专利摘要:
本発明は、過給された燃焼機関2のための装置であって、クーラ(10、15)内における氷の形成を防止するようになされた装置に関する。この装置は、循環する冷媒を備えた低温冷却システムと、水蒸気を含有したガス状媒体を冷却システム内の冷媒によって冷却することを意したクーラ(10、15)とを備えている。この装置は、冷却システム内の冷媒と接触して配置された電気加温ユニット(28、28a、28b)と、電圧源(36、36a、36b)と、ブレーカ(30、30a、30b)であって、第1の位置に置くことによって加温ユニット(28、28a、28b)と電圧源(36、36a、36b)を切断することができ、また、第2の位置に置くことによって加温ユニット(28、28a、28b)及び電圧源(36)を一体に接続することができ、したがって加温ユニット(28、28a、28b)が電気エネルギーを受け取り、冷却システム内の冷媒を加温するブレーカ(30、30a、30b)とを備えた電気回路を備えている。
公开号:JP2011514477A
申请号:JP2010549609
申请日:2009-02-17
公开日:2011-05-06
发明作者:カルドス、ゾルタン;セーデルベルグ、エリック
申请人:スカニア シーブイ アクチボラグ;
IPC主号:F02B29-04
专利说明:

[0001] 本発明は、請求項1の序文による過給された燃焼機関のための装置に関する。]
背景技術

[0002] 過給された燃焼機関に供給することができる空気の量は、空気の圧力によってだけではなく、空気の温度にもよる。最大可能空気量の燃焼機関への供給は、空気が燃焼機関に導入される前に、空気の効果的冷却を引き起こす。空気は、通常、車両の前方部分に配置される給気冷却器の中で冷却される。その位置では、給気冷却器は、給気冷却器を通って流れる、周囲温度の冷却空気流を有しており、したがって圧縮空気を周囲温度に近い温度まで冷却することができる。寒い気象条件では、空気の露点温度未満の温度まで圧縮空気が冷却されることがあり、そのために液体の形態の水蒸気が給気冷却器中に凝結することになる。また、周囲の空気の温度が0℃未満である場合、凝結した水が凍結し、給気冷却器内で氷になる危険が存在している。このような氷の形成は、程度の差はあれ、給気冷却器内の空気流ダクトを詰まらせることになり、そのために燃焼機関への空気の流れが減少し、延いては運転上の機能が不良になり、或いは運転が停止することになる。]
[0003] EGR(排気ガス再循環)として知られている技法は、燃焼プロセスからの排気ガスの一部を燃焼機関内で再循環させる公知の技法である。再循環排気ガスは、燃焼機関のシリンダへ導入される前に、燃焼機関への入口空気と混合される。排気ガスを空気に加えることによって燃焼温度が低くなり、したがってとりわけ排気ガス中の窒素酸化物NOxの含有量が減少する。この技法は、オットー機関及びディーゼル機関の両方に使用されている。大量の排気ガスを燃焼機関に供給することにより、燃焼機関に導入される前に必然的に排気ガスが効果的に冷却される。排気ガスには、燃焼機関の冷却システムからの冷媒によって冷却されるEGRクーラの中で冷却する第1のステップ、及び空冷EGRクーラの中で冷却する第2のステップを施すことができる。したがって同じく周囲の温度に近い温度まで排気ガスを冷却することができる。排気ガスには水蒸気が含まれており、水蒸気の露点より低い温度まで冷却する第2のステップが排気ガスに施されると、EGRクーラ内で凝縮する。周囲の温度が0℃未満の温度である場合、形成された凝縮物が凍結し、第2のEGRクーラ内で氷になる危険も存在している。このような氷の形成は、程度の差はあれ、EGRクーラ内の排気ガス流ダクトを詰まらせることになる。排気ガスの再循環が停止するか、或いは著しく減少すると、排気ガス中の窒素酸化物の含有量が増加することになる。]
発明が解決しようとする課題

[0004] 本発明の目的は、水蒸気を含有したガス状媒体をクーラの中で極めて良好に冷却することができ、且つ、それと同時にクーラが詰まらされる危険が除去される装置を提供することである。]
課題を解決するための手段

[0005] この目的は、導入部で言及されている種類の装置であって、請求項1の特徴部分に示されている特徴によって特徴付けられる装置によって達成される。ガス状媒体を効果的に冷却するためには、低温冷却システムと呼ぶことができる冷却システム内の冷媒によってそのガス状媒体を冷却しなければならない。低温冷却システム内の冷媒が使用される場合、この装置は、通常、液体の形態の水がクーラ内で凝結される温度まで冷却される。冷媒が同じく0℃より冷たい場合、水が凍ってクーラ内で氷になる明らかな危険が存在する。低温冷却システム内の冷媒の温度が低いほど、この危険が大きくなる。本発明によれば、電気加温ユニット及びブレーカを備えた電気回路を使用して、必要に応じて低温冷却システム内の冷媒を加温することができる。燃焼機関が正常に動作している間、ブレーカは第1の位置に位置しており、電圧源は電気加温ユニットから切断されている。この位置では、加温ユニットは、冷却システム内の冷媒を全く加温しない。ブレーカが第2の位置に位置すると、電圧源から加温ユニットに電気エネルギーが供給され、それにより加温ユニットによって冷却システム内の冷媒が加温される。このような加温は、低温冷却システム内の冷媒の温度が、ガス状媒体を著しく冷却し、クーラ内で氷が形成される危険がある低い温度である場合に有利である。クーラが凍結した危険な状態にあること、或いは凍結寸前の危険な状態にあることを関係者が決定すると、ブレーカを手動で第2の位置に置くことができる。氷が形成される危険がなくなると、ブレーカを第1の位置に戻すことができる。したがってガス状媒体をクーラ内で極めて良好に冷却することができ、且つ、それと同時に、クーラ内における氷の形成を回避することができる。]
[0006] 本発明の好ましい実施例によれば、装置は、ガス状媒体が著しく冷却され、そのためにクーラ内に氷が形成されているかどうか、或いはクーラ内に氷が形成される危険が存在しているかどうかを示すパラメータを検出するようにされた少なくとも1つのセンサと、1つ又は複数のコンポーネントから情報を受け取り、且つ、クーラ内に氷が形成されているかどうか、或いはクーラ内に氷が形成される危険が存在しているかどうかを決定し、そうである場合、ブレーカを第2の位置に置くようにされた制御ユニットとを備えている。このような装置によれば、クーラ内に氷が形成される危険が存在している場合、自動的にブレーカを第2の位置に置くことができる。制御ユニットは、その目的に適った適切なソフトウェアを備えたコンピュータ・ユニットであってもよい。前記センサは、低温冷却システム内の冷媒の温度を検出する温度センサであってもよい。クーラの中へ導入される際の冷媒の温度が0℃より高い場合、クーラ内に氷が形成される危険は存在していない。氷の形成を完全に回避するために、制御ユニットは、冷媒の温度が0℃未満に低下すると直ちにブレーカを第2の位置に置くことができる。この装置は、クーラ内におけるガス状媒体の圧力降下又は温度降下に関連するパラメータを検出するようにされた温度センサ又は圧力センサを備えていることが好ましい。1つのセンサを使用して、クーラの中へ導入される前のガス状媒体の圧力又は温度を検出し、また、1つのセンサを使用して、クーラから出るガス状媒体の圧力又は温度を検出することができる。クーラ内における圧力降下又は温度降下が所定の値の範囲外である場合、制御ユニットは、クーラ内の流れの通路が氷によって詰まらせられつつあることを見出すことができる。このような場合、制御ユニットは、低温冷却システム内の冷媒を加温するために、ブレーカを第2の位置に置くことになる。クーラを通って流れる加温された冷媒は、クーラ内に形成された氷を溶かすことができる。氷が溶けると、制御ユニットは、クーラ内の圧力降下又は温度降下が許容可能な値に復帰したことを示す情報をセンサから受け取る。制御ユニットは、ブレーカを第1の位置へ復帰させる。したがって、この場合、クーラ内における限られた量の氷形成が許されるが、クーラが凍結を開始しない限り0℃未満の冷媒温度が許される場合、ガス状媒体は極めて効果的に冷却される。]
[0007] 本発明の他の好ましい実施例によれば、第2の冷却システムはラジエータ・エレメントを有しており、循環する冷媒が周囲温度の空気によって冷却される。したがって周囲の温度に近い温度まで冷媒を冷却することができる。加温ユニットは、ラジエータ・エレメントの下流側の位置の低温冷却システム内に有利に配置されている。冷媒は、ラジエータ・エレメント内で冷却されると、その最も低い温度になり、したがってこのような位置で冷媒を加温することが有利である。加温ユニットは、第2の冷却システム内における冷媒流の意図する方向に対して、クーラの上流側に配置することができる。したがって、クーラの中へ導入される前に、低温冷却システム内の冷媒を加温することができる。したがって、ブレーカが第2の位置に位置している場合、クーラ内に形成された氷を速やかに溶かすことができるよう、比較的暖かい冷媒をクーラの中に導入することができる。別法としては、クーラの中に加温ユニットを配置することも可能であり、その場合、加温ユニットは、クーラ内の冷媒入口の近くに有利に配置することができる。]
[0008] 本発明の他の好ましい実施例によれば、装置は、もう1つのクーラを備えており、ガス状媒体には、低温冷却システム内の冷媒によって冷却する第2のステップがガス状媒体に施される前述のクーラへの導入に先立って、高温冷却システム内の冷媒によってガス状媒体を冷却する第1のステップが施されることが意図されている。ガス状媒体は、燃焼機関への入口ラインに導入される圧縮空気であってもよい。空気が圧縮されると、空気の圧縮の程度に応じた量だけ空気が加熱される。過給された燃焼機関の場合、空気は極めて高い圧力で使用される。したがって空気を有効に冷却しなければならない。したがって、燃焼機関への導入に先立って、圧縮空気を所望する低い温度に到達させることができるよう、複数のクーラの中で圧縮空気を冷却することが有利であり、また、2段以上のクーラの中で圧縮空気を冷却することが有利である。また、前記ガス状媒体は、燃焼機関の戻りラインに導入される再循環排気ガスであってもよい。戻りラインに導入される際の排気ガスの温度は、500℃〜600℃であってもよい。したがって、燃焼機関への導入に先立って、排気ガスを所望する低い温度に到達させることができるよう、同じく複数のクーラの中で排気ガスを冷却することが有利であり、また、2段以上のクーラの中で排気ガスを冷却することが有利である。燃焼機関を冷却する冷却システムの温度は、通常の運転の間、80℃〜100℃である。したがってこの冷却システムは、高温冷却システムと呼ぶことができる。したがって、この既存の冷却システムを使用して第1の冷却ステップをガス状媒体に施すことが極めて有利である。]
[0009] 以下、本発明の好ましい実施例について、添付の図面を参照して、実例によって説明する。]
図面の簡単な説明

[0010] 本発明の第1の実施例による過給された燃焼機関のための装置を示す図である。
本発明の第2の実施例による過給された燃焼機関のための装置を示す図である。]
実施例

[0011] 図1は、概略的に示されている車両1に動力を供給することが意図された過給された燃焼機関のための装置を示したものである。この燃焼機関は、ここではディーゼル機関2として例示されている。このディーゼル機関2は、大型車両1に動力を供給することを意図することができる。ディーゼル機関2のシリンダからの排気ガスは、排気マニホルド3を介して排気ライン4に導入される。ディーゼル機関2は、タービン5及び圧縮機6を備えたターボ・ユニットを備えている。大気圧より高い排気ライン4の中の排気ガスは、最初にタービン5に導入される。したがってタービン5は、接続を介して圧縮機6に伝達される駆動動力を備えている。圧縮機6は、この動力を使用して空気を圧縮し、圧縮された空気が空気フィルタ7を介して空気入口ライン8に吸い込まれる。入口ラインの中の空気は、最初に第1の冷媒冷却給気冷却器9の中で冷却される。この空気は、燃焼機関の冷却システムからの冷媒によってこの第1の給気冷却器9の中で冷却される。次に、第2の冷媒冷却給気冷却器10の中で圧縮空気が冷却される。この空気は、個別の冷却システムからの冷媒によってこの第2の給気冷却器10の中で冷却される。] 図1
[0012] この装置は、排気ライン4の中の排気ガスの一部の再循環を実施するための戻りライン11を備えている。この戻りライン11は、排気ライン4と空気入口ライン8の間に範囲を有している。戻りライン11はEGR弁12を備えており、このEGR弁12によって、戻りライン11の中の排気流を遮断することができる。また、このEGR弁12を使用して、排気ライン4から戻りライン11を介して空気入口ライン8に導入される排気ガスの量を連続的に制御することも可能である。制御ユニット13は、ディーゼル機関2の現在の運転状態に関する情報に基づいてEGR弁12を制御するようにされている。戻りライン11は、排気ガスに第1の冷却ステップを施すための第1の冷媒冷却EGRクーラ14を備えている。排気ガスは、燃焼機関の冷却システムからの冷媒によってこの第1のEGRクーラ14の中で冷却される。この排気ガスには、冷媒冷却EGRクーラ15の中で第2の冷却ステップが施される。排気ガスは、個別の冷却システムからの冷媒によってこの第2のEGRクーラ15の中で冷却される。]
[0013] 過給されたディーゼル機関2の特定の運転状況では、排気ライン4の中の排気ガスの圧力は、空気入口ライン8の中の圧縮空気の圧力より低くなる。このような運転状況では、特殊な補助手段なくしては、戻りライン11の中の排気ガスを空気入口ライン8の中の圧縮空気と直接混合することはできない。これらを直接混合するために、例えば、ベンチュリ16、つまり可変幾何装置を備えたターボ・ユニットを使用することができる。燃焼機関2が過給されたディーゼル機関ではなく、過給されたオットー機関である場合、オットー機関の排気ライン4の中の排気ガスの圧力は、実質的にすべての運転状況において空気入口ライン8の中の圧縮空気の圧力より高いため、戻りライン11の中の排気ガスを直接空気入口ライン8に導入することができる。排気ガスが空気入口ライン8の中の圧縮空気と混合されると、その混合物は、マニホルド17を介してディーゼル機関2の対応する個々のシリンダに導入される。]
[0014] 燃焼機関2は、循環する冷媒を含有した冷却システムによって従来の方法で冷却される。冷媒は、冷媒ポンプ18によって冷却システムの中を循環する。冷媒の主流は、燃焼機関2を通って循環する。冷媒は、燃焼機関2を冷却した後、ライン21を通って冷却システム内のサーモスタット19に導入される。サーモスタット19は、冷媒が通常の動作温度に到達すると、車両の前方部分に取り付けられたラジエータ20で冷却されるために、該ラジエータ20に冷媒を導入するようにされている。しかしながら、冷却システム内の少量の冷媒は、燃焼機関2には戻されず、2本の平行のライン22a、22bに分かれているライン22を通って循環する。ライン22aは、圧縮空気に第1の冷却ステップを施す第1の給気冷却器9に冷媒を導入している。ライン22bは、再循環排気ガスに第1の冷却ステップを施す第1のEGRクーラ14に冷媒を導入している。第1の給気冷却器9の中で空気を冷却した冷媒、及び第1のEGRクーラ14の中で排気ガスを冷却した冷媒は、ライン21に冷媒を戻すライン22の中で再結合される。加温された冷媒は、ライン21を通ってラジエータ20に導入される。]
[0015] 個別の冷却システムは、ラジエータ20の前方の、車両1の周辺領域に取り付けられたラジエータ・エレメント24を備えている。この場合、この周辺領域は、車両1の前方部分に位置している。ラジエータ・ファン25は、ラジエータ・エレメント24及びラジエータ20を通る周囲空気の空気流を生成するようにされている。ラジエータ・エレメント24はラジエータ20の前方に位置しているため、冷媒は、ラジエータ・エレメント24の中で、周囲温度の空気によって冷却される。したがってラジエータ・エレメント24の中の冷媒は、周囲温度に近い温度まで冷却されることができる。ラジエータ・エレメント24からの冷たい冷媒は、ライン26内の個別の冷却システムの中をポンプ27によって循環する。加温ユニット28はライン26に配置されている。必要に応じて、加温ユニット28によって、個別の冷却システム内の冷たい冷媒を加温することができる。加温ユニット28は電気回路の中に含まれている。また、電気回路は、制御ユニット31によって閉位置及び開位置に置くことができるブレーカ30を備えている。ブレーカ30が閉位置に位置している場合、加温ユニット28は電圧源36に接続され、したがって電気エネルギーを受け取り、個別の冷却システム内の冷媒を加温する。]
[0016] 個別の冷却システム内の冷媒が加温ユニット28を通過すると、ライン26は2本の平行のライン26a、26bに分かれる。ライン26aは、圧縮空気に第2の冷却ステップを施す第2の給気冷却器10に冷媒を導入している。ライン26bは、再循環排気ガスに第2の冷却ステップを施す第2のEGRクーラ15に冷媒を導入している。冷媒が第2の給気冷却器10及び第2のEGRクーラ15を通過した後、ライン26aとライン26bが合体している。次に、冷媒は、ラジエータ・エレメント24で冷却されるために、ライン26を通って該ラジエータ・エレメント24に導入される。第1の圧力センサ32は、第2の給気冷却器10に導入される前の空気の圧力を検出するために空気ライン8に配置されている。第2の圧力センサ33は、第2の給気冷却器10を通過した後の空気の圧力を検出するために空気ライン8に配置されている。第3の圧力センサ34は、第2のEGRクーラ15に導入される前の排気ガスの圧力を検出するために戻りライン11に配置されている。第4の圧力センサ35は、第2のEGRクーラ15を通過した後の排気ガスの圧力を検出するために戻りライン11に配置されている。制御ユニット31は、測定された圧力に関する情報を前記センサから受け取るようにされている。]
[0017] ディーゼル機関2を運転している間、排気ライン4を通って排気ガスが流れ、タービン5を駆動する。したがってタービン5は、圧縮機6を駆動する駆動動力を備えている。圧縮機6は、空気フィルタ7を介して周囲の空気を吸い込み、空気入口ライン8の中で空気を圧縮する。したがって空気は、その圧力及び温度が高くなる。圧縮空気は、第1の給気冷却器9の中で、燃焼機関の冷却システム内のラジエータ液によって冷却される。このラジエータ液は、ここでは約80℃〜85℃の温度であってもよい。したがって、第1の給気冷却器9の中で、冷媒の温度に近い温度になるまで圧縮空気に第1の冷却ステップを施すことができる。圧縮空気は、次に、第2の給気冷却器10に導入され、この第2の給気冷却器10の中で、個別の冷却システム内の冷媒によって冷却される。この冷媒は、ここでは周囲温度に近い温度であってもよい。したがって有利な状況で、周囲温度に近い温度に圧縮空気が冷却される。]
[0018] 制御ユニット13は、ディーゼル機関2のほとんどの運転状態において、排気ライン4の中の排気ガスの一部が戻りライン11に導入されるよう、EGR弁12を開いた状態に維持する。排気ライン4の中の排気ガスが第1のEGRクーラ14に到達する際のそれらの温度は、約500℃〜約600℃であってもよい。再循環排気ガスには、第1のEGRクーラ14の中で、燃焼機関の冷却システム内の冷媒によって第1の冷却ステップが施される。したがって燃焼機関の冷却システム内の冷媒は比較的高い温度になるが、排気ガスの温度より確実に低くなる。したがって、第1のEGRクーラ14の中で良好に排気ガスが冷却される。次に、再循環排気ガスが第2のEGRクーラ15に導入され、この第2のEGRクーラ15の中で、個別の冷却システム内の冷媒によって再循環排気ガスが冷却される。この冷媒は、ここで確実により低い温度であり、有利な状況で、周囲温度に近い温度に排気ガスが冷却される。したがって、混合され、且つ、燃焼機関2に導入される前の圧縮空気の温度と実質的に同じ低い温度まで、戻りライン11の中の排気ガスが冷却される。したがって実質的に最適の量の空気及び再循環排気ガスを燃焼機関に導入することができる。したがって、燃焼機関2における実質的に最適の性能の燃焼を可能にすることができる。また、圧縮空気及び再循環排気ガスの温度が低いため、より低い燃焼温度が得られ、延いては排気ガス中の窒素酸化物の含有量がより少なくなる。]
[0019] しかしながら、圧縮空気及び再循環排気ガスのこの有効な冷却には欠点もある。圧縮空気は、第2の給気冷却器10の中で、液体の形態の水が給気冷却器10内で凝結する温度まで冷却される。同様に、第2のEGRクーラ15の中の排気ガスは、第2のEGRクーラ15内に凝縮物が形成される温度まで冷却される。周囲空気の温度が0℃未満である場合、凝結した水が凍結し、第2の給気冷却器10内で氷になる危険が同じく存在し、また、凝結した凝縮物が凍結し、第2のEGRクーラ15内で氷になる危険が同じく存在する。第2の給気冷却器10及び第2のEGRクーラ15内における氷の形成は、燃焼機関2の運転を著しく妨害することになる。第2の給気冷却器10及び第2のEGRクーラ15の凍結を防止するために、制御ユニット31は、第2の給気冷却器10の前後の空気の圧力に関する情報を圧力センサ32、33から実質的に連続的に受け取り、また、第2のEGRクーラ15の前後の再循環排気ガスの圧力に関する情報を圧力センサ34、35から実質的に連続的に受け取っている。圧力センサ32、33が第2の給気冷却器10内における所定の閾値を超える圧力降下を示すと、制御ユニット31は、給気冷却器10内に氷が形成されたことを見出すことができる。圧力センサ34、35が第2のEGRクーラ15内における所定の閾値を超える圧力降下を示すと、制御ユニット31は、同様に、第2のEGRクーラ15内に氷が形成されたことを見出すことができる。]
[0020] 制御ユニット31がこのような情報を受け取ると、ブレーカ30は閉位置に置かれ、したがって加温ユニット28は、電圧源36から電気エネルギーを受け取る。したがって加温ユニット28は、個別の冷却システムの中を流れ去る冷たい冷媒を加温する。加温ユニット28は、個別の冷却システムの中に配置されており、その位置は、個別の冷却システム内の冷媒流の意図する方向に対して、ラジエータ・エレメント24の下流側、及び第2の給気冷却器10及び第2のEGRクーラ15の上流側である。したがって個別のシステム内の冷媒には、第2の給気冷却器10及び第2のEGRクーラ15への導入に先立って、著しい加温が提供される。暖かい冷媒が第2の給気冷却器10及び第2のEGRクーラ15を通して導入されると、クーラ10、15の中に形成された氷がこの暖かい冷媒によって、速やかに、且つ、効果的に溶解される。]
[0021] 制御ユニット31は、第2の給気冷却器10及び第2のEGRクーラ15内の圧力降下が許容可能な値に復帰したことを示す情報を受け取ると、直ちにブレーカ30を開き、したがって加温ユニット28と電圧源36の間の接続が解除され、それにより加温ユニット28への電気エネルギーの供給が停止される。個別の冷却システム内の冷媒の加温が停止し、ラジエータ・エレメント24の中で冷却された冷たい冷媒を再使用して、第2の給気冷却器10の中の空気及び第2のEGRクーラ15の中の排気ガスを冷却することができる。車両を運転している間に周囲温度が極めて低くなると、制御ユニット31は、第2の給気冷却器10及び第2のEGRクーラ15内における過剰な氷の形成を防止するために、一定の間隔でブレーカ30を閉位置に置くことができる。したがってこの装置は、第2の給気冷却器10の中の空気及び第2のEGRクーラ15の中の排気ガスの極めて効果的な冷却を可能にしている。それと同時に、第2の給気冷却器10及び第2のEGRクーラ15内における、燃焼機関2の運転を妨害することになる氷の形成が防止される。車両1が冷たい状態にある間であっても、第2の給気冷却器10及び第2のEGRクーラ15内における氷の形成を防止するために、ブレーカ30を直に閉位置に置くことができる。]
[0022] 図2は、個別の加温ユニット28aが、第2の給気冷却器10に導入される冷媒を必要に応じて加温するために使用される一実施例を示したものである。加温ユニット28aは、ここでは、第2の給気冷却器10に冷媒を導入するライン26aに配置されている。ここでも、ブレーカ30a及び電圧源36aを備えた電気回路が使用されている。したがって第2の給気冷却器10に導入される冷媒を容易に加温することができる。第2の加温ユニット28bは、第2のEGRクーラ15に導入される冷媒を加温するために使用されている。この第2の加温ユニット28bは、第2のEGRクーラ15に冷媒を導入するライン26bに配置されている。ここでも、ブレーカ30b及び電圧源36bを備えた電気回路が使用されている。したがって第2のEGRクーラ15に導入される冷媒を同様に容易に加温することができる。これらの2つの加温ユニット28a、28bにより、第2の給気冷却器10及び第2のEGRクーラ15に導入される冷媒を個別に加温することができる。したがって加温ユニット28a、28bは、対応する個々のクーラ10、15のうちの1つに氷が形成される危険が生じると、互いに無関係に起動され得る。加温ユニット28a、28bは、ここでは、対応する個々のクーラ10、15の外側の、これらのクーラ10、15の中に配置されている冷媒入口の近くに配置されている。別法としては、対応する個々のクーラ10、15の内側の、これらのクーラ10、15の中に配置されている冷媒入口の近くに、これらの加温ユニット28a、28bを配置することも可能である。] 図2
[0023] 本発明は、図面に示されている実施例に何ら限定されず、特許請求の範囲の各請求項の範囲内で自由に変更することができる。実施例の実例では、圧力センサを使用して、クーラ内に氷が形成されたことを示すためのパラメータとして、クーラ内全体の圧力降下が決定されている。また、温度センサを同様に良好に使用して、クーラ内に氷が形成されたことを示すためのパラメータとして、クーラ内の温度降下を決定することも可能である。他の代替によれば、温度センサを使用して、クーラ10、15に導入される冷媒の温度を検出することも可能である。冷媒の温度が0℃より高い場合、クーラ10、15内に氷が形成されることはない。図に示されている実施例では、上記装置は、第2の給気冷却器10及び第2のEGRクーラ15の両方を実質的に氷が形成されない状態に維持するために使用されている。また、本装置を使用して、前記クーラ10、15のうちの一方のみを実質的に氷が形成されない状態に維持することも可能である。本装置は、燃焼機関に導入される空気を圧縮するためにターボ・ユニットが使用される過給された燃焼機関のためのものであることが意図されている。また、本装置は、当然、複数のターボ・ユニットによって空気が圧縮される過給された燃焼機関のために使用することも可能である。このような場合、第1の給気冷却器9は、ターボ・ユニットの圧縮機内における圧縮と圧縮の間の空気を冷却するための中間クーラとして使用することができる。]
权利要求:

請求項1
循環する冷媒を備えた低温冷却システムと、水蒸気を含有したガス状媒体を前記冷却システム内の前記冷媒によって冷却することを意図したクーラ(10、15)とを備えた、過給された燃焼機関(2)のための装置において、該装置が、前記冷却システム内の前記冷媒と接触して配置された電気加温ユニット(28、28a、28b)と、電圧源(36、36a、36b)と、ブレーカ(30、30a、30b)であって、第1の位置に置くことによって前記加温ユニット(28、28a、28b)及び前記電圧源(36、36a、36b)を切断することができ、また、第2の位置に置くことによって前記加温ユニット(28、28a、28b)及び前記電圧源(36)を一体に接続することができ、したがって前記加温ユニット(28、28a、28b)が電気エネルギーを受け取り、前記冷却システム内の前記冷媒を加温するブレーカ(30、30a、30b)とを備えた電気回路を備えたことを特徴とする、装置。
請求項2
前記装置が、前記ガス状媒体が著しく冷却され、そのために前記クーラ(10、15)内に氷が形成されているかどうか、或いは前記クーラ(10、15)内に氷が形成される危険が存在しているかどうかを示すパラメータを検出するようになされた少なくとも1つのセンサ(32〜35)と、前記センサ(32〜35)から情報を受け取り、且つ、前記クーラ(10、15)内に氷が形成されているかどうか、或いは前記クーラ(10、15)内に氷が形成される危険が存在しているかどうかを決定し、そうである場合、前記ブレーカ(30)を前記第2の位置に置くようになされた制御ユニット(31)とを備えたことを特徴とする、請求項1に記載の装置。
請求項3
前記装置が、前記クーラ(10、15)内における前記ガス状媒体の圧力降下又は温度降下に関連するパラメータを検出するようになされた圧力センサ(32〜35)又は温度センサを備えたことを特徴とする、請求項2に記載の装置。
請求項4
前記低温冷却システムが、前記循環する冷媒が周囲温度の空気によって冷却されるラジエータ・エレメント(24)を備えたことを特徴とする、請求項1から3のいずれか一項に記載の装置。
請求項5
前記加温ユニット(28、28a、28b)が、前記低温冷却システム内の、前記ラジエータ・エレメント(24)の下流側の位置に配置されたことを特徴とする、請求項1から4のいずれか一項に記載の装置。
請求項6
前記加温ユニット(28、28a、28b)が、前記低温冷却システム内の、前記冷却システム内における冷媒流の意図する方向に対して、前記クーラ(10、15)の上流側の位置に配置されたことを特徴とする、請求項5に記載の装置。
請求項7
前記加温ユニット(28a、28b)が前記クーラ(10、15)内に配置されたことを特徴とする、請求項5に記載の装置。
請求項8
前記低温冷却システム内の前記冷媒による第2の冷却ステップが前記ガス状媒体に施される前記クーラ(10、15)への前記ガス状媒体の導入に先立って、高温冷却システム内の冷媒による第1の冷却ステップを前記ガス状媒体に施すことが意図された他のクーラ(9、14)を備えたことを特徴とする、請求項1から7のいずれか一項に記載の装置。
請求項9
前記ガス状媒体が、前記燃焼機関(2)への空気入口ライン(8)に導入される圧縮空気であることを特徴とする、請求項1から8のいずれか一項に記載の装置。
請求項10
前記ガス状媒体が、前記燃焼機関(2)への戻りライン(11)に導入される再循環排気ガスであることを特徴とする、請求項1から9のいずれか一項に記載の装置。
类似技术:
公开号 | 公开日 | 专利标题
US9745887B2|2017-08-29|Engine cooling system
JP5962534B2|2016-08-03|インタークーラの温度制御装置
RU2580981C2|2016-04-10|Система охлаждения двигателя внутреннего сгорания с наддувом
JP5580151B2|2014-08-27|エンジンの廃熱回収及び冷却装置
CN100458116C|2009-02-04|增压空气的冷却回路布置以及这种回路布置的运行方法
DE60024390T2|2006-08-17|Hochtemperaturkühlmittelkreislauf für Rückführvorrichtung von gekühltem Abgas für Brennkraftmaschinen
EP2225455B1|2011-06-29|Internal combustion engine
US7650753B2|2010-01-26|Arrangement for cooling exhaust gas and charge air
US7040303B2|2006-05-09|Combined aftercooler system with shared fans
CN101268271B|2010-12-08|用于增压式内燃机的废气再循环的装置
DE102005002518B3|2006-08-03|Abgasrückführungssystem für eine Brennkraftmaschine sowie Abgasrückführungsverfahren
US7322193B2|2008-01-29|Exhaust gas recirculation system
DE112013002630T5|2015-02-19|Wärmemanagementsystem
JP5394536B2|2014-01-22|燃焼機関において排気ガスを戻す構造
EP2678548B1|2017-11-01|System for converting thermal energy to mechanical energy in a vehicle
KR101780367B1|2017-09-21|과급 연소 기관에 의해 작동되는 차량용 냉각 장치
JP4790061B2|2011-10-12|車両の冷却ファン装置
DE102014206644B4|2016-06-23|Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
JP5754755B2|2015-07-29|給気冷却器及びegrシステムを備えたエンジン配置
JP4519176B2|2010-08-04|車輌の過給式内燃機関の排気ガス再循環構造
EP1759111B1|2010-10-27|An arrangement for recirculation of exhaust gases of a super-charged internal combustion engine
KR20040094684A|2004-11-10|엔진 유입 가스 온도 제어 방법, 액체/기체 열 교환기 및엔진 유입 공기 온도 제어 장치
US20130074497A1|2013-03-28|Waste heat recovery system
US8490392B2|2013-07-23|Arrangement for a supercharged combustion engine concerning coolers for inlet air to and exhaust gases from the engine
JP4524323B2|2010-08-18|過給内燃機関の排気再循環装置
同族专利:
公开号 | 公开日
CN101946068A|2011-01-12|
SE0800530L|2009-09-07|
EP2262991A4|2014-04-02|
EP2262991B1|2017-11-01|
WO2009123542A1|2009-10-08|
BRPI0907241A2|2015-07-14|
RU2449136C1|2012-04-27|
CN101946068B|2013-01-02|
US8413627B2|2013-04-09|
SE532709C2|2010-03-23|
EP2262991A1|2010-12-22|
US20110005475A1|2011-01-13|
KR20110003319A|2011-01-11|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
WO2006040053A1|2004-10-07|2006-04-20|Behr Gmbh & Co. Kg|Luftgekühlter abgaswärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge|
JP2007315323A|2006-05-26|2007-12-06|Tokyo Radiator Mfg Co Ltd|System structure of EGR cooler|JP2016113942A|2014-12-12|2016-06-23|トヨタ自動車株式会社|内燃機関の制御装置|FR1499898A|1966-03-02|1967-11-03||Perfectionnements apportés aux dispositifs de refroidissement des moteurs à combustion interne suralimentés|
GB1324847A|1970-03-14|1973-07-25|Cropper D|Motor vehicles|
DE2655017C2|1976-12-04|1986-09-18|Kloeckner-Humboldt-Deutz Ag, 5000 Koeln, De||
DE4114704C1|1991-05-06|1992-02-20|Mtu Friedrichshafen Gmbh||
US5598705A|1995-05-12|1997-02-04|General Motors Corporation|Turbocharged engine cooling apparatus|
RU2109148C1|1996-07-16|1998-04-20|Акционерное общество закрытого типа "Зил-КАР"|Комбинированная система автоматического управления и регулирования теплового режима двигателя внутреннего сгорания|
US6394076B1|1998-09-23|2002-05-28|Duane L. Hudelson|Engine charge air cooler|
US6230668B1|2000-05-22|2001-05-15|General Electric Company|Locomotive cooling system|
RU2186229C1|2001-08-16|2002-07-27|Терентьев Сергей Петрович|Система жидкостного охлаждения и прогрева двигателя внутреннего сгорания|
DE10301448B4|2003-01-10|2013-04-04|Behr Thermot-Tronik Gmbh|Vorrichtung zur Temperierung von Schmieröl eines Kraftfahrzeugs|
DE10325981A1|2003-06-07|2004-12-23|Daimlerchrysler Ag|Liquid pump with heating element|
CN100573017C|2004-10-07|2009-12-23|贝洱两合公司|气冷式废气热交换器、特别是汽车废气冷却器|
DE102005029918B4|2005-04-29|2010-05-06|Mtu Friedrichshafen Gmbh|Kühlsystem für eine aufgeladene Brennkraftmaschine|
SE529101C2|2005-09-20|2007-05-02|Scania Cv Ab|Cooling arrangement for the recirculation of gases of a supercharged internal combustion engine|
SE529731C2|2006-03-21|2007-11-06|Scania Cv Ab|Radiator arrangement of a vehicle|
FR2914026A1|2007-03-20|2008-09-26|Peugeot Citroen Automobiles Sa|Dispositif d'admission d'air d'un moteur a combustion interne, vehicule comportant un tel dispositif et procede de demarrage d'un tel vehicule|US20100263375A1|2009-04-15|2010-10-21|Malcolm James Grieve|Twin-Charged Boosting System for Internal Combustion Engines|
SE533750C2|2008-06-09|2010-12-21|Scania Cv Ab|Arrangement of a supercharged internal combustion engine|
SE534270C2|2008-11-05|2011-06-21|Scania Cv Ab|Arrangement for cooling of recirculating exhaust gases of an internal combustion engine|
US9181852B2|2012-05-16|2015-11-10|Ford Global Technologies, Llc|Misfire prevention water agitator system and method|
US9650942B2|2012-10-19|2017-05-16|Ford Global Technologies, Llc|Engine control coordination with grille shutter adjustment and ambient conditions|
US9476345B2|2012-10-19|2016-10-25|Ford Global Technologies, Llc|Engine cooling fan to reduce charge air cooler corrosion|
US9605587B2|2012-12-04|2017-03-28|Ford Global Technologies, Llc|Boosted engine charge air cooler condensation reduction device|
FR3001797A1|2013-02-06|2014-08-08|Peugeot Citroen Automobiles Sa|Procede de refroidissement et de protection d'un echangeur de chaleur air/fluide|
US9140178B2|2013-03-28|2015-09-22|Ford Global Technologies, Llc|Method for purging charge air cooler condensate during a compressor bypass valve event|
ITTO20130262A1|2013-03-29|2014-09-30|Denso Corp|Sistema di raffreddamento di un fluido gassoso di aspirazione per un motore a combustione interna, integrato in un circuito di raffreddamento del motore|
RU2546135C2|2013-07-09|2015-04-10|Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ставропольский государственный аграрный университет"|Система регулирования температуры воздуха, поступающего в двигатель внутреннего сгорания|
US9617909B2|2014-12-22|2017-04-11|Ford Global Technologies, Llc|Method and system for charge air cooler condensate control|
JP6414194B2|2016-12-26|2018-10-31|トヨタ自動車株式会社|内燃機関の制御装置|
FR3079558A1|2018-03-27|2019-10-04|Renault S.A.S.|Circuit de refroidissement pour un moteur a combustion interne equipe d'un circuit de recirculation de gaz d'echappement et son procede de commande|
CN110454268A|2019-07-16|2019-11-15|玉柴联合动力股份有限公司|一种发动机和egr冷却器并联冷却系统|
法律状态:
2011-12-08| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111208 |
2011-12-14| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111213 |
2012-07-02| A02| Decision of refusal|Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120629 |
优先权:
申请号 | 申请日 | 专利标题
[返回顶部]