実施例において、前記出力セクションは、第1の蛍光体(セラミック)材料を備えている。このような態様において、前記発光装置から発される光の色の成分は、制御されることができる。]
[0023] 更に、本発明による発光装置の更に他の実施例において、前記出力セクションで設けられている、蛍光体(セラミック)材料は、前記光ガイド層に含まれている蛍光体(セラミック)材料と異なる種類であっても良い。例えば、青色光を発する半導体ダイオードと、YAG:Ce(青色光を、緑、黄色及び幾分か赤色の光に変換する)のような、白色(即ち赤色、緑色及び青色の混合)の光束をもたらす蛍光体材料の光ガイド層と、赤色の蛍光体材料を有する出力セクションとを有する発光装置は、暖かい白色光放出を提供し得る。青色光の一部は、白色蛍光体内で赤色、黄色及び緑色の光に変換され(これにより赤色、黄色、緑色及び青色の混合物としての白色光を供給する)、前記赤色蛍光体は、発せられた光における赤色の量を増大させ、この結果、発せられた光は、暖かい白色光(即ち赤色成分を有する白色光)として知覚される。]
[0024] 本発明による発光装置の更に他の実施例において、前記発光要素は、更に、前記第1の蛍光体(例えば、セラミック)材料とは異なる種類の、第2の蛍光体(例えば、セラミック)材料を備えている第2の出力セクションを有する。このような態様において、前記出力セクションからの異なる色の光は、非近接場(far field)において混合する。光のこの混合(色成分)は、配置、及び特定の色の出力セクションの数(即ち異なる蛍光体材料を備える出力セクション)によって決定され得る。例えば、青色光を発する半導体ダイオードを使用する場合、赤色蛍光体を備える2つの出力セクションと、緑色蛍光体(及びオプションとして幾らかの「空の」出力セクション)を備える1つの出力セクションとは、非近接場における暖かい白色光の放出を提供することができる。]
[0025] 更に、本発明による発光装置の幾つかの実施例において、前記発光要素は、出力セクションのアレイを有する。]
[0026] 更に、本発明による発光装置の実施例によれば、前記出力セクションの形状は、長方形、三角形、多角形、正方形、楕円、円形であっても良く、十字形又はテキストメッセージ若しくは画像でさえあっても良く、又はこれらの組合せの形態であっても良い。]
[0027] 本発明による発光装置の更に他の実施例において、前記出力セクションは、コリメータ、光抽出ドーム又はこれらの組合せを備えている。LEDは、通常、平坦な発光表面から空気への直接的な伝送と比較して、当該装置からより多くの光を抽出し、前記発光表面における内部全反射を減少させる半球状のドームを備えている。このような態様において、前記発光装置の光放出は、何らかの特定のアプリケーションによって必要に応じて制御されても良い。例えば、フラッシュとして使用されるLEDは、半球立体角の発せられた光を+/−20度のコリメートされたビームに絞るためのコリメータ光学部品と組み合わされ得る。類似の構造は、投影表示器のアプリケーションに使用され得る。]
[0028] 本発明の、更なるフィーチャ及び有利な点は、添付請求項及び以下の記述の研究する際に明らかになるであろう。当業者であれば、本発明の異なるフィーチャは、本発明の範囲を逸脱することなく、以下に記載されるもの以外の実施例を作るように組み合わされることができることを理解するであろう。]
図面の簡単な説明

[0029] 本発明の一実施例による発光装置の側断面図を示している。
図1による発光装置の側断面図を示しており、前記光透過要素が、LED基板を更に有している。
図2による発光装置の側断面図を示しており、前記出力セクションは、蛍光体材料を備えている。
本発明の他の実施例による発光装置の側断面図を示しており、前記光透過要素は、更に、白色蛍光体材料を有しており、前記出力セクションは、赤色蛍光体材料を備えている。
本発明の更に他の実施例による発光装置の側断面を示しており、前記発光装置は、前記出力セクションからの光をガイドするためのドームを備えている。
発光装置の斜視断面図を示しており、前記光透過要素は、蛍光体材料を有している。
図6による発光装置の他の実施例の斜視断面図を示している。
図6の発光装置の更なる実施例の斜視断面図を示しており、前記発光装置は、複数の出力セクションを備えており、各出力セクションは、正方形の形態である。
図8における発光装置の他の実施例の斜視断面図を示しており、各出力セクションは円の形態である。
本発明による発光装置の更なる実施例の斜視断面図を示しており、前記光透過要素は、LED基板を更に有しており、前記出力セクションの第1の集合は第1の種類の蛍光体材料を備えており、前記出力セクションの第2の集合は第2の種類の蛍光体材料を備えており、前記出力セクションの第3の集合は第3の種類の蛍光体材料を備えている。
本発明による発光装置の更に他の実施例の側断面を示しており、複数の出力セクションの各々は、対応する抽出ドームを備えている。
本発明による発光装置の更に他の実施例の側断面を示しており、複数の出力セクションの各々は、対応するコリメータを備えている。
本発明による発光装置の更に他の実施例の側断面を示しており、複数の出力セクションは、粗い抽出領域を備えている。
図14は、本発明による発光装置の更に他の実施例の側断面図を示しており、出力セクション及び反射セクションが、前記発光要素の側部表面に配されている。] 図1 図14 図2 図6 図8
実施例

[0030] 本発明の特定のフィーチャ及び有利な点を含む本発明の様々な見地は、以下の詳細な記述及び添付図面から容易に理解されるであろう。]
[0031] 以下の記載全体において、適用可能な場合、類似の符号は、類似の要素、部分、項目又はフィーチャを示すために使用されている。]
[0032] 図1において、本発明の一実施例による発光装置の側断面図が示されている。発光装置1は、光透過要素2を有しており、光透過要素2は、この場合、LEDダイ又はLEDチップ3と、リフレクタ4(反射構造)とである。前記発光装置は、サブマウント6上に取り付けられている。図1から分かるように、リフレクタ4は、LEDダイ3の上側表面を部分的に覆うように配される。結果として、LEDダイ3(LED層又は半導体ダイオード構造)の上側(図1による)表面は、LEDダイ3からの光を出力する出力セクション21と、LEDダイ3からの光を反射して前記LEDダイ内に戻す反射セクション22とを有する。この反射された光は、もう一度反射され、最終的に出力セクション21に当たり、これにより前記発光装置からの光束に寄与する。前記LEDダイのこの大きさは、典型的には、1mm×1mmであり、この厚さは、典型的には1〜10μmである。発光装置1の大きさは、非常に大きいものであり得る。前記リフレクタは、金属リフレクタ(典型的には、100nm厚を有する)、ダイクロックリフレクタ(典型的には、1—5μm厚)、散乱リフレクタ(典型的には、厚さ5—200μmであり、通常、約50μm))である。幾つかの実施例において、上部表面における金属(又はダイクロック)リフレクタを、側部表面における散乱リフレクタと組合せるのが好ましいものであり得る。] 図1
[0033] 更に、図1において、複数の楕円状の(又は、断面が楕円状の)要素(又は、単純にビーズ)が、示されている。これらのビーズは、半導体ダイオード3に駆動信号(電圧又は電流)を供給する正及び負の電気的接続を示している。このLEDダイ3は、TFFC(薄膜フリップチップ)型のものであり、LEDダイ3が、薄い層(最初の担体基板は、取り除かれている)を形成し、LEDダイ3は、サブマウント6上に逆さまに(「フリップされて」)取り付けられる。正及び負の端子は、LEDダイ3の同じ側部から接続されている。LEDチップ3内に、底部端子を上部のLED電極(図示略)に接続するための幾つかの電気バイア(図示略)が設けられている。前記ビーズは、模式的に、LEDダイ3の端子を示している。このLEDダイ3自体は、詳細には、示されていない。よく知られているように、LEDダイ3は、LEDダイ3の駆動のためのp,n—接合部及び端子を有する幾つかの半導体層から成る。更に、LEDダイ3の後部は、通常、高い反射率の層(例えば、金属リフレクタ)によって覆われており、前記高い反射率の層は、同時に前記ダイの後方電極でもあり得る。このようにして、前記LED内に生成される光は、典型的には、上方方向における半球内に発されるように強制される。図1に示されているLEDダイ3は、サブマウントを介して前記底部から接触させられる。しかしながら、LEDダイ3の後部とサブマウント6の接続パッドとの間のハンダ付け又は溶接プロセスによる更に直接的な電気的接触を作る他の接続技術も存在する。LEDダイ3とサブマウント6との間のビーズを有さない直接的な接触も、実現され得る。従って、実質的に、LEDダイ3全体が活性化され、本質的に完全なLEDダイ3上に延在する細長い光生成活性領域を作る。共通の上部接触構造が、使用されても良い。このような上部接触構造において、ワイヤ結合は、前記サブマウント上の接触領域から、前記LEDの上部電極に接触するために使用される。このことは、光学及び構成的な考慮のため、あまり好ましくない。] 図1
[0034] 更に、LEDダイ3の電極は、どちらかが光を同時に発するセグメント化された領域に分割され得る、又は前記セグメントへの電気的な接続に依存して、個々にアドレス指定され得る。このように、LEDダイ3は、別個に電気的に制御され得る様々な領域に分割されることができる。このセグメント化された領域は、同じLED基板上で互いに隣に作られても良く、共通電極、又は上部電極か若しくは下部電極かの何れかを共有していても良い。しかしながら、前記セグメントは、互いに近くに構成される別個のダイを構成しても良く、ここで、前記LEDダイは、マルチダイ型である。例えば、前記LEDダイは、赤、緑又は青色を発する領域から構成され得る。類似の考慮すべき事柄は、ソリッドステートレーザのような、他の発光半導体ダイオードにも当てはまる。]
[0035] ここで、図2を参照すると、図1に記載の発光装置の側断面図が、示されている。図2において、図1における発光装置の光透過要素2は、LED基板5(典型的には、100—300μm、好ましくは100μm厚を有する)を更に有している。LED基板5は、LEDダイ3よりも上方に設けられている。図において、3つの光ビーム31、32、33が、示されている。光ビーム31は、光が、光透過要素2の側部表面におけるリフレクタ4によって反射された後に出力セクション21上に入射し得ることを示している。第2の光ビーム32は、出力セクション21上への光の直接的な入射を示している。最後の光ビーム33は、出力セクション21において抽出される前に、リフレクタ4において(光透過要素2の側部表面の近くと、反射セクション22との両方において)数回反射されたビーム33を示している。基板から取り除かれたLEDダイ3を使用することも等しく可能であることに留意されたい。その代わり、LEDダイ3は、この上に前記リフレクタが固定される透明なタイルに結合されても良く、典型的には、接着結合(粘着層(図示略))によって結合される。あり得る有利な点は、LEDダイ3と前記リフレクタを備える前記透明なタイルとが、別個に生産されることができることにある。] 図1 図2
[0036] 図2において、リフレクタ4における反射(光ビーム31、32及び33)は、入射角及び反射角が、法線方向に対して等しい鏡面反射として示されている。しかしながら、これらの反射は、鏡面反射の代わりに拡散反射であっても良く、又は部分的な鏡面反射及び部分的な拡散反射の組合せであっても良い。このことは、使用されるリフレクタの種類に依存しし、例えば、滑らかな表面上に堆積されるアルミニウム又は銀のような、金属は、鏡面リフレクタであるのに対し、粗い表面上に堆積された金属は、典型的には、部分的にだけ鏡面反射性であると共に部分的に拡散反射性であり、反射角が入射角から逸脱し、この逸脱の量は、存在する粗さの量に依存する。好ましくは、前記リフレクタは、白色塗料又は多孔性セラミックのような、散乱(拡散)リフレクタであり、これにより、入射光は、光が、最小数の反射の相互作用によって前記出力セクションから漏出するような逸脱角度に再指向される。LED基板5又は別個に添付されている透明なタイルが、再指向の機能を達成するために、逸脱している屈折率の小さい孔、結晶又は小さい領域/粒子のような、散乱中心を有していても良い。] 図2
[0037] 図3は、図2による発光装置の側断面図を示している。この例において、出力セクション21は、蛍光体材料7を備えており、好ましくは、例えば、前記蛍光体を前記LED基板又は透明なタイル(結合層(図示略))に結合することにより、蛍光体セラミック材料を備えている。この蛍光体の色(例えば、赤、緑及び青色)は、特定の用途の要件に従って選択されても良い。幾つかの用途に関して、組合せにおいて幾つかの蛍光体材料を使用するのが望ましくあり得て、例えば、積層構造において、例えば、前記LEDダイからの光が青色である場合、赤色の層と組み合わされた緑色の層を使用するのが望ましくあり得る。この組み合わされた蛍光体は、積層構造におけるもの又は異なる出力領域21に横に配されたものであり、主に、図4(下記参照)に当てはまり、ここで、層8は、幾つかの積層蛍光体層(実施するのが最も容易である)又は横に配された組み合わされた蛍光体から構成され得る。この横に配された構成は、前記出力領域を介する光の色の割合を調整するために、LEDダイ(電極)分割(上記の通りの)と組み合わされても良い。図3において、層7は、蛍光体層の積層を含んでいても良く、又は横に配された蛍光体部分を有していても良い。この態様において、白色光(混合、又は赤、緑及び青色光)が、実現されても良い。有利には、前記出力セクションに設けられる前記層の厚さが、発せられる光の色成分を決定する。] 図2 図3 図4
[0038] 図3の発光装置の更なる例において、LED基板5(又は、図4における蛍光体要素8)は、前記LEDダイ(又は発光ソリッドステート装置)3の領域を越えて延在しても良い。LEDダイ3上の大きすぎる基板5は、このLED領域に対する前記基板の結合及び位置決めの正確さを促進するのに便利である。蛍光体層7の領域は、(図1の出力セクション21に設けられても良く、)LEDダイ3の領域よりも小さい。前記蛍光体層の厚さは、必ずしも、反射構造4の厚さと同じでなければならないというわけではないことに留意されたい。この蛍光体層7は、より薄い又はより厚いものであっても良い。このリフレクタコーティング4(反射構造)は、更に蛍光体層7の側部を覆っていても良く、前記出力セクションは、前記蛍光体層(又は前記蛍光体表面)の上部において規定されても良い。] 図1 図3 図4
[0039] 図4を参照すると、本発明の他の実施例による発光装置1の側断面図が、示されている。この例において、発光装置1は、50〜400μm厚、好ましくは120μm厚を有する、白蛍光体セラミック材料8を含んでいる光透過要素2を有している。更に、発光装置1の出力セクション21は、赤色蛍光体セラミック材料7を備えている。LEDダイ3は、青色光を発することができる。この構成において、LEDダイ3から発される光(典型的には青色光)は、白色蛍光体セラミック材料8内で赤及び緑色光に変換される(LEDダイ3からの青色光の一部は、全く変換されない)。前記光が発光装置1を出る前に、赤色蛍光体セラミック材料7は、通過する光を(典型的には、より長い波長の)赤色光に変換し、これにより、発せられた前記光の深い赤色の部分を増大させる。結果として、前記発光装置からの放出は、暖かい白色光として知覚される。この蛍光体層7は、厚さにおいて、前記リフレクタの厚さから逸脱していても良く、より薄いか又はより厚いかの何れかであっても良い。] 図4
[0040] 図4は、蛍光体層8が、青色光を、例えば、緑色、琥珀色又は赤色光に変換する構成を表していても良い。このような構成において、層7は青色吸収層を表していても良く、このことは、変換された緑色、琥珀色又は赤色光の通過を可能にする。このような態様において、何らかの少量の変換されていない青色光は、有色の緑色、琥珀色又は赤色放出に対する色彩純度の向上を提供するために、フィルタリングされる又は吸収される。発光装置の更なる例において、層7は、青色光を反射して、変換された光を透過するダイクロックフィルタを表していても良い。この場合、前記青色光は、蛍光体層8によって吸収され変換された光として発されるのに適切な機会を有しており、これにより前記青色光を再利用する。] 図4
[0041] 図において、例示的な発光装置は、LEDダイ3上に又はLEDダイ3の上方に配された蛍光体(セラミック)材料を有しており、薄い(2、3ミクロン厚の)結合又は粘着層(例えば、シリコーン)は、明確さのために省略されていることに留意されたい。前記蛍光体層が結合剤(例えば、シリコーン)内に分散されている蛍光体粒子から成る場合、結合層のようなものは、典型的には、必要とされない。]
[0042] 図5において、本発明の更に他の実施例による発光装置の側断面図が示されている。この例示的な発光装置1は、前記出力セクションにおける光抽出の効率を増大させるドーム9を有している。このドームは、典型的には、シリコーンのドームである。通常、前記ドームの外側は固いシリコーンであり、前記ドームの内側は、シリコーンゲルである。このドームは、(ドーム9を有さない場合と比較して出力セクション21における屈折率の差の減少により)前記蛍光体上の抽出表面における内部全反射を失敗させる(frustrating)効果を有する。この後の前記ドームから空気までの遷移が、湾曲している、丸いドームの表面において生じ、従って、多かれ少なかれこの界面の法線に近い角度において生じ、この結果、最小の光反射損失をもたらし、これにより前記抽出効率を最大化する。蛍光体材料8の抽出領域(出力セクション21)が通常よりも小さいので、ドーム9は従来のLEDと比較してより小さい大きさのものであっても良い。しかしながら、リフレクタ4における孔(出力セクション21)は、前記発光装置からのコリメートされた光の放出を達成するために、コリメータを備えていても良い。更に、反射層4は、サブマウント6の一部を覆っている。このような態様において、前記ドームの前記エッジ(前記ドームが前記サブマウントに接続する所)と前記ドームの中心における光透過要素との間に後退し得る前記ドームの出口からの如何なる光も、前記リフレクタが前記サブマウントよりも高い反射率を有するので、(サブマウント6に前記リフレクタ部分を有さない場合よりも)高い効率によって反射される。] 図5
[0043] 今、図6を参照すると、発光装置1の斜視断面図が、示されている。この例において、光透過要素2は、蛍光体材料8を有する。リフレクタ4は、蛍光体材料8の層上に設けられている。正方形形状の前記リフレクタにおける孔(出力セクション21)が、LEDダイ3からの光の放出のために形成される。リフレクタ表面22を越えて延在している正方形のガラスタイルのような、正方形の光学体(光ガイド層)は、出力領域における内部全反射を減少し、前記ガラスタイルの上部及び側部表面を介する光の抽出を提供するために、前記装置からより多くの光を抽出するために出力領域21に設けられても良い。] 図6
[0044] 図7は、図6による発光装置1の他の実施例の斜視断面図を示している。この例において、出力セクション21の形状は、円形である。このことは、円形の出力セクション21が、従来のLED(又は発光装置)からの典型的には正方形の放出を、円形の、角度対称な、丸い光ビームに変換するので、特に魅力的であることができる。有利には、この角度対称の光ビームは、抽出ドーム又は円形のコリメータ光学部品との組合せにおいて使用されることができる。しかしながら、出力セクション21の形状は、円形、正方形、三角形、長方形、楕円若しくは十字形であっても良く、又はテキストメッセージ若しくは画像/ロゴ等を含んでさえいても良いことに留意されたい。] 図6 図7
[0045] 図6の発光装置の更なる実施例が、図8に示されており、図8は、図6の発光装置の斜視断面図を示している。この図に示されているように、リフレクタ4は、複数の孔又は出力セクション21を備えている。この出力セクション21は、マトリックス状に配されているが、前記出力セクションは、線構造又は交差した線構造のような、多くの他の仕方において配されても(パターニングされても)良いことを理解されたい。このパターニングの自由度は、反射領域に対する出力領域の比の制御を可能にし、これにより前記抽出効率が影響を受ける。更に、このことは、異なる大きさ及び形状を有しながら、同様の反射領域に対する出力領域の比をもたらす、前記出力領域及び前記反射領域を作る可能性を可能にする。このような態様において、当該装置の領域にわたる全体の抽出の均一性又は当該装置の領域における抽出位置が、制御されることができる。更に、前記抽出領域のパターンは、ドーム、レンズ、コリメータ、色フィルタ、吸収フィルタ、ダイクロックフィルタのような、更なる光学要素のパターンに整合することができる。] 図6 図8
[0046] 図9には、図8の発光装置の他の実施例の斜視断面が示されている。ここで、出力セクション21は、リフレクタ4における円形の孔として成形されている。再び、円形の出力セクションは、ドーム又は円形のコリメータのような、円形の光学部品との組合せにおいて、特に便利なものであり得る。] 図8 図9
[0047] 図10は、本発明による発光装置の更なる実施例の斜視断面図である。この例において、光透過要素2は、LED基板5を更に有しており、出力セクションの第1の集合21は、空のままである又は透明材料によって充填されており、出力セクションの第2の集合22は、赤色蛍光体のような、第1の種類の蛍光体材料を備えており、出力セクションの第3の集合23は、緑色蛍光体のような、第3の種類の蛍光体材料を備えている。このLEDダイ3は、青色光を発することができる。この態様において、白色光を得るための、赤、緑及び青色光の混合が、実現されることができる。非近接場パターン(前記発光装置から離れた光)の色成分は、空の、赤色の及び緑色の出力セクションの割合によって決定される。もちろん、同様に、紫外線発光半導体装置も、使用されることができる。このような装置において、空の/透明な領域は、紫外線吸収−青色発光蛍光体によって充填されている。適切な青色、緑色及び赤色蛍光体の組合せは、白色光を提供する。] 図10
[0048] 更に、図11において、本発明による発光装置1の更に他の実施例の側断面図が、示されている。複数の出力セクション21の各々は、それぞれ、抽出ドーム9を備えている。この態様において、内部全反射される光の量が減少されるので、前記発光装置の抽出効率は増大される。この例において、光透過要素2は、蛍光体(セラミック)材料8を有する。しかしながら、この蛍光体材料は、LED基板、又はガラス等の透明な部分と交換されても良い。この透明材料は、前記光を更に拡散性のものにするために散乱中心を含んでいても良い。] 図11
[0049] 今、図12を参照すると、本発明による発光装置1の更に他の実施例の側断面図が示されている。この例において、複数の出力セクション21は、コリメータを備えており、好ましくは、図12に示されているように、各出力セクション21に対して1つのコリメータを備えている。出力セクション21から発される複数のビーム40は、このビームがコリメートされていることを示している。しかしながら、このビームは、互いに僅かに相違していても良い。] 図12
[0050] (図8—13に示されているような)出力セクションのこのアレイのパターンは、発光装置1を、小さくされた寸法を有する仮想光源に再分割している。これらの光源は、各々、図5及び11に示されているように抽出効率を向上するための自身の抽出ドームを有していても良い。更に、これらの仮想光源は、図12に示されているように、コリメートされている光束のアレイを達成するために、コリメータアレイ光学部品と組み合わされても良い。例えば、前記ドームの領域からの大きい角度分布を前記コリメータの領域からの小さい角度分布と組み合わせるために、幾つかの仮想光源におけるコリメータと幾つかの他の仮想光源におけるドームとを使用することも有利であり得る。更に、図11及び12における出力領域21は、図10と同様に、蛍光体材料によって覆われても良い。] 図10 図11 図12 図5 図8
[0051] 図13を参照すると、本発明による発光装置1の更に他の実施例の側断面図が、示されている。この例において、複数の出力セクション21は、例えば、前方散乱領域、マイクロ光学抽出構造体、マイクロプリズムピラミッド若しくは溝、回折格子、ホログラフィー格子構造及びフォトニック(準)結晶のような、粗い抽出領域を備えている。反射領域22は、これらのセクションに入射する光の大部分が内部全反射されるので、減少された抽出効率を有している。この光は、この入射光の大部分の角度が臨界角を超えているので、内部全反射される。付加的なリフレクタが、光学接触においてか又は光学接触を伴わずに(例えば、前記リフレクタと、光学本体又は光ガイド層8との間の薄い空気の間隙を有する)かの何れかにおいて、減少された抽出効率を有する領域に付加されて、抽出効率を更に低減すると共に、光を高い抽出効率を有する領域を介して再利用され再び発光されるように指向しても良い。光学体(光ガイド層)8は、蛍光体材料若しくはLED基板、又は入射光に対する非吸収性を有する他の何らかの光学要素であり得る。] 図13
[0052] この粗い領域は、出力セクション21の一部又は全てに設けられ得る。これらの表面が粗い構造は、本願明細書に記載されている如何なる実施例とも組み合わされて使用されることができることに留意されたい。明確には、これらの表面が粗い構造は、図5、11及び12と同様に、(複数の)ドーム構造又は(複数の)コリメータ構造と組み合わせられても良い。] 図5
[0053] 上述の実施例の全てにおいて、前記LED基板又は前記蛍光体材料のような、前記LEDダイ、前記LED基板、前記光学体(前記光ガイド層)の前記側部は、前記リフレクタによって覆われている。このことは、効率の理由に関して好ましい。しかしながら、これらの側部は、覆われることを必要としているのではなく、即ち部分的にのみ覆われても良い。同様に、前記出力セクションも、当該装置の上部表面における出力セクションに加えて又は前記上部表面における出力セクションの代わりに(この場合、均一な反射層を有する)、側部領域に設けられても良い。]
[0054] 今、図14を参照すると、LED基板5及びLEDダイ3を有する、発光要素2を有する発光装置1の例が示されている。この発光要素2は、発光要素2の側部表面に位置されている出力セクション21及び反射セクション22を有する。更に、発光装置は、リフレクタ4を有する。図14による発光装置1の他の例において、前記上部表面における出力セクション21及び反射セクション22が、省略されても良い。] 図14
[0055] これらの図(図11及び12を除く)において、側部におけるリフレクタ4は、直線によって描かれていることに留意されたい。実際には、リフレクタ4の側部の形状は、図11及び12におけるような外側にか又は内側にか(凹状に、図示略)の何れかにおいて、僅かに湾曲されていても良い。凹状の湾曲は、以下で更に記載されるコーティング技術を使用する場合に、よりあり得る。] 図11
[0056] 更なる例(図示略)において、レーザダイオードは、半導体ダイオード構造(図において3として示されている)として使用される。好ましくは、VCSEL(垂直キャビティ面発光レーザ)が、使用される。このようなレーザダイオードは、光がLEDから発される態様と同様に、自身の上部表面を介して光を発する。典型的には、前記レーザダイオードは、450nm(青色光)の波長を有する。更に、VCSELを有するような発光装置は、更に、YAG:Ceのような、蛍光体材料を有する。YAG:Ceは、青色光を黄色光に変換し、白色へと混合することができる。他の蛍光体が、青色光を、例えば、緑色、琥珀色又は赤色に変換するのに使用されても良い。前記レーザダイオードからの光ビームは、典型的には、前記発光装置から直接的に光を漏出させる(出力する)ために、(例えば、前記蛍光体層における孔又は他の散乱中心によって)前記蛍光体内で散乱され、これにより前記レーザ光はもはやコリメートされない。前記蛍光体材料が実質的に透明である場合、元のコリメートされた光の一部は、自身のその視準及び偏光を保持しても良く、前記出力セクションを介して透過されても良い。この変換された光は、典型的には、等方的に発され、従って、著しい度合いのコリメートは含んでいない。この光ビームは、他の例において、反射上部表面(又は図において22として示されている反射セクション)に向かって指向されることができ、前記出力セクションに向かって直接的に指向されるのではない。この散乱リフレクタ(即ち図におけるリフレクタ4)は、前記蛍光体によって変換されない幾らかの青色又は紫外線レーザ光を後方散乱し、前記レーザ光を再分配し、これによりコリメート及び偏光が、失われる。しかしながら、青色光から所望の色への変換、又は青色と変換された色との(例えば、白色への)混合が、得られる。透明な本体が使用される場合、前記レーザ光の一部は、前記出力セクションを介して直接的に発され、パターン化されたレーザ出力を供給する。このコリメートは、前記出力領域に設けられている光学的構造に依存して保持される又は損失され得て、この例は、上述されている。前記出力領域を介して指向されていないレーザ光は、より高い効率を達成するように再利用される。鏡面反射体が使用される場合、コリメート及び偏光は、(部分的に)保存され得る。更なる拡散性リフレクタが使用される場合、コリメート、コヒーレンス及び偏光は、より高い程度まで損失される。]
[0057] 当該発光装置の上述の例において、InGaN(インジウムガリウムナイトライド)型の青色高出力LED(図において3で示されている)が、使用されても良い。このようなLEDは、適切な基板上の複合層のスタックにおいて成長され、前記基板の原子充填距離(atomic packing distances)は、(従来技術においてよく知られているような)成長されたLED材料への原子充填距離に十分整合するものでなければならない。このような基板は、SiCであっても良く、好ましくはサファイア(Al2O3、n=1.77)であっても良い。この基板は、数百ミクロンの厚さであっても良く、典型的には、100μmであっても良い。例えば、レーザーリリース工程による基板の除去のための既知の技術が、存在し、薄いLED層(例えば、数ミクロン〜10ミクロン厚)を前記基板から解放する。前記薄いLED層において、典型的には、結合(結合層は上述されている)によって、蛍光体層が堆積されても良い。例えば、セラミック蛍光体構成要素(例えば、1×1mmの120μm厚のセラミックタイル)が、1x1mmのLED層(又は、LEDダイ)に結合されても良い。しかしながら、従来の蛍光体材料は、重合樹脂内に埋め込まれている数ミクロンの大きさの蛍光体粒子を有しており、前記LEDチップ(又はLED層)上に直接的に堆積されても良い。]
[0058] 本発明による発光装置の更なる例において、(複数の)前記出力セクションに隣接して設けられたリフレクタ(図において4と示されている)は、100%に近い反射率を有する。許容できるコーティング厚さにおいてこのことを実現することができる一種のリフレクタコーティングは、前述の欧州特許出願第07122839.9号に記載されている。このコーティングは、入射光を実質的に後方散乱するように、高指数相(high index phase)を適切な寸法の低指数相と組み合わせている混成材料系(hybrid material system)から構成されている。前記LEDの活性領域の近くにおける熱負荷及び高い光束密度に耐えることができる好ましい材料系は、ソルゲル法により得られた結合系(a sol-gel derived binder system)に基づいており、例えば、2〜1000μm、好ましくは20〜50μmの範囲のリフレクタ厚さを有する高指数の粒子(典型的には100〜1000nm直径のTiO2)を充填されている、ケイ酸塩又はメチルケイ酸塩等に基づいている。代替的には、銀のコーティングのような、(上述したように)金属層の形態におけるリフレクタが、使用されることができる。しかしながら、このような金属層によって高い反射率を達成し、同時に、この金属を腐食から保護することは、困難なことであり得る。再び、上述したように、ダイクロックリフレクタが、使用されても良い。このようなダイクロックリフレクタは、非常により高い反射率(98%まで又はこれ以上)を有し得るが、一般的な場合、このようなリフレクタは、より大きい入射角に対して減少された性能を有し得る。異なるリフレクタ種類の組合せ(例えば、金属層の前におけるダイクロックコーティング)が利用されても良いと理解されたい。]
[0059] 更に、前記出力セクション(図において21と示されている)は、複数の態様において生成されることができる。白色リフレクタコーティング(例えば、TiO2充填されているソル—ゲルコーティング)の場合、孔のパターン(即ち出力セクション21)は、前記コーティングの前記ウェット又はゲル化相におけるエンボシングによって生成されることができる。代替的に又は付加的に、前記孔のパターンが、前記孔の領域(又は前記出力セクション)において堆積される疎水性パターンにおけるデウェッティングによって実現されることができ、マイクロコンタクトプリント又は他のプリント技術によって設けられることができる。]
[0060] 前記孔のパターン(即ち前記光透過要素の上部表面を覆う場合の、前記反射構造における前記出力セクション)を生成する更なる技術は、スクリーンプリント又はインクジェットプリント、リソグラフィエッチング方法又はレーザーアブレーションのような、直接的なプリントを含む。上述された金属又はダイクロックパターニングは、マスク、リソグラフィエッチング、反応性イオンエッチング又はレーザーアブレーションによる堆積を使用して実現されることができる。]
[0061] 本発明は、本発明の特定の例示的な実施例を参照して記載されたが、多くの異なる変更及び変形等は、当業者にとって明らかになるであろう。従って、上述の実施例は、添付請求項によって規定されている本発明の範囲を制限することを意図としているものではない。]
权利要求:

請求項1
光を生成する半導体ダイオード構造と、前記半導体ダイオード構造からの光を光透過要素内に反射する反射セクションと、光を前記半導体ダイオード構造から出力する出力セクションとを有する前記光透過要素を有する発光装置であって、前記光透過要素の側部表面を少なくとも部分的に包囲していると共に、前記半導体ダイオード構造からの光を前記出力セクションに反射する反射構造を更に有する発光装置。
請求項2
前記反射構造が更に前記反射セクションを包囲している、請求項1に記載の発光装置。
請求項3
前記反射セクションは、前記光透過要素の屈折率よりも低い屈折率を有する材料を備えており、これにより、前記半導体ダイオード構造内で生成された前記光の一部は、内部全反射によって反射される、請求項1又は2に記載の発光装置。
請求項4
前記出力セクションは、粗い領域を有している、請求項1乃至3の何れか一項に記載の発光装置。
請求項5
前記粗い領域は、前方散乱領域、マイクロ光学抽出構造、マイクロプリズムピラミッド又は溝、回折格子、ホログラフィー格子構造、フォトニック結晶、フォトニック準結晶等又はこれらの組合せを有している、請求項4に記載の発光装置。
請求項6
前記光透過要素は、前記半導体ダイオード構造と前記出力セクションとの間に配されている光ガイド層を更に有する、請求項1乃至5の何れか一項に記載の発光装置。
請求項7
光ガイド層が、蛍光体材料、蛍光体セラミック材料、LED基板、透明なYAG、ガラス、サファイア、石英又はこれらの組合せを有する、請求項1乃至6の何れか一項に記載の発光装置。
請求項8
前記出力セクションは、第1の蛍光体材料、好ましくは第1の蛍光体セラミック材料を備えている、請求項1乃至7の何れか一項に記載の発光装置。
請求項9
前記出力セクションに設けられている蛍光体材料は、光ガイド層に含まれている蛍光体材料、好ましくは蛍光体セラミック材料とは異なる種類のものである、請求項8に記載の発光装置。
請求項10
前記光透過要素は、前記第1の蛍光体材料とは異なる第2の蛍光体材料を備えている第2の出力セクションを更に有する、請求項8又は9に記載の発光装置。
請求項11
前記光透過要素は、出力セクションのアレイを有している、請求項1乃至10の何れか一項に記載の発光装置。
請求項12
前記出力セクションの少なくとも1つの形状は、長方形、三角形、多角形、正方形、楕円、円形、十字の形、若しくはテキスト/画像/ロゴの形態、又はこれらの組合せである、請求項1乃至11の何れか一項に記載の発光装置。
請求項13
前記出力セクションの少なくとも1つは、コリメータ、光抽出ドーム又はこれらの組合せを備えている、請求項1乃至12の何れか一項に記載の発光装置。
請求項14
前記半導体ダイオード構造は、薄い薄膜フリップチップ型のダイオード構造である、請求項1乃至13の何れか一項に記載の発光装置。
請求項15
請求項1乃至14の何れか一項に記載の発光装置を有する照明システム。
类似技术:
公开号 | 公开日 | 专利标题
US9028106B2|2015-05-12|Light-emitting device, illuminating device, vehicle headlamp, and method for producing light-emitting device
US10267468B2|2019-04-23|Light emitting module
US9863595B2|2018-01-09|Light-emitting unit with optical plate reflecting excitation light and transmitting fluorescent light, and light-emitting device, illumination device, and vehicle headlight including the unit
US9562661B2|2017-02-07|Illumination device and vehicle headlight
US8733996B2|2014-05-27|Light emitting device, illuminating device, and vehicle headlamp
US9644801B2|2017-05-09|Light-emitting element, light-emitting device, and method for product light-emitting element
US9291759B2|2016-03-22|Illumination device and vehicle headlight
JP4750788B2|2011-08-17|ロングパス反射体を有する蛍光体による照明システムおよびその作製方法
JP5318100B2|2013-10-16|薄型の側面発光ledに連結される光学要素
TWI520385B|2016-02-01|光電組件
TWI313517B|2009-08-11|
US6774405B2|2004-08-10|Light-emitting device
EP2074655B1|2016-04-13|Light-emitting apparatus
JP4761848B2|2011-08-31|半導体発光装置
US8919977B2|2014-12-30|Lamp comprising a phosphor, radiation source, optical system and heatsink
KR101981717B1|2019-05-24|조명 장치
JP4020092B2|2007-12-12|半導体発光装置
JP4182783B2|2008-11-19|Ledパッケージ
JP5369201B2|2013-12-18|投光ユニットおよび投光装置
US8419251B2|2013-04-16|Light emitting device and method for manufacturing same, lighting fixture, and lighting system
JP4546579B1|2010-09-15|照明用レンズ、発光装置、面光源および液晶ディスプレイ装置
EP1024398B1|2008-10-29|Solid state based illumination source for a projection display
TWI430469B|2014-03-11|發光二極體燈源系統
JP5899508B2|2016-04-06|発光装置及びそれを用いた照明装置
JP4046118B2|2008-02-13|発光素子、それを用いた発光装置及び面発光照明装置
同族专利:
公开号 | 公开日
US20110025190A1|2011-02-03|
WO2009115998A3|2010-03-25|
KR20100127286A|2010-12-03|
WO2009115998A2|2009-09-24|
RU2010143026A|2012-04-27|
TW200950159A|2009-12-01|
CN101978516A|2011-02-16|
EP2269239A2|2011-01-05|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
JP2004153277A|2002-10-29|2004-05-27|Lumileds Lighting Us Llc|輝度が増強された発光デバイス・スポット・エミッタ|
WO2007146860A1|2006-06-12|2007-12-21|3M Innovative Properties Company|Led device with re-emitting semiconductor construction and optical element|JP2013232539A|2012-04-27|2013-11-14|Toshiba Corp|Semiconductor light emitting device and manufacturing method thereof|
WO2014081042A1|2012-11-26|2014-05-30|シチズン電子株式会社|発光装置|
JP2015022255A|2013-07-23|2015-02-02|セイコーエプソン株式会社|光源装置、およびプロジェクター|
JP2015043359A|2013-08-26|2015-03-05|シチズン電子株式会社|Led発光装置|
JP2015070132A|2013-09-30|2015-04-13|日亜化学工業株式会社|LIGHT EMITTING DEVICE MANUFACTURING METHOD AND LIGHT EMITTING DEVICE|
JP2015084384A|2013-10-25|2015-04-30|シチズン電子株式会社|Led発光装置|
JP2015226042A|2014-05-30|2015-12-14|日亜化学工業株式会社|発光装置|
JP2015225862A|2014-05-25|2015-12-14|日亜化学工業株式会社|半導体発光素子及びその製造方法|
JP2016018921A|2014-07-09|2016-02-01|日本電気硝子株式会社|波長変換部材及び発光デバイス|
JP2016504770A|2012-12-21|2016-02-12|オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH|オプトエレクトロニクス半導体部品を製造する方法およびオプトエレクトロニクス半導体部品|
JP2016058624A|2014-09-11|2016-04-21|パナソニックIpマネジメント株式会社|発光装置|
JP2017108091A|2015-11-30|2017-06-15|日亜化学工業株式会社|発光装置|
US10174909B2|2015-10-09|2019-01-08|Panasonic Intellectual Property Management Co., Ltd.|Optical member and microlens array|
WO2019021782A1|2017-07-25|2019-01-31|日本電気硝子株式会社|波長変換部材|
US10211379B2|2013-11-15|2019-02-19|Nichia Corporation|Semiconductor light emitting device and method for manufacturing the same|
US10629788B2|2015-03-26|2020-04-21|Koninklijke Philips N.V.|Light source|JPS5114439B2|1972-05-15|1976-05-10|||
JPH06338630A|1993-05-28|1994-12-06|Omron Corp|半導体発光素子、並びに当該発光素子を用いた光学検知装置、光学的情報処理装置、光結合装置及び発光装置|
US7245072B2|2003-01-27|2007-07-17|3M Innovative Properties Company|Phosphor based light sources having a polymeric long pass reflector|
US6869206B2|2003-05-23|2005-03-22|Scott Moore Zimmerman|Illumination systems utilizing highly reflective light emitting diodes and light recycling to enhance brightness|
JP4679183B2|2005-03-07|2011-04-27|シチズン電子株式会社|発光装置及び照明装置|
US7196354B1|2005-09-29|2007-03-27|Luminus Devices, Inc.|Wavelength-converting light-emitting devices|
US7498735B2|2005-10-18|2009-03-03|Eastman Kodak Company|OLED device having improved power distribution|
US7745985B2|2005-11-04|2010-06-29|Panasonic Corporation|Light-emitting module, and display unit and lighting unit using the same|
WO2007080555A1|2006-01-16|2007-07-19|Koninklijke Philips Electronics N.V.|Phosphor converted light emitting device|
US7781779B2|2007-05-08|2010-08-24|Luminus Devices, Inc.|Light emitting devices including wavelength converting material|
TWI384654B|2009-07-31|2013-02-01|Univ Nat Taiwan Science Tech|色溫可調之白光發光裝置|US9000461B2|2003-07-04|2015-04-07|Epistar Corporation|Optoelectronic element and manufacturing method thereof|
US9461201B2|2007-11-14|2016-10-04|Cree, Inc.|Light emitting diode dielectric mirror|
US8299473B1|2009-04-07|2012-10-30|Soraa, Inc.|Polarized white light devices using non-polar or semipolar gallium containing materials and transparent phosphors|
US8273588B2|2009-07-20|2012-09-25|Osram Opto Semiconductros Gmbh|Method for producing a luminous device and luminous device|
US9362459B2|2009-09-02|2016-06-07|United States Department Of Energy|High reflectivity mirrors and method for making same|
US9435493B2|2009-10-27|2016-09-06|Cree, Inc.|Hybrid reflector system for lighting device|
DE102009058006A1|2009-12-11|2011-06-16|Osram Opto Semiconductors Gmbh|Optoelektronisches Halbleiterbauteil|
US9105824B2|2010-04-09|2015-08-11|Cree, Inc.|High reflective board or substrate for LEDs|
US9012938B2|2010-04-09|2015-04-21|Cree, Inc.|High reflective substrate of light emitting devices with improved light output|
US8269235B2|2010-04-26|2012-09-18|Koninklijke Philips Electronics N.V.|Lighting system including collimators aligned with light emitting segments|
DE102010048162A1|2010-10-11|2012-04-12|Osram Opto Semiconductors Gmbh|Konversionsbauteil|
EP3165082A1|2011-03-17|2017-05-10|Valoya Oy|Plant illumination device and method for dark growth chambers|
TWI410591B|2011-03-18|2013-10-01|Young Lighting Technology Corp|光源裝置|
JP5962102B2|2011-03-24|2016-08-03|日亜化学工業株式会社|発光装置及びその製造方法|
DE102011050450A1|2011-05-18|2012-11-22|Osram Opto Semiconductors Gmbh|Optoelectronic semiconductor chip, optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component|
US10243121B2|2011-06-24|2019-03-26|Cree, Inc.|High voltage monolithic LED chip with improved reliability|
US9728676B2|2011-06-24|2017-08-08|Cree, Inc.|High voltage monolithic LED chip|
KR101819988B1|2011-10-11|2018-01-19|에스케이플래닛 주식회사|키워드 광고 제공 장치, 키워드 광고에서의 과금 방법, 및 이를 실행하는 프로그램을 기록한 기록 매체|
IN2014CN04572A|2011-12-07|2015-09-18|Koninkl Philips Nv||
US8891579B1|2011-12-16|2014-11-18|Nlight Photonics Corporation|Laser diode apparatus utilizing reflecting slow axis collimators|
CN103998860A|2011-12-16|2014-08-20|皇家飞利浦有限公司|具有衍射光学器件的光学装置|
DE102012202928A1|2012-02-27|2013-08-29|Osram Gmbh|Lichtquelle mit led-chip und leuchtstoffschicht|
DE102012202927A1|2012-02-27|2013-08-29|Osram Gmbh|Lichtquelle mit led-chip und leuchtstoffschicht|
DE102012102301A1|2012-03-19|2013-09-19|Osram Opto Semiconductors Gmbh|Optoelektronischer Halbleiterchip und Scheinwerfer mit einem solchen Halbleiterchip|
US20140048824A1|2012-08-15|2014-02-20|Epistar Corporation|Light-emitting device|
CN103968332B|2013-01-25|2015-10-07|深圳市光峰光电技术有限公司|一种波长转换装置、发光装置及投影系统|
DE102013204291A1|2013-03-12|2014-10-02|Osram Opto Semiconductors Gmbh|Optoelektronisches Bauelement|
JP6316403B2|2013-03-26|2018-04-25|コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V.|発光材料を有する気密封止された照明装置及びその製造方法|
DE102013217410A1|2013-09-02|2015-03-19|Osram Opto Semiconductors Gmbh|Optoelectronic module and method for its production|
RU2689122C1|2013-12-20|2019-05-24|Филипс Лайтинг Холдинг Б.В.|Светоизлучающее устройство|
CN105874615B|2014-01-09|2020-01-03|亮锐控股有限公司|具有反射性侧壁的发光器件|
US9995458B2|2014-01-13|2018-06-12|Lg Innotek Co., Ltd.|Ceramic phosphor plate and lighting device including the same|
WO2015134931A1|2014-03-06|2015-09-11|Nlight Photonics Corporation|High brightness multijunction diode stacking|
US9705289B2|2014-03-06|2017-07-11|Nlight, Inc.|High brightness multijunction diode stacking|
US10439111B2|2014-05-14|2019-10-08|Genesis Photonics Inc.|Light emitting device and manufacturing method thereof|
DE102014108295A1|2014-06-12|2015-12-17|Osram Opto Semiconductors Gmbh|Licht emittierendes Halbleiterbauelement|
TWI557952B|2014-06-12|2016-11-11|新世紀光電股份有限公司|發光元件|
US10009527B2|2014-06-26|2018-06-26|Philips Lighting Holding B.V.|Compact LED lighting unit for use in camera or video flash applications|
US10211187B2|2014-07-18|2019-02-19|Koninklijke Philips N.V.|Light emitting diodes and reflector|
US20160190406A1|2014-12-24|2016-06-30|Epistar Corporation|Light-emitting device and manufacturing method thereof|
CN105742454A|2014-12-24|2016-07-06|晶元光电股份有限公司|发光元件以及其制造方法|
US10658546B2|2015-01-21|2020-05-19|Cree, Inc.|High efficiency LEDs and methods of manufacturing|
JP2015099940A|2015-02-23|2015-05-28|日亜化学工業株式会社|発光装置|
TWI657597B|2015-03-18|2019-04-21|新世紀光電股份有限公司|側照式發光二極體結構及其製造方法|
WO2016156135A1|2015-03-30|2016-10-06|Koninklijke Philips N.V.|Peripheral heat sinking arrangement for high brightness light emitting devices|
US10761276B2|2015-05-15|2020-09-01|Nlight, Inc.|Passively aligned crossed-cylinder objective assembly|
DE102015122627A1|2015-05-28|2016-12-01|Osram Opto Semiconductors Gmbh|Optoelectronic arrangement and depth detection system|
CN111223975A|2015-09-18|2020-06-02|新世纪光电股份有限公司|发光装置及其制造方法|
KR20170051004A|2015-11-02|2017-05-11|삼성전자주식회사|발광 소자 패키지 및 그 제조 방법|
EP3174110A1|2015-11-30|2017-05-31|Nichia Corporation|Light emitting device|
WO2017143089A1|2016-02-16|2017-08-24|Nlight, Inc.|Passively aligned single element telescope for improved package brightness|
EP3430692A1|2016-03-18|2019-01-23|NLIGHT, Inc.|Spectrally multiplexing diode pump modules to improve brightness|
US10388838B2|2016-10-19|2019-08-20|Genesis Photonics Inc.|Light-emitting device and manufacturing method thereof|
DE102016224090A1|2016-12-05|2018-06-07|Osram Opto Semiconductors Gmbh|Optoelektronisches Bauelement, Modul mit mindestens zwei optoelektronischen Bauelementen und Verfahren zum Herstellen eines optoelektronischen Bauelements|
EP3560048A1|2016-12-23|2019-10-30|NLIGHT, Inc.|Low cost optical pump laser package|
US10243124B2|2016-12-26|2019-03-26|Nichia Corporation|Light emitting device|
CN108269899B|2016-12-30|2020-06-05|光宝光电有限公司|发光二极管封装结构及其制造方法|
US10763640B2|2017-04-24|2020-09-01|Nlight, Inc.|Low swap two-phase cooled diode laser package|
CN107452847A|2017-09-08|2017-12-08|宁波高新区斯汀环保科技有限公司|一种高穿透高色纯显示屏用led材料及其制造方法|
KR101977261B1|2017-11-03|2019-05-13|엘지전자 주식회사|형광체 모듈|
US10784423B2|2017-11-05|2020-09-22|Genesis Photonics Inc.|Light emitting device|
DE102017129623A1|2017-12-12|2019-06-13|Osram Opto Semiconductors Gmbh|Licht emittierendes Halbleiterbauelement|
US10748804B2|2017-12-19|2020-08-18|PlayNitride Inc.|Structure with micro device having holding structure|
US10797029B2|2017-12-19|2020-10-06|PlayNitride Inc.|Structure with micro device|
US10804130B2|2017-12-19|2020-10-13|PlayNitride Inc.|Structure with micro device|
TWI660487B|2017-12-19|2019-05-21|英屬開曼群島商錼創科技股份有限公司|微型元件結構|
WO2020212111A1|2019-04-18|2020-10-22|Lumileds Holding B.V.|Lighting device|
CN110828644B|2019-11-18|2020-09-29|北京智创华科半导体研究院有限公司|一种led|
法律状态:
2012-03-17| A621| Written request for application examination|Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120316 |
2013-06-19| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130618 |
2013-06-20| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130619 |
2013-11-13| A02| Decision of refusal|Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131112 |
优先权:
申请号 | 申请日 | 专利标题
[返回顶部]