专利摘要:
共沸蒸留を用いる2,3,3,3−テトラフルオロプロペンとフッ化水素との分離方法が本明細書で開示される。さらに、共沸蒸留による2,3,3,3−テトラフルオロプロペン、フッ化水素ならびに1,1,1,2,3−ペンタフルオロプロパン(HFC−245eb)および/または1,1,1,2,2−ペンタフルオロプロパン(HFC−245cb)の混合物の分離方法が開示される。
公开号:JP2011513227A
申请号:JP2010547739
申请日:2009-02-19
公开日:2011-04-28
发明作者:ピー.ナップ ジェフリー
申请人:イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company;
IPC主号:C07C17-386
专利说明:

[0001] 本開示は概してフルオロオレフィンからのHFの分離方法に関する。特に、本開示は、共沸蒸留による2,3,3,3−テトラフルオロプロペンからのHFの分離方法に関する。]
背景技術

[0002] フルオロオレフィンの化学的製造は、所望のフルオロオレフィンとフッ化水素(HF)との混合物を生成する可能性がある。フルオロオレフィンとHFとの分離は常に容易に成し遂げられるわけではない。蒸留およびデカンテーションの既存の方法は、非常に多くの場合にこれらの化合物の分離には効果がない。水性洗浄は有効であり得るが、大量の洗浄液の使用を必要とし、後で乾燥しなければならない湿潤生成物だけでなく過度の廃棄物を生み出す。それ故、HFをフルオロオレフィンから分離する新規方法が必要とされている。]
課題を解決するための手段

[0003] 一実施形態では、HFおよびHFC−1234yfを含む混合物の分離方法であって、a)HFおよびHFC−1234yfを含む組成物を第1蒸留塔に供給する工程と;b)HFおよびHFC−1234yfを含む共沸混合物組成物を第1留出物として、そしてi)HFかii)HFC−1234yfかのどちらかを第1塔ボトム組成物として取り去る工程と;c)第1留出物を凝縮させて、i)HFに富む相およびii)HFC−1234yfに富む相である、2つの液相を形成する工程と;d)第1塔ボトムとして取り去られるものと同じ化合物に富む第1液相であって、i)HFに富む相かii)HFC−1234yfに富む相かのどちらかである前記第1液相を第1蒸留塔にリサイクルして戻す工程とを含む方法を提供する。]
[0004] 別の実施形態では、HFC−1234yfの、フッ化水素および前記HFC−1234yfを含む混合物からの分離方法であって、前記HFC−1234yfがフッ化水素と前記HFC−1234yfとの共沸混合物濃度より高い濃度で存在し、前記方法が、a)フッ化水素および前記HFC−1234yfを含む前記混合物を第1蒸留塔に供給する工程と;b)フッ化水素およびHFC−1234yfを含む共沸混合物組成物を第1蒸留塔から第1留出物として取り去る工程と;c)フッ化水素を本質的に含まないHFC−1234yfを第1蒸留塔のボトムから回収する工程と;d)共沸混合物組成物を凝縮させて、i)フッ化水素に富む相およびii)HFC−1234yfに富む相である、2つの液相を形成する工程と;e)HFC−1234yfに富む相を第1蒸留塔にリサイクルする工程とを含む方法を提供する。]
[0005] 別の実施形態では、フッ化水素およびHFC−1234yfを含む混合物からのフッ化水素の分離方法であって、フッ化水素がフッ化水素と前記HFC−1234yfとの共沸混合物濃度より高い濃度で存在し、前記方法が、a)フッ化水素およびHFC−1234yfを含む前記混合物を第1蒸留塔に供給する工程と;b)HFC−1234yfおよびHFを含む共沸混合物または共沸混合物様組成物を第1蒸留塔から留出物として取り去る工程と;c)HFC−1234yfを本質的に含まないフッ化水素を第1蒸留塔のボトムから回収する工程と;d)共沸混合物組成物を凝縮させて、HFC−1234yfに富む相およびフッ化水素に富む相である、2つの液相を形成する工程と;e)HFに富む相を第1蒸留塔にリサイクルする工程とを含む方法を提供する。]
[0006] 別の実施形態では、HFC−1234yfおよびHFを含む混合物からのHFC−1234yfの精製方法であって、前記HFC−1234yfが前記HFC−1234yfとHFとの共沸混合物濃度より高い濃度で前記混合物中に存在し、前記方法が、a)エントレーナーを、HFC−1234yfおよびHFを含む混合物に添加し、こうして第2混合物を形成する工程と;b)前記第2混合物を第1蒸留工程で蒸留して、HF、HFC−1234yf、およびエントレーナーを含む第1留出物組成物、ならびにHFC−1234yfを含む第1ボトム組成物を形成する工程と;c)前記第1留出物組成物を凝縮させて、i)HFに富む相およびii)エントレーナーに富む相である、2つの液相を形成する工程と;d)エントレーナーに富む相を第1蒸留工程に任意選択的にリサイクルして戻す工程とを含む方法を提供する。]
[0007] 別の実施形態では、HFC−1234yfおよびHFを含む混合物からのHFの精製方法であって、HFがHFと前記HFC−1234yfとの共沸混合物濃度より高い濃度で存在し、前記方法が、a)エントレーナーを、HFC−1234yfおよびHFを含む混合物に添加し、こうして第2混合物を形成する工程と;b)前記第2混合物を第1蒸留工程で蒸留して、HF、エントレーナー、およびHFC−1234yfを含む第1留出物組成物、ならびにHFを含む第1ボトム組成物を形成する工程と;c)前記第1留出物組成物を凝縮させて、i)エントレーナーに富む相およびii)HFに富む相である、2つの液相を形成する工程と;d)HFに富む相を第1蒸留工程に任意選択的にリサイクルして戻す工程とを含む方法を提供する。]
[0008] 別の実施形態では、HFC−1234yf、HF、およびHFC−245cbまたはHFC−245ebの少なくとも1つの混合物からのHFC−1234yfの分離方法であって、a)前記混合物を、追加のHFC−1234yfが第2蒸留工程から供給される第1蒸留工程にかけて、HFC−1234yfとHFとの共沸混合物を含む第1留出物ならびにHFC−245cbまたはHFC−245ebの少なくとも1つを含む第1ボトム組成物を形成する工程と;b)前記第1留出物を第2蒸留工程に供給してHFC−1234yfとHFとの共沸混合物を含む第2留出物ならびにHFを本質的に含まないHFC−1234yfを含む第2ボトム組成物を形成する工程と;c)前記第2留出物を凝縮させて、i)HFに富む相およびii)HFC−1234yfに富む相である、2つの液相を形成する工程と;d)工程(c)からのHFC−1234yfに富む相を第1蒸留工程にリサイクルして戻す工程とを含む方法を提供する。]
[0009] 別の実施形態では、HFC−1234yf、HF、およびHFC−245cbまたはHFC−245ebの少なくとも1つを含む混合物からのHFの分離方法であって、a)HFC−1234yf、HF、およびHFC−245cbまたはHFC−245ebの少なくとも1つを含む混合物にエントレーナーを添加し、こうして第2混合物を形成する工程と;b)前記第2混合物を第1蒸留工程で蒸留して、HFおよびエントレーナーを含む第1留出物組成物ならびにHFC−1234yfおよびHFC−245cbまたはHFC−245ebの少なくとも1つを含む第1ボトム組成物を形成する工程と;c)前記第1留出物組成物を凝縮させて、i)エントレーナーに富む相およびii)HFに富む相である、2つの液相を形成する工程と;d)エントレーナーに富む相を第1蒸留工程にリサイクルして戻す工程とを含む方法を提供する。]
[0010] 前述の概要および以下の詳細な説明は、例示的および説明的なものであるにすぎず、添付の特許請求の範囲に定義されるような、本発明を限定するものではない。]
[0011] 実施形態は、本明細書に提示されるようなコンセプトの理解を深めるための添付図に例示される。]
図面の簡単な説明

[0012] エントレーナーを全く添加しないHFとHFC−1234yfとの分離のための共沸蒸留の一実施形態の図である。
エントレーナーを添加したHFとHFC−1234yfとの分離のための共沸蒸留の一実施形態の図である。
共沸蒸留によってHFC−245ebまたはHFC−245cbの少なくとも1つを、HFC−1234yf、HFおよびHFC−245ebまたはHFC−245cbの前記少なくとも1つを含む混合物から分離するためのプロセスであって、HFC−1234yfがエントレーナーとして働くプロセス、それに続く、エントレーナーとして機能するための別の化合物を添加しない共沸蒸留によって、HFC−1234yfおよびHFを含むが、HFC−245ebおよび/またはHFC−245cbを今や実質的に含まない混合物からHFC−1234yfとHFとが分離されるプロセスの一実施形態の図である。
共沸蒸留によってHFC−1234yfおよびHFC−245ebまたはHFC−245cbの少なくとも1つを、HFC−1234yf、HFおよびHFC−245ebまたはHFC−245cbの前記少なくとも1つを含む混合物から分離するためのプロセスであって、捕足のエントレーナーが蒸留に供給されるプロセスの一実施形態の図である。
共沸蒸留によってHFC−245ebまたはHFC−245cbの少なくとも1つを、HFC−1234yf、HFおよびHFC−245ebまたはHFC−245cbの前記少なくとも1つを含む混合物から分離するためのプロセスであって、HFC−1234yfがエントレーナーとして働くプロセス、それに続く、エントレーナーを添加した共沸蒸留によって、HFC−1234yfおよびHFを含むが、HFC−245ebおよび/またはHFC−245cbを今や実質的に含まない混合物からHFC−1234yfとHFとが分離されるプロセスの一実施形態の図である。
第1塔の凝縮器を出る2相混合物がデカンテーションされ、それぞれ、HFC−1234yfおよびHF塔に供給されるHFC−1234yfに富む流れおよびHFに富む流れへ分離される図3に示されるプロセスの別の実施形態を例示する。
第1塔の凝縮器を出る2相混合物がデカンテーションされ、それぞれ、HFC−1234yfおよびHF塔に供給されるHFC−1234yfに富む流れおよびHFに富む流れへ分離される図5に示されるプロセスの別の実施形態を例示する。
3つの塔、20、110、および220が1つのデカンターを共有する、図6に示されるプロセスの別の実施形態を例示する。] 図3 図5 図6
[0013] 当業者は、図中の対象が簡単にするためにおよび明確にするために例示されており、原寸に比例して必ずしも描かれていないことを認識している。例えば、図中の対象の幾つかの寸法は、実施形態の理解を深めるのに役立つために他の対象に対して拡大されている可能性がある。]
[0014] 多くの態様および実施形態が上に説明されてきたが、例示的であるにすぎず、限定的なものではない。本明細書を読んだ後で、当業者は、他の態様および実施形態が本発明の範囲から逸脱することなく可能であることを理解する。]
[0015] 実施形態の任意の1つ以上の他の特徴および利益は、以下の詳細な説明から、および特許請求の範囲から明らかとなるであろう。]
[0016] 1.用語の定義および明確化
以下に説明される実施形態の詳細を述べる前に、幾つかの用語が定義されるかまたは明確にされる。]
[0017] 共沸または共沸混合物組成物とは、一定の組成で沸騰し、こうして単一物質として挙動する2つ以上の物質の定沸点混合物を意味する。定沸点組成物は、個々の成分の沸点と比較したときに、それらが最高沸点か最低沸点かのどちらかを示すので、共沸として特徴づけられる。共沸組成物はまた、一定温度で組成の関数としてPTxセルでのニート成分の蒸気圧に対して蒸気圧測定で最低かまたは最高によって特徴づけられる。気相が単一液相と平衡状態にある、均一共沸混合物については、気相および液相の組成は同一である。しかしながら、気相が2つの液相と平衡状態にある、不均一共沸混合物については、全ての3つの平衡相は異なるが、一定の組成を有することができる。]
[0018] 本明細書で用いるところでは、用語「共沸混合物様組成物」(「近共沸組成物」とも言われる)は、単一物質として挙動する2つ以上の物質の定沸点の、または実質的に定沸点の液体混合物を意味する。共沸混合物様組成物を特徴づける一方法は、液体の部分蒸発または蒸留によって生み出された蒸気の組成が、部分蒸発または蒸留の全体にわたって実質的に変化しないことである。同様に、存在する液相の組成も、部分蒸発または蒸留の間ずっと実質的に変化しない。すなわち、混合物は、実質的な組成変化なしに沸騰する/蒸留される/還流する。これは、液組成が沸騰または蒸発中にかなりの程度変化する非共沸混合物様組成物と対比されるべきである。共沸混合物様組成物を特徴づける別の方法は、ある特定の温度での組成物のバブルポイント蒸気圧および組成物の露点蒸気圧が実質的に同じものであることである。本明細書では、露点圧力とバブルポイント圧力との差が3パーセント以下(バブルポイント圧力を基準として)である場合に、組成物は共沸混合物様であると見なされる。]
[0019] 高沸点共沸混合物とは、共沸混合物または共沸混合物様組成物が任意の所与の圧力で、それを構成する化合物のどれか1つがその圧力で別々に沸騰するであろうよりも高い温度で沸騰することを意味する。あるいはまた、高沸点共沸混合物とは、任意の所与の温度で、それを構成する化合物のどれか1つがその温度で別々に有するであろうよりも低い蒸気圧を有する任意の共沸混合物または共沸混合物様組成物を意味する。]
[0020] 低沸点共沸混合物とは、共沸混合物または共沸混合物様組成物が任意の所与の圧力で、それを構成する化合物のどれか1つがその圧力で別々に沸騰するであろうよりも低い温度で沸騰することを意味する。あるいはまた、低沸点共沸混合物とは、任意の所与の温度で、共沸混合物を構成する化合物のどれか1つが、その温度で別々に有するであろう蒸気圧よりも高い蒸気圧を有する任意の共沸混合物または共沸混合物様組成物を意味する。]
[0021] 幾つかの判定基準によって、選択される条件に依存して、共沸混合物または共沸混合物様組成物を多くの形で現れる可能性がある実質的に定沸点の混合物として特徴づけることが可能である:
*用語「共沸混合物」は同時に限定的および制限的の両方であり、そして定沸点組成物であり得る物質のこの独特の組成のために有効量のそれら2つ以上の化合物を必要とするので、この組成物は2つの化合物の共沸混合物と定義することができる。]
[0022] *異なる圧力で、所与の共沸混合物または共沸混合物様組成物の組成は、沸点温度が変わるにつれて、少なくともある程度変わることが当業者によってよく知られている。このように、2つの化合物の共沸混合物または共沸混合物様組成物は独特なタイプの、しかし温度および/または圧力に依存する可変組成の関係を示す。それ故、一定の組成よりもむしろ、組成範囲が多くの場合、共沸混合物および共沸混合物様組成物を定義するために用いられる。]
[0023] *2つの化合物の共沸混合物または共沸混合物様組成物は、所与の圧力での沸点によって特徴づけられる組成を定義すること、こうして利用可能な分析機器により制限され、そして分析機器のように正確であるにすぎない、特有の数値組成により本発明の範囲を不当に制限することなく特徴を明らかにすることによって特徴づけることができる。]
[0024] 共沸混合物または共沸混合物様液体組成物が異なる圧力で沸騰することを許されるときに共沸組成物の各成分の沸点および重量(またはモル)百分率の両方が変わる可能性があることは当該技術分野で認められている。従って、共沸混合物または共沸混合物様組成物は、成分の間に存在する独特の関係の観点からまたは単位圧力での一定の沸点によって特徴づけられる組成物の各成分の正確な重量(またはモル)百分率の観点から定義されてもよい。]
[0025] 本明細書で用いるところでは、用語「共沸混合物」は、共沸混合物組成物および/または共沸混合物様組成物を意味することを意図する。]
[0026] エントレーナーとは、第1混合物に添加されるときに、混合物の成分と1つ以上の共沸混合物を形成して混合物の成分の分離を容易にする任意の化合物を意味する。本明細書で用いるところでは、用語「エントレーナー」および「同伴剤」は同じ意味で用いられ、同一の意味を有すると解釈されるべきである。]
[0027] 共沸蒸留とは、蒸留塔が1つ以上の共沸混合物または共沸混合物様組成物を形成させるための条件下に運転され、それによって混合物の成分の分離を容易にするプロセスを意味する。共沸蒸留は、分離されるべき混合物の成分のみが蒸留される場合にか、または最初の混合物の成分の1つ以上と共沸混合物を形成するエントレーナーが添加される場合に起こる可能性がある。このように作動する、すなわち、分離されるべき混合物の成分の1つ以上と共沸混合物を形成し、こうして蒸留によるそれらの成分の分離を容易にするエントレーナーは、より一般的には共沸混合物形成剤または共沸エントレーナーと呼ばれる。]
[0028] 通常の蒸留または共沸蒸留で、塔を出るオーバーヘッドまたは留出物流れは、通常の還流凝縮器を使用して凝縮させられてもよい。この凝縮した流れの少なくとも一部は、還流として塔のトップに戻し、残りは製品としてかまたは任意選択の処理のために回収することができる。還流として塔のトップに戻される凝縮した物質対留出物として取り去られる物質の比は、一般に還流比と言われる。留出物または蒸留ボトム流れとして塔を出る化合物およびエントレーナーは次に、ストリッパーまたは通常の蒸留を用いることによる分離のための第2蒸留塔に通すことができるか、またはデカンテーションなどの、他の方法によって分離されてもよい。必要ならば、エントレーナーは次に、再使用のために第1蒸留塔にリサイクルして戻されてもよい。]
[0029] 本発明を実施するために用いることができる具体的な条件は、とりわけ、蒸留塔の直径、供給ポイント、塔の分離段数などの、多数のパラメーターに依存する。一実施形態では、蒸留系の運転圧力は、約5〜500psia、別の実施形態では、約20〜400psiaの範囲であってもよい。普通は、還流比を上げると、留出物流れ純度の増加をもたらすが、一般に還流比は1/1〜200/1の範囲である。塔のトップに隣接して置かれている、凝縮器の温度は通常、塔のトップから出る留出物を実質的に完全に凝縮させるのに十分なものであるか、または部分凝縮によって所望の還流比を達成するために必要とされる温度である。]
[0030] 通常の蒸留に関連した問題は、エントレーナーを使用する蒸留プロセスによって解決される可能性がある。この方法を適用する上での困難さは、実験が不足して、もしあればどの化合物が有効なエントレーナーであるかを予測する公知の方法が全くないことである。]
[0031] フッ化水素(HF、無水)は商業的に入手可能な化学品であり、当技術分野で公知の方法によって製造することができる。]
[0032] 2,3,3,3−テトラフルオロプロペン(HFC−1234yf、CF3CF=CH2)は、1,1,1,2,2−ペンタフルオロプロパン(HFC−245cb、CF3CF2CH3)または1,1,1,2,3−ペンタフルオロプロパン(HFC−245eb、CF3CHFCH2F)の脱フッ化水素などの、公知の方法によって製造されてもよい。HFC−245cbは、例えば米国特許第6,184,426号明細書におけるなどの当該技術分野に記載されている方法によって製造されてもよい。HFC−245ebは、例えば米国特許第5,396,000号明細書におけるなどの当該技術分野に記載されている方法によって製造されてもよい。]
[0033] 米国特許出願公開第2007−0100175 A1号明細書は、HFC−1234yfとHFとについての共沸混合物および共沸混合物様(近共沸混合物としても知られる)組成物を開示している。これらの共沸混合物および共沸混合物様組成物は、HFおよびHFC−1234yfを含む混合物からのHFC−1234yfの分離方法に使用されてもよい。さらに、その明細書に記載されているような共沸組成物は、HFC−1234yf、HFおよびHFC−245cbまたはHFC−245ebの少なくとも1つを含む混合物からのHFC−1234yfの同様な分離または精製方法に使用されてもよい。]
[0034] 用語「エントレーナー」は本明細書では、共沸蒸留プロセスでHFおよびフルオロオレフィンを含む混合物からのフルオロオレフィンの分離に有効であろう任意の化合物を記載するために使用される。有用なエントレーナーとして、フルオロオレフィン、HF、および可能なハイドロフルオロカーボンをはじめとする混合物の成分の1つ以上と共沸混合物を形成する化合物が含まれ、可能なハイドロフルオロカーボンについて少なくとも1つのかかる共沸混合物の沸点はフルオロオレフィン/HF共沸混合物の沸点より低い。]
[0035] エントレーナーは、炭化水素、クロロカーボン、クロロフルオロカーボン、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボン、パーフルオロカーボン、フルオロエーテル、HFPO、SF6、塩素、ヘキサフルオロアセトン、およびそれらの混合物からなる群から選択されてもよい。]
[0036] 炭化水素エントレーナーは、1〜5個の炭素原子および水素を含有する化合物を含む。炭化水素エントレーナーは、線状、分岐、環状、飽和または不飽和化合物であってもよい。代表的な炭化水素エントレーナーには、メタン、エタン、エチレン、アセチレン、ビニルアセチレン、n−プロパン、プロピレン、プロピン、シクロプロパン、シクロプロペン、プロパジエン、n−ブタン、イソブタン、1−ブテン、イソブテン、1,3−ブタジエン、2,2−ジメチルプロパン、シス−2−ブテン、トランス−2−ブテン、1−ブチン、n−ペンタン、イソペンタン、ネオペンタン、シクロペンタン、1−ペンテン、2−ペンテン、およびそれらの混合物が含まれるが、それらに限定されない。]
[0037] クロロカーボンエントレーナーは、塩化メチレン(CH2Cl2)、および塩化メチル(CH3Cl)を含むがそれらに限定されない、炭素、塩素および任意選択的に水素を含有する化合物を含む。]
[0038] クロロフルオロカーボン(CFC)エントレーナーは、炭素、塩素およびフッ素の化合物を含む。代表的なCFCには、ジクロロジフルオロメタン(CFC−12)、2−クロロ−1,1,2−トリフルオロエチレン、クロロペンタフルオロエタン(CFC−115)、1,2−ジクロロ−1,1,2,2−テトラフルオロエタン(CFC−114)、1,1−ジクロロ−1,2,2,2−テトラフルオロエタン(CFC−114a)、1,1,2−トリクロロ−1,2,2−トリフルオロエタン(CFC−113)、1,1,1−トリクロロ−2,2,2−トリフルオロエタン(CFC−113a)、1,1,2−トリクロロ−1,2,3,3,3−ペンタフルオロプロパン(CFC−215bb)、2,2−ジクロロ−1,1,1,3,3,3−ヘキサフルオロプロパン(CFC−216aa)、1,2−ジクロロ−1,1,2,3,3,3−ヘキサフルオロプロパン(CFC−216ba)、2−クロロ−1,1,1,2,3,3,3−ヘプタフルオロプロパン(CFC−217ba)、2−クロロ−1,1,3,3,3−ペンタフルオロプロペン(CFC−1215xc)、およびそれらの混合物が含まれるが、それらに限定されない。]
[0039] ハイドロクロロフルオロカーボン(HCFC)エントレーナーは、炭素、塩素、フッ素および水素の化合物を含む。代表的なHCFCには、ジクロロフルオロメタン(HCFC−21)、1,1−ジクロロ−3,3,3−トリフルオロエタン(HCFC−123)、1,1−ジクロロ−1−フルオロエタン(HCFC−141b)、2−クロロ−1,1,1,2−テトラフルオロエタン(HCFC−124)、1−クロロ−1,1,2,2−テトラフルオロエタン(HCFC−124a)、2−クロロ−1,1,1−トリフルオロエタン(HCFC−133a)、1−クロロ−1,1−ジフルオロエタン(HCFC−142b)、2−クロロ−1,1−ジフルオロエチレン(HCFC−1122)、およびそれらの混合物が含まれるが、それらに限定されない。]
[0040] ハイドロクロロフルオロカーボン(HCFC)エントレーナーは、炭素、塩素、フッ素および水素の化合物を含む。代表的なHCFCには、ジクロロフルオロメタン(HCFC−21)、1,1−ジクロロ−3,3,3−トリフルオロエタン(HCFC−123)、1,1−ジクロロ−1−フルオロエタン(HCFC−141b)、2−クロロ−1,1,1,2−テトラフルオロエタン(HCFC−124)、1−クロロ−1,1,2,2−テトラフルオロエタン(HCFC−124a)、2−クロロ−1,1,1−トリフルオロエタン(HCFC−133a)、1−クロロ−1,1−ジフルオロエタン(HCFC−142b)、2−クロロ−1,1−ジフルオロエチレン(HCFC−1122)、およびそれらの混合物が含まれるが、それらに限定されない。]
[0041] ハイドロフルオロカーボン(HFC)エントレーナーは、炭素、水素およびフッ素を含有する化合物を含む。代表的なHFCには、1,1,2−トリフルオロエチレン(HFC−1123)、1,1−ジフルオロエチレン(HFC−1132a)、2,3,3,3−テトラフルオロプロペン(HFC−1234yf)、およびそれらの混合物が含まれるが、それらに限定されない。]
[0042] パーフルオロカーボン(PFC)エントレーナーは、炭素およびフッ素のみの化合物を含む。代表的なPFCには、ヘキサフルオロエタン(PFC−116)、オクタフルオロプロパン(PFC−218)、1,1,1,4,4,4−ヘキサフルオロ−2−ブチン(PFBY−2)、ヘキサフルオロプロピレン(HFP、PFC−1216)、ヘキサフルオロシクロプロパン(PFC−C216)、オクタフルオロシクロブタン(PFC−C318)、デカフルオロブタン(PFC−31−10、任意の異性体)、2,3−ジクロロ−1,1,1,4,4,4−ヘキサフルオロ−2−ブテン(PFC−1316mxx)、オクタフルオロ−2−ブテン(PFC−1318my、シスおよびトランス)、ヘキサフルオロブタジエン(PFC−2316)、およびそれらの混合物が含まれるが、それらに限定されない。]
[0043] フルオロエーテルエントレーナーは、炭素、フッ素、任意選択的に水素および少なくとも1つのエーテル基酸素の化合物を含む。代表的なフルオロエーテルには、トリフルオロメチル−ジフルオロメチルエーテル(CF3OCHF2、HFOC−125E)、1,1−ジフルオロジメチルエーテル、テトラフルオロジメチルエーテル(HFOC−134E)、ジフルオロメチルメチルエーテル(CHF2OCH3、HFOC−152aE)、ペンタフルオロエチルメチルエーテル、およびそれらの混合物が含まれるが、それらに限定されない。]
[0044] エントレーナーとして有用とし得る種々雑多な他の化合物には、HFPO、塩素(Cl2)、ヘキサフルオロアセトン、PMVE(パーフルオロメチルビニルエーテル)、PEVE(パーフルオロエチルビニルエーテル)、およびそれらの混合物が含まれる。]
[0045] 上記のようなエントレーナーは、商業的に入手可能であるかまたは当該技術分野で公知の方法によって製造されてもよい。]
[0046] 本明細書で用いるところでは、「本質的に含まない」とは、組成物が約100ppm(モル基準)未満、約10ppmまたは約1ppm未満の指定の成分を含有することを意味する。組成物が2つ以上の成分を本質的に含まない場合、それらの成分の全濃度は約100ppm未満、約10ppm未満、または約1ppm未満である。]
[0047] 本明細書に開示される方法全てのためのプロセス装置および関連供給ライン、流出物ラインならびに関連装置は、フッ化水素に耐性のある材料で構築されてもよい。当該技術分野によく知られている、典型的な構築材料には、特にオーステナイト型の、ステンレススチール、ならびにMonel(登録商標)ニッケル−銅合金、Hastelloy(登録商標)ニッケルベース合金およびInconel(登録商標)ニッケル−クロム合金などの周知の高ニッケル合金が含まれる。]
[0048] 本明細書で用いるところでは、用語「含む(comprises)」、「含む(comprising)」、「含まれる(includes)」、「をはじめとする(including)」、「有する(has)」、「有する(having)」またはそれらの任意の他の変形は、非排他的な包含をカバーすることを意図される。例えば、要素のリストを含むプロセス、方法、物品、もしくは装置は、それらの要素のみに必ずしも限定されず、明確にリストされないか、またはかかるプロセス、方法、物品、もしくは装置に固有である他の要素を含んでもよい。さらに、相反する記載がない限り、「または」は、包含的な「または」を意味し、そして排他的な「または」を意味しない。例えば、条件AまたはBは、次のいずれか1つで満たされる:Aは真であり(または存在し)かつBは偽である(存在しない)、Aは偽であり(または存在せず)かつBは真である(または存在する)、およびAおよびBの両方とも真である(または存在する)。]
[0049] 同様に、単数形(「a」または「an」)の使用は、本明細書に記載される要素および成分を記載するために採用される。これは、便宜上および本発明の範囲の一般的な意味を与えるために行われるにすぎない。この記載は、1つまたは少なくとも1つを包含すると読まれるべきであり、そして単数はまた、それが複数ではないことを意味することが明確でない限り複数を包含する。]
[0050] 特に明確にされない限り、本明細書に用いられる全ての技術的および科学的用語は、本発明が属する技術の当業者によって一般に理解されるものと同じ意味を有する。本明細書に記載されるものに類似のまたは等価の方法および材料を本発明の実施形態の実施または試験に用いることができるが、好適な方法および材料は以下に記載される。本明細書に言及される全ての刊行物、特許出願、特許、および他の参考文献は、特に節が言及されない限り、全体が参照により援用される。矛盾が生じた場合には、定義をはじめとして、本明細書が優先される。加えて、材料、方法、および実施例は例示的であるにすぎず、限定的であることを意図されない。]
[0051] 2.分離プロセス−エントレーナーなしの共沸蒸留
幾つかのフルオロオレフィンがHFと共沸混合物組成物を形成することが発見された。一般に、フルオロオレフィン/HF共沸混合物組成物は、相当する純化合物のどちらよりも低い温度で沸騰するであろう。かかるフルオロオレフィン/HF共沸混合物の幾つかの例は、米国特許出願公開第2007−0100173 A1号明細書、同第2007−0100174 A1号明細書、同第2007−0099811 A1号明細書、同第2007−0100175 A1号明細書、同第2007−0100176 A1号明細書、および同第2006−0116538 A1号明細書に開示されている。]
[0052] いくつかの場合に、フルオロオレフィンおよびHFを含む共沸混合物組成物は凝縮されるおよび/または冷却されるときに2つの液相を形成する可能性があると予想外にも判断された。HFC−1234yfの場合、2つの相は、HFC−1234yfに富む相およびHFに富む相を含む。この相挙動は、一般には同様に相分離しない、多くの飽和ハイドロフルオロカーボンで可能ではない2つの相の液−液分離(デカンテーションなどの)を利用する独特の分離スキームを可能にする。]
[0053] 一実施形態では、本開示は、HFおよびHFC−1234yfを含む混合物の分離方法であって、a)HFおよびHFC−1234yfを含む組成物を第1蒸留塔に供給する工程と;b)HFおよびHFC−1234yfを含む共沸混合物組成物を第1留出物として、そしてi)HFかii)HFC−1234yfかのどちらかを第1塔ボトム組成物として取り去る工程と;c)第1留出物を凝縮させて、i)HFに富む相およびii)HFC−1234yfに富む相である、2つの液相を形成する工程と;d)第1塔ボトムとして取り去られるものと同じ化合物に富む第1液相であって、i)HFに富む相かii)HFC−1234yfに富む相かのどちらかである前記第1液相を第1蒸留塔にリサイクルして戻す工程とを含む方法を提供する。]
[0054] さらに、別の実施形態では、上の段落に記載されるような本方法は、工程(d)でリサイクルされない、i)HFに富む相かii)HFC−1234yfに富む相かのどちらかである第2液相を第2蒸留ゾーンに供給する工程と、第1塔ボトム組成物として工程(b)で回収されなかった化合物を第2塔ボトム組成物として回収する工程とをさらに含んでもよい。]
[0055] 別の実施形態では、HFC−1234yfの、フッ化水素および前記HFC−1234yfを含む混合物からの分離方法であって、前記HFC−1234yfがフッ化水素と前記HFC−1234yfとの共沸混合物濃度より高い濃度で存在し、前記方法が、a)フッ化水素および前記HFC−1234yfを含む前記混合物を第1蒸留塔に供給する工程と;b)フッ化水素およびHFC−1234yfを含む共沸混合物組成物を第1蒸留塔から第1留出物として取り去る工程と;c)フッ化水素を本質的に含まないHFC−1234yfを第1蒸留塔から第1ボトム組成物として回収する工程と;d)第1留出物を凝縮させて、i)フッ化水素に富む相およびii)HFC−1234yfに富む相である、2つの液相を形成する工程と;e)HFC−1234yfに富む相を第1蒸留塔にリサイクルする工程とを含む方法が提供される。]
[0056] 別の実施形態では、本方法は、a)フッ化水素に富む相を第2蒸留塔に供給する工程と、b)HFC−1234yfを本質的に含まないフッ化水素を第2蒸留塔のボトムから回収する工程とをさらに含んでもよい。]
[0057] 別の実施形態では、HFおよびHFC−1234yfを含む第2留出物は、2つの液相にリサイクルされてもよい。]
[0058] HFおよびHFC−1234yfを含む組成物がHFC−1234yfとHFとの共沸混合物濃度より高いHFC−1234yfの濃度を有する、一実施形態では、第1蒸留塔は過剰のHFC−1234yfを塔のボトムから取り去り、共沸混合物組成物は留出物として塔のトップから出る。別の実施形態では、HFおよびHFC−1234yfを含む共沸混合物組成物は、凝縮させられ、冷却されてもよく、それによって2つの液相、HFに富む相およびHFC−1234yfに富む相を形成する。]
[0059] 一実施形態では、HFC−1234yfに富む相は第1蒸留塔にリサイクルして戻され、HFに富む相は第2蒸留塔に供給される。HFに富む相は、HF/HFC−1234yfについての共沸混合物組成を超えたHFを有する可能性があるので、過剰のHFは第2蒸留塔ボトムから取り去られるであろう。]
[0060] ここで図1について言及すると、本方法の一実施形態が例示される。HFおよびHFC−1234yfを含む組成物が流れ100によって第1塔110に供給される。この第1塔は、低沸点HF/HFC−1234yf共沸混合物に近づくための適切な条件下に運転される。HF−1234yfは、HFとの共沸混合物を形成するために必要とされるものより過剰にこの第1塔に供給されつつあるので、HF/HFC−1234yf共沸混合物に近い組成物が流れ130によって留出物として回収される一方、HFC−1234yfは流れ120によって塔のボトムとして回収される。流れ130は140で凝縮し、流れ250によって第2塔210からリサイクルされる近共沸組成物と混合され、組み合わせた流れは冷却器160でサブクールされ、デカンター180に送られ、そこで組み合わせた流れ170は、HFC−1234yfに富む流れ190とHFに富む流れ200とに分かれる。流れ190は還流として第1塔にリサイクルされる。流れ200は、HF/HFC−1234yf共沸混合物に近づくための条件下に運転される、第2蒸留塔210のトップ段に供給される。HFは、低沸点HF/HFC−1234yf共沸混合物を形成するために必要とされるものを超えてこの第2塔に供給されつつあるので、HF/HFC−1234yf共沸混合物に近い組成物が流れ230によって留出物として回収される一方、HFは流れ220によって塔のボトムとして回収される。流れ230は240で凝縮し、流れ150による第1塔からの近共沸組成物と混合され、冷却器160、次にデカンター180に供給される。] 図1
[0061] 別の実施形態では、フッ化水素およびHFC−1234yfを含む混合物からのフッ化水素の分離方法であって、フッ化水素がフッ化水素と前記E−HFC−1234yfとの共沸混合物濃度より高い濃度で存在し、前記方法が、a)フッ化水素およびHFC−1234yfを含む前記混合物を第1蒸留塔に供給する工程と;b)HFC−1234yfおよびHFを含む共沸混合物組成物を第1蒸留塔から第1留出物として取り去る工程と;c)HFC−1234yfを本質的に含まないフッ化水素を第1蒸留塔のボトムから回収する工程と;d)第1留出物を凝縮させて、HFC−1234yfに富む相およびフッ化水素に富む相である、2つの液相を形成する工程と;e)HFに富む相を第1蒸留塔にリサイクルする工程とを含む方法が提供される。]
[0062] 別の実施形態では、本方法は、a)HFC−1234yfに富む相を第2蒸留塔に供給する工程と;b)フッ化水素を本質的に含まないHFC−1234yfを第2蒸留塔のボトムから回収する工程とをさらに含んでもよい。]
[0063] 別の実施形態では、本方法は、フッ化水素に富む相を第1蒸留塔にリサイクルする工程をさらに含んでもよい。]
[0064] 別の実施形態では、HFおよびHFC−1234yfを含む組成物は、HFとHFC−1234yfとについての共沸混合物組成より高いHFの濃度を有する。過剰のHFは第1蒸留塔のボトムから取り去られてもよく、共沸混合物組成物は留出物として存在する。別の実施形態では、HFおよびHFC−1234yfを含む共沸混合物組成物は、凝縮させられ、冷却されてもよく、それによって2つの液相、HFに富む相およびHFC−1234yfに富む相を形成する。この実施形態については、HFに富む相は第1蒸留塔にリサイクルして戻され、HFC−1234yfに富む相は第2蒸留塔に供給される。HFC−1234yfに富む相は、HF/HFC−1234yfについての共沸混合物組成を超えたHFC−1234yfを有する可能性があるので、過剰のHFC−1234yfは、HFを本質的に含まないHFC−1234yfとして第2蒸留塔ボトムから取り去られてもよい。]
[0065] 図1について再び言及すると、HFおよびHFC−1234yfを含む組成物が流れ100によって第1塔110に供給される。この第1塔は、低沸点HF/HFC−1234yf共沸混合物に近づくための適切な条件下に運転される。HFは、HFC−1234yfとの共沸混合物を形成するために必要とされるものより過剰にこの第1塔に供給されているので、HF/HFC−1234yf共沸混合物に近い組成物が流れ130によって留出物として回収される一方、HFは流れ120によって塔のボトムとして回収される。流れ130は140で凝縮し、流れ250によって第2塔からリサイクルされる近共沸組成物と混合され、組み合わせた流れは冷却器160でサブクールされ、デカンター180に送られ、そこで組み合わせた流れ170は別個のHFに富む流れ190とHFC−1234yfに富む流れ200とに分かれる。流れ190は還流として第1塔にリサイクルされる。流れ200は、HF/HFC−1234yf共沸混合物に近づくための条件下に運転される、第2蒸留塔210のトップ段に供給される。HFC−1234yfは、低沸点HF/HFC−1234yf共沸混合物を形成するために必要とされるものを超えてこの第2塔に供給されているので、HF/HFC−1234yf共沸混合物に近い組成物が流れ230によって留出物として回収される一方、HFC−1234yfは流れ220によって塔のボトムとして回収される。流れ230は240で凝縮し、流れ150による第1塔からの近共沸組成物と混合され、冷却器160、次にデカンター180に供給される。] 図1
[0066] 一実施形態では、第1および第2蒸留塔についての運転条件は、精製中のHFC−1234yfおよび分離されるべき組成物中のHFとHFC−1234yfとの相対的な量に依存するであろう。]
[0067] 一実施形態では、第1および第2蒸留塔は、約−50℃〜約200℃のトップ温度および約−30℃〜約220℃のボトム温度で、約14.7psia(101kPa)〜約300psia(2068kPa)で動作してもよい。別の実施形態では、圧力は、約−25℃〜約100℃のトップ温度および約0℃〜約150℃のボトム温度で、約50psia(345kPa)〜約250psia(1724kPa)の範囲であろう。]
[0068] 3.分離プロセス−エントレーナーとの共沸蒸留
HFC−1234yfをHFとHFC−1234yfとの混合物から分離するための共沸蒸留は、別の実施形態では、エントレーナー化合物を使用して実施されてもよい。エントレーナーを含む方法のためには、共沸混合物組成物は、上記のように凝縮および冷却時に相分離する必要がない。]
[0069] 一実施形態では、エントレーナーは、改良された液−液相分離を、当該分離が別のやり方では有効ではないシステムに提供するのに役立つ。]
[0070] 一実施形態では、HFC−1234yfは、HF/HFC−1234yf混合物中に、前記HFC−1234yfとHFとの共沸混合物濃度より高い濃度で存在する。従って、一実施形態では、HFC−1234yfおよびHFを含む混合物からのHFC−1234yfの精製方法であって、前記HFC−1234yfが、前記HFC−1234yfとHFとの共沸混合物濃度より高い濃度で前記混合物中に存在し、前記方法が、
a.エントレーナーを、HFC−1234yfおよびHFを含む混合物に添加し、こうして第2混合物を形成する工程と;
b.前記第2混合物を第1蒸留工程で蒸留して、HF、HFC−1234yf、およびエントレーナーを含む第1留出物組成物、ならびにHFおよびエントレーナーを本質的に含まないHFC−1234yfを含む第1ボトム組成物を形成する工程と;
c.前記第1留出物組成物を凝縮させて、i)HFに富む相およびii)エントレーナーに富む相である、2つの液相を形成する工程と;
d.エントレーナーに富む相を第1蒸留工程に任意選択的にリサイクルして戻す工程と
を含む方法が提供される。別の実施形態では、本方法は、HFに富む相を第2蒸留工程に供給し、エントレーナー、HFC−1234yfおよびHFを含む第2留出物組成物ならびにHFC−1234yfおよびエントレーナーを本質的に含まないHFを含むボトム組成物を形成する工程をさらも含む。別の実施形態では、本方法は、前記第2留出物組成物を2つの液体相にリサイクルして戻す工程をさらに含んでもよい。]
[0071] HFおよびHFC−1234yfを含む第1組成物からのHFC−1234yfの分離方法は、前記第1組成物をエントレーナーと接触させて第2組成物を形成する工程を含む。この接触は第1蒸留塔で起こってもよいし、または第2組成物は蒸留塔への供給前にプレミキシング工程で成分を混合することによって形成されてもよい。]
[0072] 第1組成物中のHFとHFC−1234yfとの重量比は、組成物の製造方法に依存するであろう。一実施形態では、HFは組成物の約3重量パーセント〜約85重量パーセントであってもよく;HFC−1234yfは約97重量パーセント〜約15重量パーセントであってもよい。]
[0073] 別の実施形態では、HFは約5重量パーセント〜約50重量パーセントであってもよく、HFC−1234yfは約95重量パーセント〜約50重量パーセントであってもよい。]
[0074] さらに別の実施形態では、HFおよびHFC−1234yfを含む組成物は、HF対HFC−1234yfの50/50モル比をもたらす脱フッ化水素反応器で製造されてもよい。]
[0075] 一実施形態では、HFおよびHFC−1234yfを含む組成物は、所望量の個々の成分を組み合わせるための任意の便利な方法によって調製されてもよい。好ましい方法は、所望の成分量を量り取り、その後成分を適切な容器で組み合わせることである。必要ならば、攪拌を使用してもよい。]
[0076] あるいはまた、HFおよびHFC−1234yfを含む組成物は、HFおよびHFC−1234yfを含有する脱フッ化水素反応器をはじめとする、反応器からの流出物を第1蒸留塔に供給することによって調製されてもよい。エントレーナーは、第2組成物が蒸留塔で直接形成されるように別個の供給ポイントで添加されてもよい。あるいはまた、エントレーナーは、蒸留塔の前にプレミキシング工程でHFおよびHFC−1234yfを含む第1組成物と混合され、こうして第2組成物を形成してもよい。]
[0077] 分離プロセスの一実施形態では、HFC−1234yfおよびHFを含む組成物は第1蒸留塔に直接供給される。別の実施形態では、HFC−1234yfおよびHFは、蒸留塔の前にエントレーナーとプレミックスされてもよい。プレミキシング工程は冷却器(図2中の160)で起こってもよい。次に、冷却された混合物は、蒸留塔への供給前にデカンター(図2中の180)に供給される。] 図2
[0078] 一実施形態では、第1留出物組成物は、任意選択的に少量のHFC−1234yfを含有するHFとエントレーナーとの低沸点共沸混合物を含む。さらに、別の実施形態では、HFおよび任意選択的に少量のエントレーナーを本質的に含まないHFC−1234yfが第1蒸留塔のボトムから回収されてもよい。]
[0079] 第1蒸留塔についての操作変数は、分離プロセスに使用中のエントレーナーに強く依存するであろう。一般に第1蒸留塔は、約−50℃〜約100℃のトップ温度および約−30℃〜約200℃のボトム温度で、約14.7psia(101kPa)〜約500psia(3448kPa)の圧力で動作してもよい。別の実施形態では、第1蒸留塔は、約−50℃〜約50℃のトップ温度および約10℃〜約150℃のボトム温度で、約100psia(690kPa)〜約400psia(2758kPa)の圧力で動作するであろう。]
[0080] 幾つかの場合には、HFとエントレーナーとして使用される化合物との共沸混合物が、凝縮および冷却時にHFに富むおよびエントレーナーに富む液体画分に分離するであろうことが意外にも計算された。一実施形態では、第1留出物組成物は、液体分離ゾーン(例えばデカンター)に供給されてもよい。HFとエントレーナーとの共沸混合物を含む第1留出物組成物は相分離して、1つがHFに富み、他方がエントレーナーに富む、2つの液相を形成してもよい。より低い密度相が液体分離ゾーンのトップから回収されてもよく、より高い密度相が液体分離ゾーンのボトムから回収されてもよい。エントレーナーに富む相(より高い密度であろうとまたはより低い密度であろうと)は、第1蒸留塔にフィードバックされてもよい。一実施形態では、HFに富む相は第2蒸留塔に供給されてもよいか、または別の実施形態では、HFに富む相は、一部分を第1蒸留塔に送り戻すために(より多くの還流を提供し、そして第1蒸留塔が適切に動作するのを可能にするために)分割されてもよく、残りは第2蒸留塔に供給されてもよい。第2蒸留塔は、ボトム組成物としてHFC−1234yfおよびエントレーナーを本質的に含まないHFの回収を可能にする。HFC−1234yf、HFおよびエントレーナーを含むトップ組成物は、液体分離ゾーンにリサイクルされ、他の何らかの方法で利用されても、または廃棄処分されてもよい。第2蒸留塔についての操作変数は、分離プロセスに使用中のエントレーナーに強く依存するであろう。一般に第2蒸留塔は、約−50℃〜約100℃のトップ温度および約−30℃〜約200℃のボトム温度で、約14.7psia(101kPa)〜約500psia(3448kPa)の圧力で動作してもよい。別の実施形態では、第1蒸留塔は、約−25℃〜約50℃のトップ温度および約0℃〜約150℃のボトム温度で、約100psia(690kPa)〜約400psia(2758kPa)の圧力で動作するであろう。]
[0081] ここで図2について言及すると、HFおよびHFC−1234yfを含む組成物が流れ100によって第1蒸留塔110に供給される。エントレーナーに富む組成物もまた、流れ190によって塔110のトップ段に供給される。流れ100および190中のHFC−1234yfの総計量が低沸点HF/HFC−1234yf共沸混合物を形成するために必要とされるものを超える場合、HFおよびエントレーナーの両方を本質的に含まないHFC−1234yfが流れ120によって塔110のボトムから回収される。HF、HFC−1234yf、およびエントレーナーを含むが、流れ190と比べてHFC−1234yfに富む三成分組成物が、第1留出物流れ130として第1塔のトップを出る。流れ130は凝縮器140によって凝縮して流れ150を形成し、第2蒸留塔からの凝縮した第2留出物流れ250と混合される。一実施形態では、必要ならば、追加のエントレーナーが流れ260によって添加されてもよい。150、250、および260の組み合わせた流れが冷却器160に、次にデカンター180に供給され、そこでサブクール状態の液体流れ170は、エントレーナーに富むおよびHFに富む液相組成物へ分離し、それらは、それぞれ、流れ190および200によってデカンターを出る。存在するHFC−1234yfは、大部分が結局はエントレーナーに富む相になって、2つの液相間に分配される。HFに富む組成物流れ200は、第2蒸留塔210のトップ段に供給される。流れ200中のHFの量は、低沸点HF/HFC−1234yf共沸混合物を形成するために必要とされるものを超えているので、HFは、HFC−1234yfおよびエントレーナーの両方を本質的に含まない生成物流れとして流れ220によって塔210のボトムから回収される。HF、HFC−1234yfおよびエントレーナーを含むが、流れ200と比べてエントレーナーに富む三成分組成物が、第2留出物流れ230として第2塔のトップを出る。流れ230は凝縮器240で凝縮し、流れ250を形成し、先に記載されたように流れ150および260と組み合わせられる。] 図2
[0082] あるいはまた、別の実施形態では、HF/HFC−1234yf混合物を蒸留塔110に直接供給するよりもむしろ、この混合物は冷却器160に、次にデカンター180に供給されてもよく、そこで混合物相は分離する。そのとき流れ190は、第1蒸留塔110へのHF、HFC−1234yfおよびエントレーナーの混合物を運ぶ。]
[0083] 別の実施形態では、HF/HFC−1234yf混合物中のHFの濃度は、HFC−1234yfとHFとの共沸混合物中の濃度より高い。従って、別の実施形態では、HFC−1234yfおよびHFを含む混合物からのHFの精製方法であって、HFがHFと前記HFC−1234yfとの共沸混合物濃度より高い濃度で存在し、前記方法が、
a.エントレーナーを、HFC−1234yfおよびHFを含む混合物に添加し、こうして第2混合物を形成する工程と;
b.前記第2混合物を第1蒸留工程で蒸留して、HF、エントレーナー、およびHFC−1234yfを含む第1留出物組成物、ならびにHFC−1234yfおよびエントレーナーを本質的に含まないHFを含む第1ボトム組成物を形成する工程と;
c.前記第1留出物組成物を凝縮させて、i)エントレーナーに富む相およびii)HFに富む相である、2つの液相を形成する工程と;
d.HFに富む相を第1蒸留工程に任意選択的にリサイクルして戻す工程と
を含む方法が提供される。別の実施形態では、この方法は、HFに富む相を第2蒸留工程に供給し、エントレーナー、HF、およびHFC−1234yfを含む第2留出物組成物、ならびにエントレーナーを本質的に含まないHFC−1234yfを含むボトム組成物を形成する工程をさらに含んでもよい。別の実施形態では、この方法は、前記第2留出物組成物を2つの液相にリサイクルして戻す工程をさらに含んでもよい。]
[0084] 図2について再び言及すると、HFおよびHFC−1234yfを含む組成物が流れ100によって第1蒸留塔110に供給される。HFに富む組成物もまた、流れ190によって塔110のトップ段に供給される。流れ100および190中のHFの総計量が低沸点HF/HFC−1234yf共沸混合物を形成するために必要とされるものを超える場合、HFは、HFC−1234yfおよびエントレーナーの両方を本質的に含まずに流れ120によって塔110のボトムから回収される。少量のエントレーナーを含むHF/HFC−1234yf共沸混合物に近い組成物は、流れ130によって第1留出物として回収される。流れ130は凝縮器140によって凝縮して流れ150を形成し、第2蒸留塔からの凝縮した第2留出物流れ250と混合される。一実施形態では、必要ならば、追加のエントレーナーが流れ260によって添加されてもよい。150、250、および260の組み合わせた流れは冷却器160に、次にデカンター180に供給され、そこでサブクール状態の液体流れ170は、HFに富むおよびエントレーナーに富む液相組成物へ分離し、それらは、それぞれ、流れ190および200によってデカンターを出る。存在するHFC−1234yfは、大部分が結局はエントレーナーに富む相になって、2つの液相間に分配される。エントレーナーに富む組成物流れ200は、第2蒸留塔210のトップ段に供給される。流れ200中のHFC−1234yfの量は、低沸点エントレーナー/HFC−1234yf共沸混合物を形成するために必要とされるものを超えているので、HFC−1234yfは、HFおよびエントレーナーの両方を本質的に含まない生成物流れとして流れ220によって塔210のボトムから回収される。エントレーナー、HFC−1234yf、およびHFを含むが、流れ200と比べてエントレーナーに富む三成分組成物が、第2留出物流れ230として第2塔のトップを出る。流れ230は凝縮器240で凝縮し、流れ250を形成し、先に記載されたように流れ150および260と組み合わせられる。] 図2
[0085] あるいはまた、別の実施形態では、HF/HFC−1234yf混合物を蒸留塔110に直接供給するよりもむしろ、この混合物は冷却器160に、次にデカンター180に供給されてもよく、そこで混合物相は分離する。そのとき流れ190は、第1蒸留塔110へのHFに富む相のようにHF、HFC−1234yfおよびエントレーナーの混合物を運ぶ。]
[0086] 4.HFC−1234yfおよびHFからのHFC−245の分離
HFC−1234yfは、他の用途の中でも冷媒、発泡剤、エアゾール噴射剤、および滅菌剤として有用な価値あるフルオロカーボンである。]
[0087] HFC−1234yfは、ある種のHFC−245(ペンタフルオロプロパン)異性体の脱フッ化水素によって製造されてもよい。HFC−245とは、脱フッ化水素時にHFC−1234yfを生成することができるペンタフルオロプロパンの任意の異性体およびペンタフルオロプロパンの任意の異性体の任意の組み合わせを意味する。ペンタフルオロプロパンの異性体には、HFC−245eb(1,1,1,2,3−ペンタフルオロプロパン)およびHFC−245cb(1,1,1,2,2−ペンタフルオロプロパン)が含まれる。]
[0088] HFC−1234yfは、米国特許第2,931,840号明細書、同第2,996,555号明細書、または同第7,189,884号明細書に記載されているものなどの方法によってHFC−245ebまたはHFC−245cbの気相脱フッ化水素によって製造されてもよい。例えば、HFC−1234yfは、HFC−245eb、HFC−245cbまたはHFC−245ebとHFC−245cbとの混合物を、高温で、例えば、300℃より上で酸化クロム触媒上に通すことによって製造することができる。この反応からの生成物流れは、HFC−1234yf、HFならびに任意の未反応のHFC−245ebおよび/またはHFC−245cbを含有する。]
[0089] 一実施形態では、HFC−1234yf、HF、およびHFC−245ebまたはHFC−245cbの少なくとも1つの混合物からのHFC−1234yfの分離方法であって、
a)前記混合物を、追加のHFC−1234yfが第2蒸留工程から供給される第1蒸留工程にかけて、HFC−1234yfとHFとの共沸混合物を含む第1留出物ならびにHFC−245ebまたはHFC−245cbの少なくとも1つを含む第1ボトム組成物を形成する工程と;
b)前記第1留出物を第2蒸留工程に供給してHFC−1234yfとHFとの共沸混合物を含む第2留出物ならびにHFを本質的に含まないHFC−1234yfを含む第2ボトム組成物を形成する工程と;
c)前記第2留出物を凝縮させて、i)HFに富む相およびii)HFC−1234yfに富む相である、2つの液相を形成する工程と;
d)工程(c)からのHFC−1234yfに富む相を第2蒸留工程にリサイクルして戻す工程とを含む方法が提供される。別の実施形態では、本方法は、HFに富む相を第3蒸留工程に供給してHFC−1234yfとHFとの共沸混合物を含む第3留出物ならびにHFC−1234yfを本質的に含まないHFを含む第3ボトム組成物を形成する工程をさらに含んでもよい。]
[0090] この実施形態では、共沸蒸留は、過剰のHFC−1234yfを、HFC−245ebおよび/またはHFC−245cbの脱フッ化水素反応から生成したものに加えて蒸留塔に提供することを含む。この実施形態では、HFC−1234yfは蒸留プロセスにおいてエントレーナーとしての機能を果たす。適切な総量のHFC−1234yfが塔に供給される場合、HFは全て、HFC−1234yfおよびHFを含有する共沸混合物組成物としてオーバーヘッドで取られてもよい。十分なHFC−1234yfが、例えば、補足のHFC−1234yfを、脱フッ化水素反応生成物流れ中に存在するものを超えて蒸留塔に供給することによって提供することができる。こうして、塔ボトムから取り去られるHFC−245ebおよび/またはHFC−245cbは、HFを本質的に含まない可能性がある。]
[0091] 例えば、HF、HFC−1234yfおよびHFC−245ebを含む反応生成物混合物は、HF/HFC−1234yf共沸混合物がオーバーヘッド留出物として蒸留塔から取り去られる状態でHF/HFC−1234yf共沸混合物を形成するための条件下に運転される第1蒸留塔に供給されてもよい。この留出物中のHFは次に、他の手段によって、例えば圧力スイング蒸留または本明細書に開示されるような方法を用いることによってHFC−1234yfから分離され、取り去られてもよい。そのようにして得られたHFC−1234yfのある部分は、第1蒸留塔に供給されたHFが全てHF/HFC−1234yf共沸混合物として当該塔から取り去られ、こうしてHFを本質的に含まないHFC−245ebボトム流れを生み出すように十分な量で第1蒸留塔にリサイクルして戻すことができる。]
[0092] 分離されるべき組成物がHFC−245ebかHFC−245cbかのどちらかの脱フッ化水素によって形成される場合、いかなる未反応のHFC−245ebまたはHFC−245cbも、それらがHFC−1234yfに変換され得るように反応器にリサイクルして戻すことが望ましい。しかしながら、HFおよびHFC−1234yfが、平衡反応を妨げないように、リサイクルされる前に前記未反応のHFC−245ebまたはHFC−245cbから取り去られることが必要である。冷媒としてのまたは他の用途でのその使用を可能にするために、HFがHFC−1234yfから除去されることもまた必要である。]
[0093] ここで図3について言及すると、HF、HFC−1234yf、およびHFC−245ebまたはHFC−245cbの少なくとも1つを含む流れは、流れ50、70、および90によって取り去られる低沸点HF/HFC−1234yf共沸混合物に近づくための条件下に塔が運転される状態で、流れ10によって第1蒸留塔に供給される。十分な補足のHFC−1234yfが、第2塔ボトムからこの第1塔に流れ20によってリサイクルされて、HFの全てがHFC−245cbおよび/またはHFC−245ebから除去されるのを可能にする。HFC−245cbおよび/またはHFC−245ebは、流れ40によってこの塔からボトム生成物としてHFC−1234yfおよびHFを本質的に含まずに得られる。] 図3
[0094] 流れ50中の擬HF/HFC−1234yf共沸組成物は、凝縮器60で凝縮し、還流80および留出物90流れに分けられる。留出物流れ90は、示され、表示されるように流れ100によって第2蒸留塔110に供給されても、それぞれ、第2および第3塔からの留出物流れ150および250と混合され、冷却器160およびデカンター180に送られてもよく、または、これらの2つの行き先間で分けられてもよい。塔30におけるオーバーヘッドでHFの全てを除去することが望ましいので、過剰のHFC−1234yfが塔30にリサイクルされ、流れ50、70、80、90、および100の組成を共沸混合物のHFC−1234yfに富む側にあるようにする。それ故、留出物流れ90が流れ100によって第2蒸留塔に送られる場合、それは、精製HFC−1234yfをボトム生成物として生成する塔に送られるべきである。]
[0095] 一実施形態では、流れ260による留出物流れ90は、それぞれ、第2および第3塔からの留出物流れ150および250と混合され、冷却器160に送られ、サブクール状態の流れ170を形成し、それはデカンター180に供給される。デカンターで、流れ170は、HFC−1234yfに富むおよびHFに富む液体画分に分離し、それらは流れ190および200として取り去られる。デカンターからのHFC−1234yfに富む流れは、流れ190によって、19理論段を含有し、そしてHFC−1234yf/HF共沸混合物に近づくための条件下で運転される第2蒸留塔110に供給され、HFC−1234yf/HF共沸混合物は留出物流れ130としてオーバーヘッド蒸留され、凝縮器140で凝縮し、流れ150によって第1および第3塔からの留出物と混合される。塔110は、流れ120によってHFを本質的に含まないHFC−1234yfのボトム流れを生成する。HFC−1234yfボトム流れ120の一部は、先に記載されたように、流れ20によって第1塔にリサイクルされ、残りは、流れ125によって取り去られる精製HFC−1234yf製品になる。デカンターからのHFに富む流れは、流れ230のような留出物としてオーバーヘッド蒸留される、HFC−1234yf/HF共沸混合物に近づくための条件下に運転される第3蒸留塔210に流れ200によって供給され、流れ230は凝縮器250で凝縮し、流れ250によって第1および第2塔からの留出物と混合される。塔210は、流れ220によってHFC−1234yfを本質的に含まないHFのボトム流れを生成する。]
[0096] 本発明の別の態様では、エントレーナーが、HFC−1234yfからのHFの分離、またはHFC−1234yfならびにHFC−245ebおよび/またはHFC−245cbからのHFの分離を可能にするために添加されてもよい。]
[0097] 例えば、HF、HFC−1234yf、HFC−245ebおよび/またはHFC−245cbの混合物は、HFC−245cbまたはHFC−245ebの少なくとも1つを高温で酸化クロム触媒上に供給することによるなどの、任意の実用的手段によって形成されてもよい。HF、HFC−1234yf、HFC−245ebおよび/またはHFC−245cbの混合物は、蒸留塔に供給されてもよい。好適なエントレーナーが次にまた、別個の流れとしてか、それを蒸留塔に供給する前にHF/HFC−1234yf/HFC−245cbおよび/またはHFC−245eb混合物と混ぜ合わせることによってかのどちらかで、蒸留塔に供給される。蒸留塔はそのとき、HFとエントレーナーとが塔留出物として取り去られ、HFC−1234yf、HFC−245ebおよび/またはHFC−245cbがHFを本質的に含まずに塔ボトムから回収される状態で、エントレーナーとHFとの間で低沸点共沸混合物組成物を形成するのに十分な条件下に運転される。HFC−1234yfはそのとき、HFC−1234yfが製品として回収される状態で、かつ、HFC−245ebおよび/またはHFC−245cbがHFC−1234yfを生成するための反応工程に任意選択的にリサイクルして戻される状態で、通常の蒸留をはじめとする任意の通常の手段によってHFC−245ebおよび/またはHFC−245cbから分離されてもよい。]
[0098] 従って別の実施形態では、HFC−1234yf、HF、およびHFC−245ebまたはHFC−245cbの少なくとも1つを含む混合物からのHFの分離方法が提供される。本方法は、
a.HFC−1234yf、HF、およびHFC−245ebまたはHFC−245cbの少なくとも1つを含む混合物にエントレーナーを添加し、こうして第2混合物を形成する工程と;
b.前記第2混合物を第1蒸留工程で蒸留して、HFおよびエントレーナーを含む第1留出物組成物ならびにHFC−1234yfおよびHFC−245ebまたはHFC−245cbの少なくとも1つを含む第1ボトム組成物を形成する工程と;
c.前記第1留出物組成物を凝縮させて、i)エントレーナーに富む相およびii)HFに富む相である、2つの液相を形成する工程と;
d.エントレーナーに富む相を第1蒸留工程にリサイクルして戻す工程と
を含む。]
[0099] 別の実施形態では、本方法は、HFに富む相を第2蒸留工程に供給し、エントレーナーとHFとの共沸混合物を含む第2留出物組成物ならびにエントレーナーを本質的に含まないHFを含む第2ボトム組成物を形成する工程をさらに含んでもよい。別の実施形態では、本方法は、前記第2留出物組成物を2つの液相にリサイクルして戻す工程をさらに含んでもよい。]
[0100] ここで図4について言及すると、HF、HFC−1234yf、およびHFC−245ebまたはHFC−245cbの少なくとも1つを含む流れが、流れ100によって第1蒸留塔110に供給される。エントレーナーに富む流れもまた流れ190によってこの塔に供給される。塔110は、低沸点HF/エントレーナー共沸混合物の影響のためにHFをエントレーナーと共にオーバーヘッド蒸留させるための条件下に運転される。HFC−1234yfおよびHFC−245ebまたはHFC−245cbが流れ120によって塔110からのボトムとしてエントレーナーおよびHFを本質的に含まずに得られ得るように十分なエントレーナーが流れ190によってこの第1塔に供給される。流れ120中のHFC−1234yfおよびHFC−245ebまたはHFC−245cbは次に、通常の蒸留によって互いに任意選択的に分離されてもよく、HFC−245ebまたはHFC−245cbは任意選択的に、HFC−1234yfを形成するための脱フッ化水素反応器にリサイクルして戻されてもよい。流れ130によって取り去られる、塔110からの留出物は、塔供給物100および190中のエントレーナーおよびHFの本質的に全て、ならびに任意選択的に、幾らかのHFC−245ebまたはHFC−245cbおよび/またはHFC−1234yfを含有する。この第1留出物流れ130は、凝縮器140によって凝縮して流れ150を形成し、それは次に、第2蒸留塔からの凝縮した留出物流れ250および、必要に応じ、流れ260によって添加される追加の新鮮なエントレーナーと混合される。この組み合わせた流れは、冷却器160によってサブクールされ、流れ170によってデカンター180に送られ、そこでそれは別個のエントレーナーに富むおよびHFに富む液体画分に分離し、それらはそれぞれ、流れ190および200によって取り去られる。デカンター中に存在するHFC−245ebまたはHFC−245cbおよびHFC−1234yfの大部分は、エントレーナーに富む相画分に分配される。このエントレーナーに富む画分は流れ190によって第1蒸留塔110に供給される。デカンターからのHFに富む画分は流れ200によって、8理論段を含有し、そしてHFC−245ebまたはHFC−245cb、HFC−1234yf、およびエントレーナーを本質的に含まないHFのボトム流れが生成し、流れ220によって取り去られるような条件下に運転される第2蒸留塔210に供給される。流れ230によって取り去られ、そして塔供給物(流れ200)中に存在するHFC−245ebまたはHFC−245cb、HFC−1234yf、およびエントレーナーの本質的に全てプラス生成物流れ220に回収されないHFを含有する、塔210からの留出物は、凝縮器240によって凝縮し、流れ250によって取り去られる。凝縮した留出物流れ250は、第1塔からの凝縮した留出物流れ150および、必要に応じ、流れ260によって添加される、新鮮なエントレーナーの両方と組み合わせられ、次に冷却され、さらなる分離のためにデカンターに供給される。] 図4
[0101] 別の実施形態では、HFと均一な共沸混合物を形成する、HFC−245ebおよび/またはHFC−245cbは、HFC−1234yfをエントレーナーとして使用する共沸蒸留、それに続いて、添加された化合物をエントレーナーとして使用する共沸蒸留によるHFC−1234yfとHFとの分離によってHF、HFC−245ebおよび/またはHFC−245cb、ならびにHFC−1234yfを含む混合物から分離することができる。HF−HFC−1234yf共沸混合物がHF−HFC−245eb共沸混合物および/またはHF−HFC−245cb共沸混合物より低い沸点を有する限り、HFおよびHFC−1234yfは、かかる分離プロセスが機能するために低下した温度で部分的に混和性である必要がない。]
[0102] ここで図5について言及すると、HF、HFC−1234yf、およびHFC−245ebまたはHFC−245cbの少なくとも1つを含む流れは、流れ50、70、および100によって留出物として取り去られる、低沸点HF/HFC−1234yf共沸混合物に近づくための条件下に塔が運転される状態で、流れ10によって第1蒸留塔30に供給される。この第1塔は、近共沸留出物がHFC−245ebおよび/またはHFC−245cbを本質的に含まないようなやり方でデザインし、運転することができる。第2塔ボトムからの十分な補足のHFC−1234yfを流れ20によって第1塔にリサイクルすることによって、HFの本質的に全ては、HFC−245cbおよび/またはHFC−245ebが流れ40によって塔30からのボトム生成物としてHFC−1234yfおよびHFを本質的に含まずに得られるようにHF/HFC−1234yf共沸混合物としてオーバーヘッド蒸留することができる。HFC−245ebおよび/またはHFC−245cbは次に、HFC−1234yfの製造のための反応器に任意選択的にリサイクルして戻されても、またはさらに精製され、次にリサイクルされてもよい。これは、HFCからHFを除去するためのエントレーナーとしてのHFC−1234yfの使用を実証する。] 図5
[0103] 図3について説明されたように、第1塔からの留出物は、第2蒸留塔に供給されても、第2および第3塔からの留出物流れと混合され、冷却され、次にデカンターに送られても、またはこれらの2つの行き先間で分けられてもよい。この実施形態では(図5)、第1塔30からの留出物は流れ100によって第2塔110に供給される。エントレーナーに富む流れもまた、流れ190によってこの第2塔に供給される。蒸留塔110は、流れ130によって取り去られる留出物が塔供給物100および190中のエントレーナーおよびHFの本質的に全てを含有し、かつ、流れ120によって取り去られるHFおよびエントレーナーを本質的に含まないHFC−1234yfボトム生成物を生成するような条件下に運転される。HFC−1234yfボトム流れ120の一部は、先に記載されたように、流れ20によって第1塔にリサイクルされ、残りは、流れ125によって取り去られる精製HFC−1234yf製品になる。留出物流れ130は、凝縮器140によって凝縮して流れ150を形成し、それは次に第2蒸留塔からの凝縮した留出物流れ250および、必要に応じ、流れ260によって添加される新鮮なエントレーナーと混合される。この組み組み合わせた流れは、冷却器160によって冷却され、流れ170によってデカンター180に送られ、そこでそれは別個のエントレーナーに富むおよびHFに富む液体画分へ分離し、それらは、それぞれ、流れ190および200によって取り去られる。デカンターに存在するHFC−1234yfの大部分は、エントレーナーに富む相画分へ分配される。デカンターのエントレーナーに富む画分は、流れ190によって塔110に供給される。デカンターのHFに富む画分は、流れ220によって取り去られる、HFC−1225yfおよびエントレーナーを本質的に含まないHFからなるボトム生成物を生成する条件下に運転される第3蒸留塔210に、流れ200によって、供給される。流れ230によって取り去られ、かつ、塔供給物(流れ200)中に存在するHFC−1234yfおよびエントレーナーの本質的に全てならびに生成物流れ220に回収されない任意のHFを含有する、塔210からの留出物は、凝縮器240によって凝縮し、流れ250を形成する。凝縮した留出物流れ250は、第2塔からの凝縮した留出物流れ150および、必要に応じ、流れ260によって添加される新鮮なエントレーナーの両方と組み合わせられ、次に冷却され、さらなる分離のために流れ170によってデカンターに供給される。] 図3 図5
[0104] 一実施形態では、HFC−1234yfならびに任意選択的にHFC−245ebおよび/またはHFC−245cbからのHF分離のためのエントレーナーには、メタン、エタン、エチレン、アセチレン、ビニルアセチレン、n−プロパン、プロピレン、プロピン、シクロプロパン、シクロプロペン、プロパジエン、塩化メチル(CH3Cl)、ジクロロジフルオロメタン(CFC−12)、2−クロロ−1,1,2−トリフルオロエチレン、クロロペンタフルオロエタン(CFC−115)、2−クロロ−1,1,3,3,3−ペンタフルオロプロペン(CFC−1215xc)、2−クロロ−1,1−ジフルオロエチレン(HCFC−1122)、1,1,2−トリフルオロエチレン(HFC−1123)、1,1−ジフルオロエチレン(HFC−1132a)、2,3,3,3−テトラフルオロプロペン(HFC−1234yf)、ヘキサフルオロエタン(PFC−116)、オクタフルオロプロパン(PFC−218)、1,1,1,4,4,4−ヘキサフルオロ−2−ブチン(PFBY−2)、ヘキサフルオロプロピレン(HFP、PFC−1216)、ヘキサフルオロシクロプロパン(PFC−C216)、トリフルオロメチル−ジフルオロメチルエーテル(CF3OCHF2、HFOC−125E)、1,1−ジフルオロジメチルエーテル、テトラフルオロジメチルエーテル(HFOC−134E)、ジフルオロメチルメチルエーテル(CHF2OCH3、HFOC−152aE)、ペンタフルオロエチルメチルエーテル、HFPO、塩素(Cl2)、ヘキサフルオロアセトン、PMVE(パーフルオロメチルビニルエーテル)、PEVE(パーフルオロエチルビニルエーテル)、およびそれらの混合物が含まれる。]
[0105] 別の実施形態では、HFC−1234yfならびに任意選択的にHFC−245ebおよび/またはHFC−245cbからのHFの分離に有効であるエントレーナーには、n−プロパンおよびCFC−115が含まれる。]
[0106] 別の実施形態では、凝縮器50、冷却器60、およびデカンター70を、第1蒸留塔から来る留出物流れに加えることができる。この実施形態は図6に例示される。ここで図6について言及すると、第1冷却器60および第1デカンター70が、それぞれ、流れ80および90によって取り去られる、HFに富むおよびHFC−1234yfに富む液相画分へ留出物がデカンターで分離するように第1蒸留塔の凝縮器50の後に加えられる。HFC−1234yfに富む流れ90の一部は、流れ95によって還流として第1塔に戻され、残りの部分は、流れ100によって第2蒸留塔110に供給され、そこでそれは、HFを本質的に含まずかつ流れ120によって取り去られるHFC−1234yfボトム生成物、ならびに流れ130によって取り去られる、HF/HFC−1234yf共沸混合物に近い留出物組成物に分離される。還流流れ95は、HFC−1234yf/HF共沸組成物と比べてHFC−1234yfに富むので、還流流れ95は、HFを本質的に含まない、流れ30によって取り去られる、第1塔からのHFC−245ebおよび/またはHFC−245cbボトム生成物を製造するために必要とされる追加のHFC−1234yfを供給し、それによって第2塔から第1塔にリサイクルされなければならない精製HFC−1234yfの量を低減する。図6に示されるように、この実施形態については、十分に高い還流フローで、第2塔のボトムからの精製HFC−1234yfの全てを第1塔にリサイクルする必要性を完全に排除することができる。第1デカンターのHFに富む相画分は、流れ80によって第3蒸留塔210に供給される。第3塔への両方の供給物(流れ80および200)は、HFC−1234yfを本質的に含まないHFボトム生成物が塔210で得られ、流れ220によって取り去られ得るようにHF/HFC−1234yf共沸混合物と比べて過剰のHFを含有する組成を有する。第3塔からの留出物は、HF/HFC−1234yf共沸混合物に近い組成を有し、流れ230によって取り去られる。塔110および210からの留出物(流れ130および230)を、それぞれ、凝縮器140および240で凝縮させ、流れ150および250を形成し、混ぜ合わせ、先ず第2冷却器160に、次に第2デカンター180に送り、そこで別個のHFC−1234yfに富むおよびHFに富む液相画分を形成する。HFC−1234yfに富む画分を、流れ190によってデカンター180から取り去り、さらなる分離のために第2塔110に供給する。HFに富む画分は、流れ200によってデカンター180から取り去られ、さらなる分離のために第3塔210に供給される。これは、添加されるエントレーナーを必要とせずにHFC−1234yfがどのようにして分離を可能にするかを実証する。] 図6
[0107] 別の実施形態では、HFC−1234yf/HF共沸混合物がHFC−245/HF共沸混合物(HFC−245eb/HFおよびHFC−245cb/HF共沸混合物のどちらかまたは両方を意味する)より低い沸点を有する場合、HFC−1234yfを、混合物からHFC−245を取り去るためのエントレーナーとして使用することができる。HFC−1234yfとHFとは、図6について示され、説明されたように、フルオロオレフィンをエントレーナーとして使用することによってか、添加された化合物をエントレーナーとして使用することによってかのどちらかで分離することができる。添加されたエントレーナーが使用される場合は、図7に示される。] 図6 図7
[0108] ここで図7について言及すると、この実施形態で第1蒸留塔20、凝縮器50、冷却器60、およびデカンター70は、今しがた記載されたような図6における類似番号の装置と完全に同じように動作する。第1塔のデカンター70からのHFに富むおよびHFC−1234yfに富む液体留出物画分は、それぞれ、流れ80および100によって精製HFおよびHFC−1234yfを回収する蒸留塔210および110に供給される。図7に示されるプロセスの残りの部分、すなわち、蒸留塔110および210、凝縮器140および240、冷却器160、デカンター180、ならびにそれらの関連流れの全ては、図5について示され、説明された同じ番号の装置と同じ機能を有し、それと同様に動作する。] 図5 図6 図7
[0109] 本発明の他の実施形態では、装置のある程度の部分は、多重蒸留塔に役立つことができる。例えば、一実施形態では、凝縮器140および240は単一装置に組み合わせられてもよく、こうして図7の流れ130および230は両方とも単一凝縮器へ流れ込むであろう。別の実施形態では、図7の冷却器60および160は、図8で冷却器160として示される、単一装置に組み合わせることができる。別の実施形態では、図7のデカンター70および180は、図8でデカンター180によって示されるように、単一装置に組み合わせることができる。さらに別の実施形態では、図7の3つの凝縮器50、140および240は単一装置に組み合わせることができ、こうして図7の流れ40、130および230は全て1つの凝縮器へ流れ込むであろう。] 図7 図8
[0110] 5.HFC−1234yfおよびHFC−1225yeの同時生産からの生成物の分離
HFC−1234yf/HF共沸混合物はまたHFC−1225yeおよびHFC−1234yfの同時生産に役立つために使用され得ることが分かった。HFC−1225yeは、HFC−236ea(CF3CHFCHF2、1,1,1,2,3,3−ヘキサフルオロプロパン)および/またはHFC−236cb(CF3CF2CH2F、1,1,1,2,2,3−ヘキサフルオロプロパン)の脱フッ化水素から製造されてもよい。HFC−236eaおよび/またはHFC−236cbならびにHFC−245cbおよび/またはHFC−245ebが、好適な脱フッ化水素触媒を含有し、そして好適な温度で動作する反応器に同時供給される場合、HFC−1225ye、HFC−1234yf、HF、未反応のHFC−236eaおよび/またはHFC−236cb、ならびに未反応のHFC−245cbおよび/またはHFC−245ebを含む混合物が生成するであろう。HFC−1225yeからのHFC−1234yfの分離は、通常の蒸留プロセスによって困難であろう。]
[0111] HFC−1234yf、HFC−1225ye、HFC−245eb、HFC−245cb、HFC−236ea、およびHFC−236cbのそれぞれは、HFと共沸混合物組成物を形成する。HFC−1234yf/HF共沸混合物は、全てのこれらの共沸混合物のうちで最低の標準沸点を有し、それにHFC−1225ye/HF共沸混合物、およびHFC−245cb/HF共沸混合物が続く。]
[0112] 一実施形態では、HFC−1234yfからのHFC−1225yeの分離方法であって、a)HFC−236eaおよび/またはHFC−236cb、HFC−245ebおよび/またはHFC−245cb、HFC−1234yf、HFC−1225ye、ならびにHFの混合物を第1蒸留塔に供給する工程と;b)HFC−1234yfおよびHFを含む共沸混合物組成物を第1留出物組成物として取り去る工程と;c)HFC−236eaおよび/またはHFC−236cb、HFC−245ebおよび/またはHFC−245cb、ならびにHFC−1225yeを含む組成物を第1ボトム組成物として取り去る工程とを含む方法が提供される。]
[0113] 別の実施形態では、第1ボトム組成物は、HFを本質的に含まない、HFC−236eaおよび/またはHFC−236cb、HFC−245ebおよび/またはHFC−245cb、ならびにHFC−1225yeを含んでもよい。この実施形態のためには、混合物中のHFの全てと共沸混合物を形成するのに十分なHFC−1234yfが存在しなければならない。一実施形態では、精製HFC−1234yfが混合物と一緒に蒸留塔に供給されてもよい。別の実施形態では、第1留出物組成物は、本明細書で先に記載されたように凝縮して2つの液相を形成し、デカンターに供給されてもよい。次に、デカンターからのHFC−1234yfに富む相が第1蒸留塔にフィードバックされてもよい。]
[0114] 別の実施形態では、HFC−236eaおよび/またはHFC−236cb、HFC−245ebおよび/またはHFC−245cb、ならびにHFC−1225yeを含む第1ボトム組成物は、例えば通常の分別蒸留などの任意の公知手段によって分離されてもよい。]
[0115] 一実施形態では、第1留出物組成物は、本明細書に記載されるものなどの方法によってHFC−1234yfとHFとを分離するために処理されてもよく、こうしてHFを本質的に含まないHFC−1234yfを生成する。]
[0116] 混合物中にHFC−245cbが全く存在しない、別の実施形態では、HFC−1234yfおよびHFC−1225ye共沸混合物の両方を、HFC−236eaおよび/またはHFC−236cbならびにHFC−245ebを含有する、HFを本質的に含まない混合物を生成するために使用することができる。この実施形態では、本方法は、a)HFC−236eaおよび/またはHFC−236cb、HFC−245eb、HFC−1234yf、HFC−1225ye、ならびにHFを含む第1混合物を第1蒸留塔に供給する工程と;b)HFC−1234yfとHFとのならびにHFC−1225yeとHFとの共沸混合物組成物を含む第2混合物を第1蒸留組成物として取り去る工程と;c)HFを本質的に含まない、HFC−236eaおよび/またはHFC−236cbならびにHFC−245ebを含む第3混合物を取り去る工程とを含む。別の実施形態では、HFC−236eaおよび/またはHFC−236cbならびにHFC−245ebのHFを含まない混合物は、HFC−1225yeおよび/またはHFC−1234yfへのさらなる反応のために脱フッ化水素反応器にリサイクルすることができる。]
[0117] この第1塔からの留出物は、反応器で形成されたHFならびにHFC−1225yeおよびHFC−1234yf生成物の全てからなるであろう。HFは、本明細書で前に記載されたような添加されたエントレーナーありまたはなしの共沸蒸留によってフルオロオレフィンから分離することができ、HFを本質的に含まないHFC−1225yeおよびHFC−1234yfを残し、それらはその後、普通の分別蒸留によって分離することができる。]
[0118] 図3、5、6、および7について説明され、例示されたような実施形態のいずれにおいても、エントレーナーが、HFC−245ebまたはHFC−245cbの少なくとも1つからフッ化水素を除去するのを支援するために第1蒸留工程に添加されてもよい。この変形は、クレームの範囲内に入ることを意図される。] 図3
[0119] 本明細書に記載されるコンセプトは、クレームに記載される本発明の範囲を限定しない、以下の実施例でさらに説明される。]
[0120] 実施例1
フッ素化アルミナ触媒での脱フッ化水素によるHFC−1234yfの合成
Hastelloy(登録商標)管型反応器(1.0インチ外径×0.854インチ内径×9.5インチ長さ)に、12〜20メッシュにすり砕いた25ccのガンマ−アルミナを充填した。反応器の充填部分を、反応器の外側に固定された5.0インチ×1インチのセラミックバンドヒーターによって加熱した。反応器壁とヒーターとの間に配置された、熱電対が反応器温度を測定した。触媒を、窒素パージ下に200℃で15分間加熱することによって乾燥させ、次に425℃に加熱されたHF/N2混合物と反応させて16.7gの活性化されたフッ素化アルミナを生成した。]
[0121] 350℃の温度で、10sccmの窒素(1.7×10-7m3/秒)と15sccm(2.5×10-7m3/秒)のHFC−245cb(CF3CF2CH3)とを混合し、反応器を通して流した。温度を次に400℃に上げ、流量を一定に保持した。両温度についての流出物をサンプリングし、19F NMRによって分析した。さらに、流出物をGC/FIDによって分析して表1にリストされるような濃度を測定した。]
[0122] ]
[0123] 実施例2
炭素触媒でのHFC−1234yfの合成
Hastelloy(登録商標)ニッケル合金反応器(1.0インチ外径×0.854インチ内径×9.5インチ長さ)に、参照により本明細書に援用される、米国特許第4,978,649号明細書に記載されているように実質的に調製された14.5g(25mL)の球形(8メッシュ)3次元マトリックス多孔質炭素質材料を装填した。反応器の充填部分を、反応器の外側に固定された5インチ×1インチのセラミックバンドヒーターによって加熱した。反応器壁とヒーターとの間に配置された、熱電対が反応器温度を測定した。]
[0124] 400℃の温度で、10sccm(1.7×10-7m3/秒)の窒素と15sccm(2.5×10-7m3/秒)のHFC−245cb(CF3CF2CH3)とを混合し、反応器を通して流し、60秒の接触時間を与えた。流量を次に5sccmの窒素(8.3×10-8m3/秒)と7.5sccm(1.3×10-7m3/秒)のHFC−245cb(CF3CF2CH3)とに減らし、120秒の接触時間を与えた。両セットの条件下に流出物をサンプリングし、19F NMRによって分析した。さらに、流出物をGC/FIDによって分析して表2にリストされるような濃度を測定した。]
[0125] ]
[0126] 実施例3
エントレーナーなしでのHFからのHFC−1234yfの分離のための共沸蒸留
実施例3は、HFを、エントレーナーなしでの共沸蒸留によってHFC−1234yfから分離し得ることを実証する。ここで図1について言及すると、HFおよびHFC−1234yfを含む組成物を流れ100によって第1塔110に供給する。この第1塔は、8理論段を含有し、低沸点HF/HFC−1234yf共沸混合物に近づくための適切な条件下に運転される。HFを、HFC−1234yfとの共沸混合物を形成するために必要とされるものを超えてこの第1塔に供給しているので、HF/HFC−1234yf共沸混合物に近い組成物を流れ130によって留出物として回収する一方、HFを、流れ120によって塔のボトムから生成物流れとして回収する。流れ130を140で凝縮させ、流れ250によって第2塔からリサイクルされる近共沸組成物と混合し、組み合わせた流れを冷却器160でサブクールし、デカンター180に送り、そこで組み合わせた流れ170は別個のHFに富む190とHFC−1234yfに富む200流れとへ分離する。流れ190を還流として第1塔にリサイクルする。流れ200を、19理論段を含有し、そしてHF/HFC−1234yf共沸混合物に近づくための条件下に運転される、第2蒸留塔210のトップ段に供給する。HFC−1234yfを、低沸点HF/HFC−1234yf共沸混合物を形成するために必要とされるものを超えてこの第2塔に供給しているので、HF/HFC−1234yf共沸混合物に近い組成物を流れ230によって留出物として回収する一方、HFC−1234yfを流れ220によって塔のボトムから生成物流れとして回収する。流れ230を240で凝縮させ、流れ150による第1塔からの近共沸組成物と混合し、冷却器160に、次にデカンター180に供給する。] 図1
[0127] 表3のデータは、測定および計算された熱力学的特性を用いて計算した。]
[0128] ]
[0129] 実施例4
プロパンをエントレーナーとして使用するHFからのHFC−1234yfの分離のための共沸蒸留
実施例4は、HFを、プロパンをエントレーナーとして使用する共沸蒸留によってHFC−1234yfから分離し得ることを実証する。この三成分混合物は、3つの最低沸点二成分共沸混合物および最低沸点三成分共沸混合物を形成する。]
[0130] ここで図2について言及すると、HFおよびHFC−1234yfからなる組成物を流れ100によって、9理論段を含有する第1蒸留塔110に供給する。HFに富むそしてプロパンに乏しい組成物もまた、流れ190によって塔110のトップ段に供給する。流れ100および190中のHFの総計量が低沸点HF/HFC−1234yf共沸混合物を形成するために必要とされるものを超えているので、HFを、流れ120によって塔110のボトムからHFC−1234yfおよびプロパンの両方を本質的に含まない生成物流れとして回収する。組み合わせた流れ100および190と比べてHFC−1234yfに富む組成物、そして好ましくは擬HF/HFC−1234yf共沸混合物を、流れ130によって留出物として回収する。流れ130を凝縮器140によって凝縮させて流れ150を形成し、次に第2蒸留塔からの凝縮した留出物流れ250および、必要に応じ、流れ260によって添加される追加のプロパンの両方と混合する。組み合わせた流れ150、250、および260を冷却器160に、次にデカンター180に送り、そこでサブクール状態の液体流れ170は、HFに富むおよびHFに乏しいまたは有機に富む液相画分へ分離し、それらを、それぞれ、流れ190および200によって取り去る。デカンター中に存在するHFC−1234yfは、プロパンに富む液相画分へ主として分配される。流れ190を第1塔のトップにリサイクルする。デカンター中のHFに乏しい液相画分を、流れ200によって、25理論段を含有する、第2蒸留塔210のトップ段に供給する。流れ200中のHFC−1234yfの量は、低沸点プロパン/HFC−1234yf、HFC−1234yf/HF、およびプロパン/HFC−1234yf/HF共沸混合物を形成するために必要とされるものを超えている、すなわち、流れ200の組成は、これらの3つの共沸混合物組成物および純HFC−1234yfによって囲まれた蒸留領域中にあるので、HFC−1234yfを流れ220によって、HFおよびプロパンの両方を本質的に含まない生成物流れとして塔210のボトムから回収する。流れ200と比べてプロパンに富み、同じ蒸留領域の三成分組成物が、流れ230によって留出物として第2塔のトップを出る。流れ230を凝縮器240によって凝縮させ、流れ250を形成し、先に記載されたように流れ150および260と組み合わせる。] 図2
[0131] 表4のデータは、測定および計算された熱力学的特性を用いて計算した。]
[0132] ]
[0133] 実施例5
CFC−115をエントレーナーとして使用するHFからのHFC−1234yfの分離のための共沸蒸留
実施例5は、HFを、CFC−115をエントレーナーとして使用する共沸蒸留によってHFC−1234yfから分離し得ることを実証する。]
[0134] ここで図2について言及すると、HFおよびHFC−1234yfからなる組成物を流れ100によって、9理論段を含有する第1蒸留塔110に供給する。HFに富むそしてCFC−115に乏しい組成物もまた、流れ190によって塔110のトップ段に供給する。流れ100および190中のHFの総計量が低沸点HF/HFC−1234yf共沸混合物を形成するために必要とされるものを超えているので、HFを、流れ120によって塔110のボトムからHFC−1234yfおよびCFC−115の両方を本質的に含まない生成物流れとして回収する。組み合わせた流れ100および190と比べてHFC−1234yfに富む組成物、そして好ましくは擬HF/HFC−1234yf共沸混合物を、流れ130によって留出物として回収する。流れ130を凝縮器140によって凝縮させて流れ150を形成し、次に第2蒸留塔からの凝縮した留出物流れ250および、必要に応じ、流れ260によって添加される追加のCFC−115の両方と混合する。組み合わせた流れ150、250、および260を冷却器160に、次にデカンター180に送り、そこでサブクール状態の液体流れ170は、HFに富むおよびHFに乏しいまたは有機に富む液相画分へ分離し、それらを、それぞれ、流れ190および200によって取り去る。デカンター中に存在するHFC−1234yfは、CFC−115に富む液相画分へ主として分配される。流れ190を第1塔のトップにリサイクルする。デカンター中のHFに乏しい液相画分を、流れ200によって、25理論段を含有する、第2蒸留塔210のトップ段に供給する。流れ200中のHFC−1234yfの量は、低沸点HFC−1234yf/HF、CFC−115/HFC−1234yf、およびCFC−115/HFC−1234yf/HF共沸混合物を形成するために必要とされるものを超えている、すなわち、流れ200の組成は、これらの3つの共沸混合物組成物および純HFC−1234yfによって囲まれた蒸留領域中にあるので、HFC−1234yfを流れ220によって、HFおよびCFC−115の両方を本質的に含まない生成物流れとして塔210のボトムから回収する。流れ200と比べてCFC−115に富み、同じ蒸留領域の三成分組成物が、流れ230によって留出物として第2塔のトップを出る。流れ230を凝縮器240によって凝縮させ、流れ250を形成し、先に記載されたように流れ150および260と組み合わせる。] 図2
[0135] 表5のデータは、測定および計算された熱力学的特性を用いて計算した。]
[0136] ]
[0137] 実施例6
本実施例は、HF、HFC−1234yf、HFC−245ebおよび/またはHFC−245cbを、どのようにしてHFC−1234yfをエントレーナーとして使用して分離し得るかを示す。かかる混合物の可能な一発生源は、部分転化で運転されるHFC−245ebおよび/またはHFC−245cb脱フッ化水素プロセスにある、すなわち、この混合物は等モル量のHFおよびHFC−1234yfを含有する。]
[0138] ここで図6について言及すると、HF、HFC−1234yf、ならびにHFC−245cbおよびHFC−245ebの少なくとも1つを含む流れを、流れ10によって、40理論段を含有する第1蒸留塔20のトップから25番目の段に供給する。存在するHFC−245ebおよび/またはHFC−245cbを、供給混合物中のHFC−1234yfをエントレーナーとして使用してこの第1蒸留塔20での共沸蒸留によってHFおよびHFC−1234yfから分離する。しかしながら、脱フッ化水素プロセスからの等モルのHF/HFC−1234yf混合物は、HFの全てをオーバーヘッド蒸留させるのに十分なHFC−1234yfを含有しない。従って、HFの全てをHFC−245ebおよび/またはHFC−245cbから留去させるのに十分な量の補足のHFC−1234yfを、第1塔20のトップに還流として添加される第2のHFC−1234yfに富む流れ95によって添加する。塔20を、流れ40によって留出物として取り去られる、低沸点HF/HFC−1234yf共沸混合物に近づくための条件下に運転する。HFC−245ebおよび/またはHFC−245cbを含む、本質的にHFを含まない混合物を流れ30によって塔のボトムから取り去り、必要ならば、脱フッ化水素反応工程に戻してもよい。留出物流れ40を第1凝縮器50および第1冷却器60で凝縮させ、冷却し、次に、留出物がデカンターで、それぞれ、流れ80および90によって取り去られる、HFに富むおよびHFC−1234yfに富む液相画分へ分離するように運転される第1デカンター70に送る。HFC−1234yfに富む流れ90の一部を流れ95によって還流としておよび先に記載された補足のHFC−1234yf源として第1塔に戻し、残りの部分を流れ100によって第2蒸留塔110に供給し、そこでそれを、流れ120によって取り去られる、HFを本質的に含まない、HFC−1234yfボトム生成物ならびに流れ130によって取り去られる、HF/HFC−1234yf共沸混合物に分離する。還流流れ95は、HFC−1234yf/HF共沸混合物組成物と比べてHFC−1234yfに富むので、還流流れ95は、HFを本質的に含まない、流れ30によって取り去られる、第1塔からのHFC−245ebおよび/またはHFC−245cbボトム生成物を製造するために必要とされる追加のHFC−1234yfを供給し、それによって第2塔から第1塔へリサイクルしなければならない精製HFC−1234yfの量を低減する。図6に示されるように、十分に高い還流フローで、第2塔のボトムからの精製HFC−1234yfの幾らかを第1塔にリサイクルする必要性を完全に排除することができる。第1デカンターのHFに富む相画分を、流れ80によって第3蒸留塔210に供給する。第3塔への両供給物(流れ80および200)は、HF/HFC−1234yfを本質的に含まないHFボトム生成物が塔210で得られ、流れ220によって取り去られ得るようにHF/HFC−1234yf共沸混合物と比べて過剰のHFを含有する組成を有する。第3塔からの留出物はHF/HFC−1234yf共沸混合物に近い組成を有し、流れ230によって取り去られる。前の実施例におけるように、塔110および210からの留出物(流れ130および230)を、それぞれ、凝縮器140および240で凝縮させ、流れ150および250を形成し、一緒に混合し、先ず第2冷却器160に、次に第2デカンター180に送り、そこで別個のHFC−1234yfに富むおよびHFに富む液相画分を形成する。HFC−1234yfに富む画分を流れ190によってデカンター180から取り去り、さらなる分離のために第2塔110に供給する。HFに富む画分を、流れ200によってデカンター180から取り去り、さらなる分離のために第3塔210に供給する。] 図6
[0139] 表6のデータは、測定および計算された熱力学的特性を用いる計算によって得た。]
[0140] ]
[0141] 実施例7
本実施例は、HFと共沸混合物を形成するHFC−245eb、およびHFと部分的に混和性であり、かつ、HFと共沸混合物を形成するHFC−1234yfを両方とも、どのようにしてn−プロパンを添加されるエントレーナーとして使用する共沸蒸留によってHF、HFC−245ebおよびHFC−1234yfを含む混合物から分離することができるかを示す。]
[0142] ここで図7について言及すると、第1蒸留塔20、凝縮器50、冷却器60、およびデカンター70は、この実施形態では、今しがた記載されたような実施例6における類似番号の装置と完全に同じように動作する。第1塔のデカンター70からのHFに富む液体留出物画分およびHFC−1234yfに富む液体留出物画分の一部を流れ80および100によって、それぞれ、精製HFおよびHFC−1234yfを回収する蒸留塔210および110に供給する。] 図7
[0143] 表7のデータは、測定および計算された熱力学的特性を用いる計算によって得られた。]
[0144] ]
[0145] 本発明の他の実施形態では、(a)凝縮器140および240を単一装置に組み合わせてもよく、(b)図8に示されるように、冷却器60および160を単一装置に組み合わせることができ、デカンター70および180を1つの装置に組み合わせることができ、または(c)3つの凝縮器50、140および240を単一装置に組み合わせることができ、冷却器60および160を単一装置に組み合わせることができ、そしてデカンター70および180を1つの装置に組み合わせることができる。] 図8
[0146] 実施例8
本実施例は、HFを、HFC−1234yfならびにHFC−245ebおよび/またはHFC−245cbから分離し得る一方法を示す。本実施例における供給混合物の組成物は、部分転化で運転される脱フッ化水素反応器から得てもよいものなどである、すなわち、それは、等モル量のHFおよびHFC−1234yfを含有する。]
[0147] ここで図4について言及すると、HF、HFC−1234yf、およびHFC−245cbを含む流れを、流れ100によって第1蒸留塔110に供給する。エントレーナーに富む流れもまた、流れ190によってこの塔に供給する。本実施例では、CFC−115をエントレーナーとして使用する。] 図4
[0148] 塔110は、34理論段を含有し、低沸点HF/CFC−115共沸混合物の影響のためにHFをエントレーナーと共にオーバーヘッド蒸留させるための条件下に運転される。HFC−1234yfおよびHFC−245cbが流れ120によって塔110からのボトムとしてCFC−115およびHFを本質的に含まずに得られ得るように十分なCFC−115を、流れ190によってこの第1塔に供給する。流れ120中のHFC−1234yfとHFC−245cbとを次に任意選択的に、通常の蒸留によって互いに分離してもよく、HFC−245cbを任意選択的に、HFC−1234yfを形成するための脱フッ化水素反応器にリサイクルして戻してもよい。流れ130によって取り去られる、塔110からの留出物は、塔供給物100および190中のCFC−115およびHFの本質的に全てならびに、任意選択的に、幾らかのHFC−245cbおよび/またはHFC−1234yfを含有する。この第1留出物流れ130を凝縮器140によって凝縮させて流れ150を形成し、それを次に、第2蒸留塔からの凝縮した留出物流れ250および、必要に応じ、流れ260によって添加される追加の新鮮CFC−115と混合する。この組み合わせた流れを冷却器160によってサブクールし、流れ170によってデカンター180に送り、そこでそれは別個のエントレーナーに富むおよびHFに富む液体画分に分離し、それらをそれぞれ、流れ190および200によって取り去る。デカンター中に存在するHFC−245cbおよびHFC−1234yfの大部分は、CFC−115に富む相画分に分配され、それを流れ190によって第1蒸留塔110に供給する。デカンターからのHFに富む画分を流れ200によって、8理論段を含有し、そしてHFC−245cb、HFC−1234yf、およびCFC−115を本質的に含まないHFのボトム流れを生成し、流れ220によって取り去るような条件下に運転される第2蒸留塔210に供給する。流れ230によって取り去られ、そして塔供給物(流れ200)中に存在するHFC−245cb、HFC−1234yf、およびCFC−115の本質的に全てプラス生成物流れ220に回収されないHFを含有する、塔210からの留出物を凝縮器240によって凝縮させ、流れ250によって取り去る。凝縮した留出物流れ250を、第1塔からの凝縮した留出物流れ150および、必要に応じ、流れ260によって添加される、新鮮エントレーナーの両方と組み合わせ、次に冷却し、さらなる分離のためにデカンターに供給する。]
[0149] 表8のデータは、測定および計算された熱力学的特性を用いる計算によって得られた。]
[0150] ]
[0151] 実施例9
PFC−218をエントレーナーとして使用するHFからのHFC−1234yfの分離のための共沸蒸留
実施例9は、HFを、PFC−218をエントレーナーとして使用する共沸蒸留によってHFC−1234yfから分離し得ることを実証する。]
[0152] ここで図2について言及すると、HFおよびHFC−1234yfからなる組成物を流れ100によって、9理論段を含有する第1蒸留塔110に供給する。HFに富むそしてPFC−218に乏しい組成物もまた、流れ190によって塔110のトップ段に供給する。流れ100および190中のHFの総計量が低沸点HF/HFC−1234yf共沸混合物を形成するために必要とされるものを超えているので、HFを、流れ120によって塔110のボトムからHFC−1234yfおよびPFC−218の両方を本質的に含まない生成物流れとして回収する。組み合わせた流れ100および190と比べてHFC−1234yfに富む組成物、そして好ましくは擬HF/HFC−1234yf共沸混合物を、流れ130によって留出物として回収する。流れ130を凝縮器140によって凝縮させて流れ150を形成し、次に第2蒸留塔からの凝縮した留出物流れ250および、必要に応じ、流れ260によって添加される追加のPFC−218の両方と混合する。組み合わせた流れ150、250、および260を冷却器160に、次にデカンター180に送り、そこでサブクール状態の液体流れ170は、HFに富むおよびHFに乏しいまたは有機に富む液相画分へ分離し、それらを、それぞれ、流れ190および200によって取り去る。デカンター中に存在するHFC−1234yfは、PFC−218に富む液相画分へ主として分配される。流れ190を第1塔のトップにリサイクルする。デカンター中のHFに乏しい液相画分を、流れ200によって、25理論段を含有する、第2蒸留塔210のトップ段に供給する。HFC−1234yfを、流れ220によってHFおよびPFC−218の両方を本質的に含まない生成物流れとして塔210のボトムから回収する。流れ200と比べてPFC−218に富む三成分組成物が、流れ230によって留出物として第2塔のトップを出る。] 図2
[0153] 流れ200と比べてPFC−218に富み、同じ蒸留領域の三成分組成物が、流れ230によって留出物として第2塔のトップを出る。流れ230を凝縮器240によって凝縮させ、流れ250を形成し、先に記載されたように流れ150および260と組み合わせる。]
[0154] 表9のデータは、測定および計算された熱力学的特性を用いて計算した。]
[0155] ]
[0156] 概要または実施例で上に記載された作業の全てが必要とされるわけではないこと、具体的な作業の一部は必要とされないかもしれないこと、ならびに1つ以上のさらなる作業が記載されたものに加えて行われてもよいことに留意されたい。その上さらに、作業が言及される順番は必ずしもそれらが行われる順番ではない。]
[0157] 前述の明細書で、概念は具体的な実施形態に関して記載されてきた。しかしながら、当業者は、様々な修正および変更が下の特許請求の範囲に記載されるような本発明の範囲から逸脱することなく行われ得ることを理解する。従って、本明細書および数字は限定的な意味ではなく例示的な意味で考慮されるべきであり、全てのかかる修正は、本発明の範囲内に包含されることが意図される。]
[0158] 利益、他の利点、および問題の解決策は、具体的な実施形態に関して上に記載されてきた。しかしながら、利益、利点、問題の解決策、および任意の利益、利点、または想到されるかもしくはより顕著になるための解決策をもたらすかもしれないいかなる特徴も、特許請求の範囲のいずれかまたは全ての決定的に重要な、必要な、または本質的な特徴と解釈されるべきではない。]
実施例

[0159] ある種の特徴は、明確にするために、別個の実施形態との関連で本明細書に記載されており、単一実施形態で組み合わせて提供されてもよいことが理解されるべきである。逆に、簡潔にするために、単一実施形態との関連で記載される様々な特徴はまた、別々にまたは任意の副次的組み合わせで提供されてもよい。さらに、範囲で記載される値の言及には、当該範囲内のそれぞれのおよびあらゆる値が含まれる。]
权利要求:

請求項1
HFおよびHFC−1234yfを含む混合物の分離方法であって、a.HFおよびHFC−1234yfを含む組成物を第1蒸留塔に供給する工程と;b.HFおよびHFC−1234yfを含む共沸混合物組成物を第1留出物として、およびi)HFまたはii)HFC−1234yfのどちらかを第1塔ボトム組成物として取り去る工程と;c.第1留出物を凝縮させて、i)HF豊富相およびii)HFC−1234yf豊富相である、2つの液相を形成する工程と;d.第1塔ボトムとして取り去られるものと同じ化合物に富む第1液相を第1蒸留塔にリサイクルして戻す工程であって、前記第1液相がi)HF豊富相またはii)HFC−1234yf豊富相のどちらかである工程とを含む方法。
請求項2
工程(d)でリサイクルされない第2液相を第2蒸留塔に供給する工程であって、前記第2液相がi)HF豊富相またはii)HFC−1234yf豊富相かのどちらかである工程と、工程(b)で第1塔ボトム組成物として回収されなかった化合物を第2塔ボトム組成物として回収する工程とをさらに含む、請求項1に記載の方法。
請求項3
フッ化水素およびHFC−1234yfを含む混合物からHFC−1234yfを分離する方法であって、前記HFC−1234yfがフッ化水素と前記HFC−1234yfとの共沸混合物濃度より高い濃度で存在し、前記方法が、a.フッ化水素および前記HFC−1234yfを含む前記混合物を第1蒸留塔に供給する工程と;b.フッ化水素およびHFC−1234yfを含む共沸混合物組成物を第1蒸留塔から第1留出物として取り去る工程と;c.フッ化水素を本質的に含まないHFC−1234yfを第1蒸留塔のボトムから回収する工程と;d.共沸混合物組成物を凝縮させて、i)HF豊富相およびii)HFC−1234yf豊富相である、2つの液相を形成する工程と;e.HFC−1234yf豊富相を第1蒸留塔にリサイクルする工程とを含む方法。
請求項4
a.フッ化水素豊富相を第2蒸留塔に供給する工程と、b.HFC−1234yfを本質的に含まないフッ化水素を第2蒸留塔のボトムから回収する工程とをさらに含む請求項3に記載の方法。
請求項5
フッ化水素およびHFC−1234yfを含む混合物からのフッ化水素の分離方法であって、フッ化水素がフッ化水素と前記HFC−1234yfとの共沸混合物濃度より高い濃度で存在し、前記方法が、a.フッ化水素およびHFC−1234yfを含む前記混合物を第1蒸留塔に供給する工程と;b.HFC−1234yfおよびHFを含む共沸混合物または共沸混合物様組成物を第1蒸留塔から留出物として取り去る工程と;c.HFC−1234yfを本質的に含まないフッ化水素を第1蒸留塔のボトムから回収する工程と;d.共沸混合物組成物を凝縮させて、HFC−1234yf豊富相およびフッ化水素豊富相である、2つの液相を形成する工程と;e.HF豊富相を第1蒸留塔にリサイクルする工程とを含む方法。
請求項6
a.HFC−1234yf豊富相を第2蒸留塔に供給する工程と、b.本質的にフッ化水素を含まないHFC−1234yfを第2蒸留塔のボトムから回収する工程とをさらに含む、請求項5に記載の方法。
請求項7
HFC−1234yfおよびHFを含む混合物からのHFC−1234yfの精製方法であって、前記HFC−1234yfが前記HFC−1234yfとHFとの共沸混合物濃度より高い濃度で前記混合物中に存在し、前記方法が、a.HFC−1234yfおよびHFを含む混合物にエントレーナーを添加して第2混合物を形成する工程と;b.前記第2混合物を第1蒸留工程で蒸留して、HF、HFC−1234yf、およびエントレーナーを含む第1留出物組成物、ならびにHFC−1234yfを含む第1ボトム組成物を形成する工程と;c.前記第1留出物組成物を凝縮させて、i)HF豊富相およびii)エントレーナー豊富相である、2つの液相を形成する工程と;d.任意選択的に、エントレーナー豊富相を第1蒸留工程にリサイクルして戻す工程とを含む方法。
請求項8
HFC−1234yfおよびHFを含む混合物からのHFの精製方法であって、HFがHFと前記HFC−1234yfとの共沸混合物濃度より高い濃度で存在し、前記方法が、a.HFC−1234yfおよびHFを含む混合物にエントレーナーを添加して第2混合物を形成する工程と;b.前記第2混合物を第1蒸留工程で蒸留して、HF、エントレーナー、およびHFC−1234yfを含む第1留出物組成物、ならびにHFを含む第1ボトム組成物を形成する工程と;c.前記第1留出物組成物を凝縮させて、i)エントレーナー豊富相およびii)HF豊富相である、2つの液相を形成する工程と;d.任意選択的に、HF豊富相を第1蒸留工程にリサイクルして戻す工程とを含む方法。
請求項9
工程(c)のエントレーナー豊富相を第2蒸留工程に供給し、エントレーナーとHFとの共沸混合物を含む第2留出物組成物ならびにエントレーナーを本質的に含まないHFを含む第2ボトム組成物を形成する工程をさらに含む請求項8に記載の方法。
請求項10
HFC−1234yf、HF、およびHFC−245cbまたはHFC−245ebの少なくとも1つの混合物からのHFC−1234yfの分離方法であって、a.前記混合物を、追加のHFC−1234yfが第2蒸留工程から供給される第1蒸留工程にかけて、HFC−1234yfとHFとの共沸混合物を含む第1留出物ならびにHFC−245cbまたはHFC−245ebの少なくとも1つを含む第1ボトム組成物を形成する工程と;b.前記第1留出物を第2蒸留工程に供給してHFC−1234yfとHFとの共沸混合物を含む第2留出物ならびにHFを本質的に含まないHFC−1234yfを含む第2ボトム組成物を形成する工程と;c.前記第2留出物を凝縮させて、i)HF豊富相およびii)HFC−1234yf豊富相である、2つの液相を形成する工程と;d.工程(c)からのHFC−1234yf豊富相を第1蒸留工程にリサイクルして戻す工程とを含む方法。
請求項11
HFC−1234yf、HF、およびHFC−245cbまたはHFC−245ebの少なくとも1つを含む混合物からのHFの分離方法であって、a.HFC−1234yf、HF、およびHFC−245cbまたはHFC−245ebの少なくとも1つを含む混合物にエントレーナーを添加して第2混合物を形成する工程と;b.前記第2混合物を第1蒸留工程で蒸留して、HFおよびエントレーナーを含む第1留出物組成物ならびにHFC−1234yfおよびHFC−245cbまたはHFC−245ebの少なくとも1つを含む第1ボトム組成物を形成する工程と;c.前記第1留出物組成物を凝縮させて、(i)エントレーナー豊富相および(ii)HF豊富相である、2つの液相を形成する工程と;d.エントレーナー豊富相を第1蒸留工程にリサイクルして戻す工程と;e.任意選択的に、HF豊富相を第2蒸留工程に供給し、エントレーナーとHFとの共沸混合物を含む第2留出物組成物ならびにエントレーナーを本質的に含まないHFを含む第2ボトム組成物を形成する工程とを含む方法。
請求項12
前記第2留出物組成物を前記2つの液相にリサイクルして戻す工程をさらに含む請求項11に記載の方法。
請求項13
前記エントレーナーが、a.メタン、エタン、エチレン、アセチレン、ビニルアセチレン、n−プロパン、プロピレン、プロピン、シクロプロパン、シクロプロペン、プロパジエン、n−ブタン、イソブタン、1−ブテン、イソブテン、1,3−ブタジエン、2,2−ジメチルプロパン、シス−2−ブテン、トランス−2−ブテン、1−ブチン、n−ペンタン、イソペンタン、ネオペンタン、シクロペンタン、1−ペンテン、2−ペンテン、およびそれらの混合物からなる群から選択される少なくとも1つの化合物を含む炭化水素エントレーナーと;b.塩化メチレン、塩化メチル、およびそれらの混合物からなる群から選択されるクロロカーボンエントレーナーと;c.ジクロロジフルオロメタン(CFC−12)、2−クロロ−1,1,2−トリフルオロエチレン、クロロペンタフルオロエタン(CFC−115)、1,2−ジクロロ−1,1,2,2−テトラフルオロエタン(CFC−114)、1,1−ジクロロ−1,2,2,2−テトラフルオロエタン(CFC−114a)、1,1,2−トリクロロ−1,2,2−トリフルオロエタン(CFC−113)、1,1,1−トリクロロ−2,2,2−トリフルオロエタン(CFC−113a)、1,1,2−トリクロロ−1,2,3,3,3−ペンタフルオロプロパン(CFC−215bb)、2,2−ジクロロ−1,1,1,3,3,3−ヘキサフルオロプロパン(CFC−216aa)、1,2−ジクロロ−1,1,2,3,3,3−ヘキサフルオロプロパン(CFC−216ba)、2−クロロ−1,1,1,2,3,3,3−ヘプタフルオロプロパン(CFC−217ba)、2−クロロ−1,1,3,3,3−ペンタフルオロプロペン(CFC−1215xc)、およびそれらの混合物からなる群から選択される少なくとも1つの化合物を含むクロロフルオロカーボン(CFC)エントレーナーと;d.ジクロロフルオロメタン(HCFC−21)、1,1−ジクロロ−3,3,3−トリフルオロエタン(HCFC−123)、1,1−ジクロロ−1−フルオロエタン(HCFC−141b)、2−クロロ−1,1,1,2−テトラフルオロエタン(HCFC−124)、1−クロロ−1,1,2,2−テトラフルオロエタン(HCFC−124a)、2−クロロ−1,1,1−トリフルオロエタン(HCFC−133a)、1−クロロ−1,1−ジフルオロエタン(HCFC−142b)、2−クロロ−1,1−ジフルオロエチレン(HCFC−1122)、およびそれらの混合物からなる群から選択される少なくとも1つの化合物を含むハイドロクロロフルオロカーボン(HCFC)エントレーナーと;e.2,3,3,3−テトラフルオロプロペン(HFC−1234yf)、1,1,2−トリフルオロエチレン(HFC−1123)、1,1−ジフルオロエチレン(HFC−1132a)、およびそれらの混合物からなる群から選択される少なくとも1種の化合物を含むハイドロフルオロカーボン(HFC)エントレーナーと;f.ヘキサフルオロエタン(PFC−116)、オクタフルオロプロパン(PFC−218)、1,1,1,4,4,4−ヘキサフルオロ−2−ブチン(PFBY−2)、ヘキサフルオロプロピレン(HFP、PFC−1216)、ヘキサフルオロシクロプロパン(PFC−C216)、オクタフルオロシクロブタン(PFC−C318)、デカフルオロブタン(PFC−31−10、全ての異性体)、2,3−ジクロロ−1,1,1,4,4,4−ヘキサフルオロ−2−ブテン(PFC−1316mxx)、オクタフルオロ−2−ブテン(PFC−1318my、シスおよびトランス)、ヘキサフルオロブタジエン(PFC−2316)、およびそれらの混合物からなる群から選択される少なくとも1つの化合物を含むパーフルオロカーボン(PFC)エントレーナーと;g.トリフルオロメチル−ジフルオロメチルエーテル(CF3OCHF2、HFOC−125E)、1,1−ジフルオロジメチルエーテル、テトラフルオロジメチルエーテル(HFOC−134E)、ジフルオロメチルメチルエーテル(CHF2OCH3、HFOC−152aE)、ペンタフルオロエチルメチルエーテル、およびそれらの混合物からなる群から選択される少なくとも1つの化合物を含むフルオロエーテルエントレーナーと;h.HFPO、SF6、塩素、ヘキサフルオロアセトン、PMVE(パーフルオロメチルビニルエーテル)、PEVE(パーフルオロエチルビニルエーテル)、およびそれらの混合物からなる群から選択される種々雑多な他の化合物とからなる群から選択される、請求項7、8または11に記載の方法。
請求項14
前記エントレーナーが、メタン、エタン、エチレン、アセチレン、ビニルアセチレン、n−プロパン、プロピレン、プロピン、シクロプロパン、シクロプロペン、プロパジエン、塩化メチル(CH3Cl)、ジクロロジフルオロメタン(CFC−12)、2−クロロ−1,1,2−トリフルオロエチレン、クロロペンタフルオロエタン(CFC−115)、2−クロロ−1,1,3,3,3−ペンタフルオロプロペン(CFC−1215xc)、2−クロロ−1,1−ジフルオロエチレン(HCFC−1122)、2,3,3,3−テトラフルオロプロペン(HFC−1234yf)、1,1,2−トリフルオロエチレン(HFC−1123)、1,1−ジフルオロエチレン(HFC−1132a)、ヘキサフルオロエタン(PFC−116)、オクタフルオロプロパン(PFC−218)、1,1,1,4,4,4−ヘキサフルオロ−2−ブチン(PFBY−2)、ヘキサフルオロプロピレン(HFP、PFC−1216)、ヘキサフルオロシクロプロパン(PFC−C216)、トリフルオロメチル−ジフルオロメチルエーテル(CF3OCHF2、HFOC−125E)、1,1−ジフルオロジメチルエーテル、テトラフルオロジメチルエーテル(HFOC−134E)、ジフルオロメチルメチルエーテル(CHF2OCH3、HFOC−152aE)、ペンタフルオロエチルメチルエーテル、HFPO、塩素(Cl2)、ヘキサフルオロアセトン、PMVE(パーフルオロメチルビニルエーテル)、PEVE(パーフルオロエチルビニルエーテル)、およびそれらの任意の混合物からなる群から選択される、請求項7、8、または11のいずれか一項に記載の方法。
类似技术:
公开号 | 公开日 | 专利标题
US9464013B2|2016-10-11|Azeotrope-like composition of 2-chloro-3,3,3-trifluoropropene | and hydrogen fluoride |
RU2445302C2|2012-03-20|Способы получения тетрафторпропена
KR101629908B1|2016-06-13|유기 공급원료로부터 플루오르화 수소를 분리하는 방법
CN101528645B|2013-10-30|氟丙烷、卤代丙烯以及2-氯-3,3,3-三氟-1-丙烯与hf的共沸组合物和1,1,1,2,2-五氟丙烷与hf的共沸组合物的制备方法
EP2107048B1|2019-07-31|Azeotrope-like compositions of 2-chloro-3,3,3-trifluoropropene | and 2-chloro-1,1,1,2-tetrafluoropropane |
RU2516249C2|2014-05-20|Азеотропоподобные композиции пентафторпропана, хлортрифторпропилена и фтористого водорода
JP5846242B2|2016-01-20|1,1,1,2−テトラフルオロプロペンの製造方法
US9126888B2|2015-09-08|Azeotrope-like compositions of tetrafluoropropene and water
US8399723B2|2013-03-19|Processes for production and purification of hydrofluoroolefins
US7470828B2|2008-12-30|Direct conversion of HCFC 225ca/cb mixture to HFC 245cb and HFC 1234yf
CN103153924B|2015-04-29|1,3,3,3-四氟丙烯与hf的工艺共沸物
EP1948580B1|2016-12-21|Azeotrope compositions comprising e-1,3,3,3-tetrafluoropropene and hydrogen fluoride and uses thereof
KR101684333B1|2016-12-08|불화수소로부터 r­1233의 분리
US8524956B2|2013-09-03|Method of purifying |-1-chloro-3,3,3-trifluoropropene
JP5626345B2|2014-11-19|2,3,3,3−テトラフルオロプロペンの精製方法
EP0763004B1|2000-08-30|Production of 1,2-dihydro and 2,2-dihydro hexafluoropropanes and azeotropes thereof with hf
US7388117B2|2008-06-17|Azeotrope compositions comprising 1,2,3,3,3-pentafluoropropene and hydrogen fluoride and uses thereof
US10590052B2|2020-03-17|Azeotropic compositions of hydrogen fluoride and Z-3,3,3-trifluoro-1-chloropropene
US7981312B2|2011-07-19|Processes for producing and compositions comprising 2,3,3,3-tetrafluoropropene and/or 1,2,3,3-tetrafluoropropene
ES2392884T3|2012-12-14|Procedimiento para separar una fluoroolefina de HF mediante extracción líquido-líquido
JP4549340B2|2010-09-22|1−クロロ−1、3、3、3−テトラフルオロプロパン及び1、2−ジクロロ−3、3、3−トリフルオロプロペンの共沸類組成物
ES2727016T3|2019-10-11|Composiciones azeotrópicas de 2-cloro-3,3,3-trifluoropropeno |, 2-cloro-1,1,1,2-tetrafluoropropano | y fluoruro de hidrógeno |
CN101479218B|2013-08-21|1,2,3,3,3-五氟丙烯制备方法
US8377327B2|2013-02-19|Tetrafluoropropene production processes
KR100332392B1|2002-11-13|추출증류법을사용하여테트라플루오로에탄으로부터불순물을분리및제거하는방법
同族专利:
公开号 | 公开日
MX2010009080A|2010-09-07|
BRPI0906014A2|2015-06-30|
KR101946378B1|2019-02-12|
KR20160120804A|2016-10-18|
KR20180031811A|2018-03-28|
KR101842380B1|2018-03-26|
RU2010138783A|2012-03-27|
CN101952230B|2015-07-22|
EP2247561B1|2014-03-26|
RU2476416C2|2013-02-27|
ES2463670T3|2014-05-28|
KR20100138933A|2010-12-31|
EP2247561A1|2010-11-10|
KR20190016124A|2019-02-15|
CN101952230A|2011-01-19|
CA2713086A1|2009-08-27|
WO2009105512A1|2009-08-27|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
JPH02295938A|1989-05-04|1990-12-06|Atochem North America Inc|Process for separating hydrogen fluoride, 1,1-dichloro-1-fluoroethane and 1-chloro-1,1-difluoroethane from liquid mixture thereof|
JP2001520208A|1997-10-17|2001-10-30|イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー|フッ化水素から1,1,1,3,3−ペンタフルオロプロパンを分離する方法|
WO2007053736A2|2005-11-01|2007-05-10|E. I. Du Pont De Nemours And Company|Azeotrope compositions comprising 2,3,3,3-tetrafluoropropene and hydrogen fluoride and uses thereof|
JP2009513719A|2005-11-01|2009-04-02|イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.DuPontDeNemoursAndCompany|2,3,3,3−テトラフルオロプロペンとフッ化水素とを含む共沸組成物およびその使用|
JP2010501579A|2006-08-24|2010-01-21|イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.DuPontDeNemoursAndCompany|共沸蒸留によってフッ化水素からフルオロオレフィンを分離する方法|JP2013521275A|2010-07-23|2013-06-10|ダイキン工業株式会社|2,3,3,3−テトラフルオロプロペンの精製方法|
JP2013231120A|2012-04-27|2013-11-14|Asahi Glass Co Ltd|共沸または共沸様組成物、および2,3,3,3−テトラフルオロプロペンまたはヘキサフルオロプロペンの製造方法|
JP2014528912A|2011-07-08|2014-10-30|アルケマ フランス|2,3,3,3−テトラフルオロプロペンおよびフッ化水素酸を分離し回収する方法|
JP2016514721A|2013-03-20|2016-05-23|アルケマ フランス|Hf及び2,3,3,3−テトラフルオロプロペンを含む組成物|
WO2017119273A1|2016-01-06|2017-07-13|ダイキン工業株式会社|2,3,3,3-テトラフルオロプロペンの製造方法|
WO2018230719A1|2017-06-16|2018-12-20|ダイキン工業株式会社|ペンタフルオロプロパンと水とを含む共沸又は共沸様組成物、並びにペンタフルオロプロパンの製造方法|
WO2020158668A1|2019-01-28|2020-08-06|ダイキン工業株式会社|1,2-ジフルオロエチレン又は1,1,2-トリフルオロエチレンと、フッ化水素とを含む共沸様組成物|JPS6131091B2|1977-03-19|1986-07-17|Mitsui Petrochemical Ind||
IT1256631B|1992-12-10|1995-12-12|Ausimont Spa|Procedimento per la separazione di hf da sue miscele con gli idroclorofluorcarburi 123 e/o 124|
DE69940828D1|1998-12-18|2009-06-10|Solvay|Verfahren zur trennung einer mischung, die mindestlt, und verfahren zur herstellung eines hydrofluoralkans|
ES2312545T3|2001-01-25|2009-03-01|Honeywell International, Inc.|Procedimiento para la fabricacion de fluorocarbonos.|
US20050177012A1|2001-07-20|2005-08-11|Pcbu Services, Inc.|Halocarbon production processes, halocarbon separation processes, and halocarbon separation systems|
US20060116538A1|2004-10-29|2006-06-01|Ralph Newton Miller|Azeotrope compositions comprising 1,1,3,3,3-pentafluoropropene and hydrogen fluoride and uses thereof|
US7897823B2|2004-10-29|2011-03-01|E. I. Du Pont De Nemours And Company|Process for production of azeotrope compositions comprising hydrofluoroolefin and hydrogen fluoride and uses of said azeotrope compositions in separation processes|
US7423188B2|2005-11-01|2008-09-09|E. I. Du Pont De Nemours And Company|Azeotrope compositions comprising E-1,3,3,3-tetrafluoropropene and hydrogen fluoride and uses thereof|
US7388117B2|2005-11-01|2008-06-17|E.I. Du Pont De Nemours And Company|Azeotrope compositions comprising 1,2,3,3,3-pentafluoropropene and hydrogen fluoride and uses thereof|
US7803975B2|2006-07-13|2010-09-28|E.I. Du Pont De Nemours And Company|Process for separating a fluoroolefin from HF by liquid-liquid extraction|
GB0614927D0|2006-07-27|2006-09-06|Ineos Fluor Holdings Ltd|Separation process|ES2450945T3|2006-08-24|2014-03-25|E. I. Du Pont De Nemours And Company|Procedimientos para la separación de fluoroolefinas a partir de fluoruro de hidrógeno por destilación azeotrópica|
US8766020B2|2008-07-31|2014-07-01|Honeywell International Inc.|Process for producing 2,3,3,3-tetrafluoropropene|
JP5653928B2|2009-10-27|2015-01-14|昭和電工株式会社|フッ素含有化合物の精製方法|
US8975456B2|2009-11-10|2015-03-10|Daikin Industries, Ltd.|Method for purifying 2,3,3,3-tetrafluoropropene|
CN106316776A|2010-02-12|2017-01-11|大金工业株式会社|用于制备含氟烯烃的方法|
US8518293B2|2010-09-03|2013-08-27|Honeywell International Inc.|1,3,3,3-tetrafluoropropene process azeotropes with HF|
FR2986525B1|2012-02-03|2014-02-14|Arkema France|Procede de production de 2,3,3,3-tetrafluoropropene|
JP6102917B2|2012-04-09|2017-03-29|旭硝子株式会社|共沸または共沸様組成物、および2,3,3,3−テトラフルオロプロペンまたはクロロメタンの製造方法|
FR3000093B1|2012-12-26|2015-07-17|Arkema France|Composition azeotropique ou quasi-azeotropique de chloromethane|
FR3000096B1|2012-12-26|2015-02-20|Arkema France|Composition comprenant du 2,3,3,3-tetrafluoropropene|
KR101486361B1|2013-04-09|2015-01-27|주식회사 세라젬|온열치료기용 자동 장력조절장치|
FR3077572A1|2018-02-05|2019-08-09|Arkema France|Composition azeotropique ou quasi-azeotropique ternaire comprenant hf, 2,3,3,3-tetrafluoropropene et 1,1,1,2,2,-pentafluoropropane.|
法律状态:
2012-02-18| A621| Written request for application examination|Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120217 |
2012-02-18| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120217 |
2013-07-11| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130711 |
2013-07-22| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130719 |
2013-10-22| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20131021 |
2013-10-29| A602| Written permission of extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20131028 |
2014-10-29| A02| Decision of refusal|Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141028 |
优先权:
申请号 | 申请日 | 专利标题
[返回顶部]