专利摘要:
特定の実施形態において、基板(490)の表面に対して実質的に垂直に延びる複数の側壁(110、112、114)を有する磁気トンネル接合(MTJ)セルを含むMTJ構造(100)が開示される。前記複数の側壁の各々は、一意の磁区を保持するための自由層(106)を含む。前記一意の磁区の各々は、デジタル値を格納するために好適する。
公开号:JP2011512030A
申请号:JP2010545101
申请日:2009-01-28
公开日:2011-04-14
发明作者:リ、シャ
申请人:クゥアルコム・インコーポレイテッドQualcomm Incorporated;
IPC主号:H01L27-105
专利说明:

[0001] 本開示は、概して、複数の磁区を含む磁気トンネル接合セルに関するものである。]
背景技術

[0002] 概して、携帯式の計算デバイス及び無線通信デバイスが広範囲にわたって採用されることで、高密度及び低電力の非揮発性メモリの需要が高くなっている。プロセス技術の向上に伴い、磁気トンネル接合(MTJ)素子に基づいて磁気抵抗ランダムアクセスメモリ(MRAM)を製造することが可能になってきている。伝統的なスピントルクトンネル(STT)接合素子は、典型的に、平らなスタック構造として形成される。該素子は、典型的に、単一の磁区を有する二次元の磁気トンネル接合(MTJ)セルを有する。MTJセルは、典型的に、固定された磁気層と、バリア層(すなわち、トンネル酸化物層)と、自由磁気層とを含み、ビット値は、自由磁気層及び反強磁性層内において誘導される磁場によって表される。固定された磁気層によって保持(carry)される固定磁場の方向に対する自由層の磁場の方向がビット値を決定する。]
[0003] 従来においては、MTJ素子を用いてデータ密度を向上させるために、一技法は、より多くのMTJ素子をより小さい面積内に入れるためにMTJ素子のサイズを小さくすることを含む。しかしながら、MTJ素子のサイズは、製造技術の臨界寸法(CD)によって制限される。他の技法は、単一のMTJ素子において複数のMTJ構造を形成することを含む。例えば、一例においては、第1の固定層と、第1のトンネルバリアと、第1の自由層とを含む第1のMTJ構造が形成される。誘電体層が第1のMTJ構造上に形成され、その誘電体層の頂部上に第2のMTJ構造が形成される。該構造は、X−Y方向において記憶密度を増大させ、Z方向においてメモリアレイのサイズを大きくする。残念なことに、該構造は、セル当たり1ビットのみを格納し、このため、X−Y方向におけるデータ密度は、Z方向における面積及び製造コストの増大を犠牲にして増大される。さらに、該構造は、配線トレースのルーティングの複雑さを増大させる。従って、各々のMTJセルの回路面積を増大させることなしにより大きい記憶密度を有し及びプロセス技術に応じてスケーリング(scale)することが可能な改良されたメモリデバイスが必要である。]
[0004] 特定の実施形態において、基板の表面に対して実質的に垂直に延びる複数の側壁(sidewall)を有する磁気トンネル接合(MTJ)セルを含むMTJ構造が開示される。前記複数の側壁の各々は、一意の磁区を保持するための自由層を含む。前記一意の磁区の各々は、格納されたデジタル値を表すために好適する。]
[0005] 他の特定の実施形態においては、複数の側壁を有する磁気トンネル接合(MTJ)セルを含むMTJ構造が開示される。前記複数の側壁は、第1のデータビットを格納するための第1の磁区を保持するための第1の自由層を有する第1の側壁を含み及び第2のデータビットを格納するための第2の磁区を保持するための第2の自由層を有する第2の側壁を含む。]
[0006] さらに他の特定の実施形態においては、磁気ランダムアクセスメモリ(MRAM)は、磁気トンネル接合(MTJ)セルのアレイを含む。前記MTJセルの各々は、複数の側壁を含む。前記複数の側壁の各々は、デジタル値を格納するために好適する各々の独立した磁区を保持するための自由層を含む。]
[0007] 前記磁気トンネル接合(MTJ)素子の実施形態によって提供される1つの特定の利点は、複数のデータビットを単一のMTJセルにおいて格納可能なことである。例えば、各MTJセル内おいて最大で16の論理状態を表すために用いることができる最大で4つのデータビットを格納するように単一のMTJセルを構成することができる。]
[0008] 提供される他の特定の利点は、前記多ビットのMTJセルはプロセス技術に応じてスケーリングすることができ、前記MTJセルのサイズが小さくなったときでも1つのMTJセルにおける複数のビットを可能にする。]
[0009] 提供されるさらなる他の特定の利点は、MTJセルは、データビットを格納するための複数の独立した磁区を含むことができることである。特定の実施形態においては、前記MTJセルは、(基板の平らな表面から垂直に延びる)1つ以上の側壁を含むことができ、前記1つ以上の側壁の各々は、データビットを格納するための一意の側部(lateral)磁区を保持する。さらに、前記MTJセルは、他のデータビットを格納するための水平の磁区を含む底壁を含むことができる。概して、前記MTJセルは、1つ、2つ又は3つの側壁を含むことができる。特定の例においては、前記MTJセルは、4つの側壁と、底壁と、を含むことができる。一側壁例においては、側壁は、制限なしにあらゆる側に配置することができる。二側壁例においては、側壁は、反対側又は隣接側に配置することができる。]
[0010] 提供されるさらなる他の特定の利点は、前記MTJセルは、前記MTJセル内のその他の磁区に格納されたデータを変更することなしに書き込む又は読み出すことができる複数の独立した磁区を含むことができることである。]
[0011] 次の節、すなわち、図面の簡単な説明、発明を実施するための形態、及び請求項、を含む出願全体を検討後に本開示のその他の態様、利点、及び特徴が明確になるであろう。]
図面の簡単な説明

[0012] 複数のデータビットを格納するために用いることができる磁気トンネル接合(MTJ)セルの特定の例示的実施形態の斜視図である。
複数のデータビットを格納するために好適する磁気トンネル接合セルの横断面図である。
複数のデータビットを格納するために好適する磁気トンネル接合(MTJ)セルを含むメモリデバイスの特定の例示的実施形態の上面図である。
図3の線4−4に沿った図3のメモリデバイスの横断面図である。
図3の線5−5に沿った図3のメモリデバイスの横断面図である。
複数のデータビットを格納するために好適する磁気トンネル接合(MTJ)セルを含むメモリデバイスの第2の特定の例示的実施形態の上面図である。
図6の線7−7に沿った図6のメモリデバイスの第2の実施形態の横断面図である。
図6の線8−8に沿った図6のメモリデバイスの第2の実施形態の横断面図である。
複数のビットを格納するために好適する磁気トンネル接合(MTJ)セルを含むメモリデバイスの第3の特定の例示的実施形態の上面図である。
図9線10−10に沿った図9のメモリデバイスの第3の実施形態の横断面図である。
図9の線11−11に沿った図9のメモリデバイスの第3の実施形態の横断面図である。
複数のビットを格納するために好適する磁気トンネル接合(MTJ)セルを含むメモリデバイスの第4の特定の例示的実施形態の上面図である。
図12の線13−13に沿った図12のメモリデバイスの第4の実施形態の横断面図である。
図12の線14−14に沿った図12のメモリデバイスの第4の実施形態の横断面図である。
複数のデータビットを格納するために好適する磁気トンネル接合(MTJ)スタックの自由層の上面図であり、MTJセルがビットゼロの状態にある。
磁気トンネル接合(MTJ)スタックの層の特定の例示的実施形態の図であり、書き込みゼロ電流の流れる方向を示す。
図15の線17−17に沿った図15の自由層の横断面図である。
図15の線18−18に沿った図15の自由層の横断面図である。
複数のデータビットを格納するために好適する磁気トンネル接合(MTJ)スタックの自由層の上面図であり、MTJスタックがビット1の状態にある。
磁気トンネル接合(MTJ)構造の層の特定の例示的実施形態の図であり、書き込み1電流の流れる方向を示す。
図19の線21−21に沿った図19のMTJスタックの横断面図である。
図19の線22−22に沿った図19のMTJスタックの横断面図である。
MTJセルからデータを読み出すために及びMTJセルにデータを書き込むために双方向スイッチに結合されたMTJセルの実施形態の横断面図を示した図である。
MTJセルからデータを読み出すために及びMTJセルにデータを書き込むために双方向スイッチに結合されたMTJセルの第2の実施形態の横断面図を示した図である。
複数のデータビットを格納するために好適し及びMTJセルからデータを読み出すために及びMTJセルにデータを書き込むために複数のスイッチに結合されたMTJセルの第3の実施形態の横断面図を示した図である。
複数のデータビットを格納するために好適し及びMTJセルからデータを読み出すために及びMTJセルにデータを書き込むために複数のスイッチに結合されたMTJセルの第4の実施形態の横断面図を示した図である。
複数のデータビットを格納するために好適する及びMTJセルからデータを読み出すために及びMTJセルにデータを書き込むために複数のスイッチに結合されたMTJセルの第5の実施形態の横断面図を示した図である。
複数のデータビットを格納するために好適する磁気トンネル接合(MTJ)素子を製造する方法の特定の実施形態の流れ図である。
複数のデータビットを格納するために好適する磁気トンネル接合(MTJ)素子を製造する方法の特定の実施形態の流れ図である。
複数のデータビットを格納するために好適するMTJ素子を動作させる方法の特定の例示的実施形態の流れ図である。
複数の磁気トンネル接合(MTJ)セルを含むメモリデバイスを含む無線通信デバイスのブロック図である。] 図12 図15 図19 図3 図6 図9
実施例

[0013] 図1は、複数のデータビットを格納するために用いることができる磁気トンネル接合(MTJ)セル100の特定の例示的実施形態の斜視図である。MTJセル100は、固定された磁気層102、トンネル接合層104、及び自由磁気層106が実質的に長方形状に配置された磁気トンネル接合(MTJ)スタックを含む。第1の側壁部110と、第2の側壁部112と、第3の側壁部114と、底壁部116とを有する電極層が、反強磁性(AF)層(示されていない)を介して固定磁気層102に電気的に及び物理的に結合される。中央電極108が自由層106に電気的に及び物理的に結合される。特定の実施形態においては、中央電極108に電圧を印加することができ及び中央電極108から自由層106を通り、トンネル接合104を通り、固定層102を通じて電流が流れることができる。電流は、矢印120、130、140、及び150によって示されるように流れることができる。] 図1
[0014] 特定の例示的実施形態においては、自由層106は、複数の独立した磁区を保持することができ、これらの磁区の各々は、データ値、例えばビット値、を表すために固定層102と関連づけられた固定された磁場に対する自由層106内の磁場の方向を定めるように書き込み電流によって独立して設定することができる。特に、固定層102の磁場の方向(方位)及び自由層106の磁場の方向が整列するときには、“0”のビット値が表される。対照的に、自由層106の磁場の方向(方位)が固定層102の磁場の方向と反対であるときには、“1”のビット値が表される。ビット“0”の状態及びビット“1”の状態は、異なる抵抗を表すことができ、ビット状態は、抵抗値又は電流値を検出することによって読み出すことができる。特定の実施形態においては、ビット“0”状態は、より低い抵抗を有する。側壁110に隣接する自由層106と関連づけられた磁場の方向は、第1のビット値を表すことができる。側壁112に隣接する自由層106と関連づけられた磁場の方向は、第2のビット値を表すことができる。側壁114に隣接する自由層106と関連づけられた磁場の方向は、第3のビット値を表すことができる。底壁116に隣接する自由層106と関連づけられた磁場の方向は、第4のビット値を表すことができる。]
[0015] 特定の実施形態においては、磁区は、均質の磁気方位を有する磁場を保持する磁性材の物理的領域を表す。2つの磁区間の界面は、領域壁と呼ぶことができる。固定層102は、複数の固定された磁区と関連づけられた領域壁とを有することができる。固定層102の磁区は、磁気アニール後に反強磁性層によって“ピンニング”(pinning)される(すなわち、固定層の磁性方位が、磁気アニールプロセス中に外部の磁場を加えることによって製造中にAF層によって固定される)。特定の実施形態においては、中央電極108と自由層106との間の追加の層は、MTJの性能を向上させることができる。特定の実施形態においては、MTJスタックは、追加の層を含むことができる。例えば、合成固定層又は合成自由(SyF)層構造は、それぞれ、2つの固定層と1つのスペーサ層とを含むか又は2つの自由層と1つのスペーサ層とを含むことができる。デュアルスピンフィルタ(DSP)構造は、2つの反強磁性層と、ピンニングされた層と、を含むことができる。代替の実施形態においては、MTJ膜スタック層の順序は逆にすることができる。]
[0016] 図2は、複数のデータ値、例えば複数のビット、を格納するために好適する磁気トンネル接合(MTJ)セル200の横断面図である。MTJセル200は、底部電極層202と、磁気トンネル接合(MTJ)スタック204と、上部電極層206とを含む。MTJスタック204は、磁場を保持する自由磁気層208を含み、それは、上部電極206と底部電極202との間において書き込み電流を印加することによってプログラミングすることができる。MTJスタック204は、トンネル接合バリア層210と、固定磁気層212と、も含む。底部電極202と固定層212との間に反強磁性(AF)層(示されていない)を配置することができる。特定の実施形態においては、MTJ構造は、追加の層(示されていない)を含むことができる。例えば、合成固定層構造又は合成自由(SyF)層構造は、それぞれ、2つの固定層と1つのスペーサ層とを含むか又は2つの自由層と1つのスペーサ層とを含むことができる。デュアルスピンフィルタ(DSP)構造は、2つの反強磁性層と、ピニングされた層と、を含むことができる。さらに、代替の実施形態においては、MTJ膜スタックの順序は逆にすることができる。] 図2
[0017] 固定層212は、概してアニールされ及び固定層212によって保持される磁場の方向を固定するために反強磁性(AF)層(示されていない)によってピニングすることができる。トンネルバリア210は、固定層212と自由層208との間においてトンネル接合又はバリアを提供するために好適する酸化物層(MgO、Al2O3、等)又はその他の反磁性層であることができる。自由層208は、プログラミング可能な(書き込み可能な)磁区を保持する強磁性材によって形成され、プログラミング可能な(書き込み可能な)磁区は、ビット値(すなわち、“1”又は“0”のビット値)を格納するために変化させることができる。]
[0018] 特定の実施形態においては、MTJスタック204の自由層208は、複数の独立した磁区を保持するために好適する。例えば、第1の側壁214における自由層208は、第1のビット値を格納することができる。第2の側壁216における自由層208は、第2のビット値を格納することができる。底壁218における自由層208は、第3のビット値を格納することができる。側壁214と216における及び底壁218における自由層内の磁場の特定の方位は、部分的には、MTJセル2000の長さ、幅、及び奥行きの寸法を制御することによって制御することができる。概して、磁場は、MTJセル200の壁の長さに沿った長手方向を向く。]
[0019] 図3は、複数のビットを格納するために好適する磁気トンネル接合(MTJ)セル304を有する基板302を含むメモリデバイス300の特定の例示的実施形態の上面図である。基板302は、底部電極306と、磁気トンネル接合(MTJ)スタック308と、中央電極310とを有するMTJ構造304を含む。特定の実施形態においては、中央電極310は、MTJスタック308の側壁334、336及び338の間を延びることができ、このため、中央電極310の厚さは、溝の幅(b)又は長さ(a)のうちのいずれか小さい方の値とMTJスタック308の反対側の側壁、例えば第2及び第3の側壁336及び338、の幅との間の差の約1/2である。特定の実施形態においては、中央電極層の厚さは、その幅及び長さのうちの小さい方の値と反対側の側壁の幅との間の差の1/2よりも大きいことができる。中央電極の適切な厚さを選択することは、中央電極の上面をギャップ又は継ぎ目なしの実質的に平面にするのを可能にすることができる。] 図3
[0020] MTJ構造304は、長さ(a)と幅(b)とを有し、長さ(a)は幅(b)よりも大きい。基板302は、中央電極310に結合される第1の中央ビア312と第2の中央ビア314とを含む。基板302は、MTJ構造304にアクセスするための第1の側部(lateral)ビア316と、第2の側部ビア318と、第3の側部ビア320と、第4の側部ビア322と、第5の側部ビア324と、も含む。基板302は、第1の側部ビア316に結合された第1の配線トレース(wire trace)326と、第1及び第2の中央ビア312及び314に結合された第2の配線トレース328と、第2及び第3の側部ビア318及び320に結合された第3の配線トレース330と、第4及び第5の側部ビア322及び324に結合された第4の配線トレース332と、も含む。基板302は、1つの側壁を取り除くためのプロセス開口部335も含む。]
[0021] MTJスタック308は、反強磁性(AF)層(示されていない)によってピニングすることができ及び固定された方位を有する固定された磁区を保持する固定磁気層と、トンネルバリア層と、書き込み電流を介して変化させる又はプログラミングすることが可能な磁区を有する自由磁気層と、を含む。特定の実施形態においては、MTJスタック308の固定磁気層は、1つ以上の層を含むことができる。MTJスタック308は、自由層の第1の部分において第1の磁区344を保持するための第1の側壁334と、自由層の第2の部分において第2の磁区346を保持するための第2の側壁336と、自由層の第3の部分において第3の磁区348を保持するための第3の側壁338と、を含む。第1、第2及び第3の磁区344、346、及び348は独立しており、データ値を表すために好適する。特定の実施形態においては、第1の磁区344は、第1のビット値を表すために好適し、第2の磁区346は、第2のビット値を表すために好適し、第3の磁区348は、第3のビット値を表すために好適する。概して、磁区344、346、及び348の方位は、格納されたビット値によって決定される。例えば、“0”の値は、第1の方位によって表され、“1”の値は、第2の方位によって表される。特定の実施形態においては、“0”の値及び“1”の値は、固定された層と平行な又は反平行な方位によってそれぞれ表すことができる。]
[0022] 図4は、図3の線4−4に沿った図3の回路デバイス300の横断面図400である。横断面図400は、第1の層間誘電体層452と、第1のキャップ層454と、第2の層間誘電体層456と、第2のキャップ層458と、第3のキャップ層460と、第3の層間誘電体層462と、第4の層間誘電体層464と、を含む基板302を示す。基板302は、第1の表面480と、第2の表面490と、を有する。基板302は、MTJスタック308を含むMTJ構造304も含む。底部電極306及びMTJスタック308は、基板302の溝内に配置される。溝は、深さ(d)を有する。基板302は、第1の表面480において配置及びパターン形成された第1及び第2の配線トレース326と328とを含む。第1の配線トレース326は、第1の側部ビア316に結合され、第1の側部ビア316は、第1の配線トレース326から底部電極306の一部分まで延びる。第2の配線トレース328は、第1及び第2の中央ビア312及び314に結合され、第1及び第2の中央ビア312及び314は、第2の配線トレース328から中央電極310まで延びる。中央電極310は、MTJスタック308に結合される。基板302は、プロセス開口部335も含み、プロセス開口部335は、MTJ構造304の一部分を選択的に取り除くことによって及び加工用開口部335内においてキャップ膜及び層間誘電材を堆積することによって形成することができる。] 図3 図4
[0023] 特定の実施形態においては、MTJスタック308は、自由層の第1の部分において第1の磁区344を保持する第1の側壁334を含む。第1の磁区344は、第1のビット値を表すために好適する。MTJスタック308は、自由層の底部において底部磁区472を有する底壁470も含み、底部磁区472は、第4のビット値を表すために好適する。ビット値は、第2の配線トレース328に電圧を印加することによって及び第1の配線トレース326における電流を基準電流と比較することによってMTJスタック308から読み出すことができる。代替として、ビット値は、第1の配線トレース326と第2の配線トレース328との間において書き込み電流を印加することによってMTJスタック308に書き込むことができる。特定の実施形態においては、図3に示されるMTJスタック308の長さ(a)及び幅(b)は、溝の深さ(d)よりも大きく、第1の側壁334によって保持される磁区344は、基板302の第1の表面480に実質的に平行な方向に及び図3に示される幅(b)の方向に延びる。図4の特定の図においては、磁区344は、紙面(page view)に対して垂直に(矢の頭部(“・”)で示すように紙面から外側に向かって)又は矢の末端(“*”)で示すように紙面内に向かって)延びる。] 図3 図4
[0024] 図5は、図3の線5−5に沿った図3の回路デバイス300の横断面図500である。横断面図500は、第1の層間誘電体層452と、第1のキャップ層454と、第2の層間誘電体層456と、第2のキャップ層458と、第3のキャップ層460と、第3の層間誘電体層462と、第4の層間誘電体層464と、を有する基板302を含む。基板302は、底部電極306と、MTJスタック308と、中央電極310と、を有するMTJ構造304を含む。基板302は、第3の配線トレース330から底部電極306の第1の部分まで延びる第2の側部ビア318に結合された第3の配線トレース330を含む。基板302は、第2の配線トレース328から中央電極310まで延びる中央ビア312に結合された第2の配線トレース328も含む。基板302は、第4の配線トレース332から底部電極306の第2の部分まで延びる第4の側部ビア322に結合された第4の配線トレース332をさらに含む。MTJスタック308は、自由層の第2の部分において第2の磁区346を保持するための第2の側壁336と、自由層の第3の部分において第3の磁区348を保持するための第3の側壁338と、自由層の底部において底部磁区472を保持するための底壁470と、を含む。] 図3 図5
[0025] 特定の実施形態においては、MTJスタック308は、最大で4つの一意のデータ値、例えば4つの一意のビット値、を格納するために好適する。第1のビット値は、第1の磁区344によって表すことができ、第2のビット値は、第2の磁区346によって表すことができ、第3のビット値は、第3の磁区348によって表すことができ、第4のビット値は、底部磁区472によって表すことができる。他の特定の実施形態においては、第5のビット値を表すことができる第4の磁区を保持するために第4の側壁を含めることができる。]
[0026] 図6は、複数のビットを格納するために好適する磁気トンネル接合(MTJ)セル604を有する基板602を含むメモリデバイス600の特定の例示的実施形態の上面図である。基板602は、底部電極606と、MTJスタック608と、中央電極610と、を有する磁気トンネル接合(MTJ)構造604を含む。MTJ構造604は、長さ(a)と幅(b)とを有し、長さ(a)は幅(b)よりも大きい。基板602は、中央電極610に結合される第1の中央ビア612と第2の中央ビア614とを含む。基板602は、MTJ構造604にアクセスするための第1の側部ビア616と、第2の側部ビア618と、第3の側部ビア620と、第4の側部ビア622と、第5の側部ビア624と、も含む。基板602は、第1の側部ビア616に結合された第1の配線トレース626と、第1及び第2の中央ビア612及び614に結合された第2の配線トレース628と、第2及び第3の側部ビア618及び620に結合された第3の配線トレース630と、第4及び第5の側部ビア622及び624に結合された第4の配線トレース632と、も含む。基板602は、MTJの側壁の一部分を取り除くためのプロセス開口部635も含む。] 図6
[0027] MTJスタック608は、固定された方位を有する固定された磁区を保持する固定された(AF層(示されていない)によってピニングされた)磁気層と、トンネルバリア層と、書き込み電流を介して変化させる又はプログラミングすることが可能な磁区を有する自由磁気層と、を含む。特定の実施形態においては、MTJスタック608の固定磁気層は、図1及び2に示されるよりも1つ以上多い層を含むことができる。MTJスタック608は、自由層の第1の部分において第1の磁区644を保持するための第1の側壁634と、自由層の第2の部分において第2の磁区646を保持するための第2の側壁636と、自由層の第3の部分において第3の磁区648を保持するための第3の側壁638と、を含む。第1、第2及び第3の磁区644、646、及び648は独立しており、データ値を格納するために好適する。特定の実施形態においては、第1の磁区644は、第1のビット値を表すために好適し、第2の磁区646は、第2のビット値を表すために好適し、第3の磁区648は、第3のビット値を表すために好適する。概して、磁区644、646、及び648の方位は、格納されたビット値によって決定される。例えば、“0”の値は、第1の方位によって表され、“1”の値は、第2の方位によって表される。特定の実施形態においては、“0”の値及び“1”の値は、固定された層と平行な又は反平行な方位によってそれぞれ表すことができる。] 図1
[0028] 図7は、図6の線7−7に沿った図6の回路デバイス600の横断面図700である。横断面図700は、第1の層間誘電体層750と、第2の層間誘電体層752と、第1のキャップ層754と、第3の層間誘電体層756と、第2のキャップ層758と、第3のキャップ層760と、第4の層間誘電体層762と、第5の層間誘電体層764と、を有する基板602を含む。基板602は、第1の表面780と、第2の表面790と、を有する。基板602は、MTJスタック608を含むMTJ構造604も含む。底部電極606及びMTJスタック608は、基板602の溝内に配置される。溝は、深さ(d)を有する。] 図6 図7
[0029] 基板602は、第2の表面790において配置され及びパターン形成された第1の配線トレース626を含む。第1の配線トレース626は、第1の側部ビア616に結合され、第1の側部ビア616は、第1の配線トレース626から底部電極606の一部分まで延びる。基板602は、第1の表面780において配置され及びパターン形成された第2の配線トレース628も含む。第2の配線トレース628は、第1の中央ビア612及び614に結合され、第1及び第2の中央ビア612及び614は、第2の配線トレース628から中央電極610まで延びる。中央電極610は、MTJスタック608に結合される。基板602は、プロセス開口部635も含み、プロセス開口部635は、MTJ構造604の一部分を選択的に取り除くことによって及び加工用開口部635内においてキャップ膜及び層間誘電材を堆積することによって形成することができる。]
[0030] 特定の実施形態においては、MTJスタック608は、自由層の第1の部分において第1の磁区644を保持する第1の側壁634を含む。第1の磁区644は、第1のビット値を表すために好適する。MTJスタック608は、自由層の底部分において底部磁区772を有する底壁770も含み、底部磁区772は、第4のビット値を表すために好適する。特定の例において、ビット値は、第2の配線トレース628に電圧を印加することによって及び第1の配線トレース626における電流を基準電流と比較することによってMTJスタック608から読み出すことができる。代替として、ビット値は、第1の配線トレース626と第2の配線トレース628との間において書き込み電流を印加することによってMTJスタック608に書き込むことができる。特定の実施形態においては、図6に示されるMTJスタック608の長さ(a)及び幅(b)は、溝の深さ(d)よりも大きく、第1の側壁634によって保持される磁区644は、基板602の第1の表面780に対して実質的に平行な方向に及び図6に示される幅(b)の方向に延びる。図7の特定の図においては、磁区644は、紙面(page view)に対して垂直に(矢の頭部(“・”)で示すように紙面から外側に向かって)又は矢の末端(“*”)で示すように紙面内に向かって)延びる。] 図6 図7
[0031] 図8は、図6の線8−8に沿った図6の回路デバイス600の横断面図800である。横断面図800は、第1の層間誘電体層750と、第2の層間誘電体層752と、第1のキャップ層754と、第3の層間誘電体層756と、第2のキャップ層758と、第3のキャップ層760と、第4の層間誘電体層762と、第5の層間誘電体層764と、を有する基板602を含む。基板602は、第1の表面780と、第2の表面790と、を有する。基板602は、底部電極606と、MTJスタック608と、中央電極610とを有するMTJ構造604を含む。基板602は、第2の表面790に配置された第3の配線トレース630を含む。第3の配線トレース630は、第2の側部ビア618に結合され、第2の側部ビア618は、第3の配線トレース630から底部電極606の第1の部分まで延びる。基板602は、第1の表面780における第2の配線トレース628も含む。第2の配線トレース628は、中央ビア612に結合され、中央ビア612は、第2の配線トレース628から中央電極610まで延びる。基板602は、第2の表面790における第4の配線トレース632をさらに含む。第4の配線トレースは、第4の側部ビア622に結合され、第4の側部ビア622は、第4の配線トレース632から底部電極606の第2の部分まで延びる。MTJスタック608は、自由層の第2の部分において第2の磁区646を保持するための第2の側壁636と、自由層の第3の部分において第3の磁区648を保持するための第3の側壁638と、自由層の底部において底部磁区772を保持するための底壁770と、を含む。] 図6 図8
[0032] 特定の実施形態においては、MTJスタック608は、最大で4つの一意のデータ値を格納するために好適する。第1のビット値は、自由層の第1の部分において第1の磁区644によって表すことができ、第2のビット値は、自由層の第2の部分において第2の磁区646によって表すことができ、第3のビット値は、自由層の第3の部分において第3の磁区648によって表すことができ、第4のビット値は、自由層の底部において底部磁区772によって表すことができる。他の特定の実施形態においては、第5のビット値を表すことができる第4の磁区を保持するために第4の側壁を含めることができる。]
[0033] 図9は、複数のデータビットを格納するために好適する磁気トンネル接合(MTJ)セル904を有する基板902を含むメモリデバイス900の特定の例示的実施形態の上面図である。基板902は、底部電極906と、MTJスタック908と、中央電極910と、を有する磁気トンネル接合(MTJ)構造904を含む。MTJ構造904は、長さ(a)と幅(b)とを有し、長さ(a)は幅(b)よりも大きい。基板902は、中央電極910に結合される第1の中央ビア912と第2の中央ビア914とを含む。基板902は、MTJ構造904にアクセスするための第1の側部ビア916と、第2の側部ビア918と、第3の側部ビア920と、第4の側部ビア922と、第5の側部ビア924と、も含む。基板902は、第1の側部ビア916に結合された第1の配線トレース926と、第1及び第2の中央ビア912及び914に結合された第2の配線トレース928と、第2及び第3の側部ビア918及び920に結合された第3の配線トレース930と、第4及び第5の側部ビア922及び924に結合された第4の配線トレース932と、第5の配線トレース931と、も含む。基板902は、MTJの側壁の一部分を取り除くためのプロセス開口部935も含む。] 図9
[0034] MTJスタック908は、反強磁性(AF)層(示されていない)によってピニングすることができ及び固定された方位を有する固定された磁区を保持する固定磁気層と、トンネルバリア層と、書き込み電流を介して変化させる又はプログラミングすることが可能な磁区を有する自由磁気層と、を含む。特定の実施形態においては、MTJスタック908の固定磁気層は、1つ以上の層を含むことができる。MTJスタック908は、自由層の第1の部分において第1の磁区944を保持するための第1の側壁934と、自由層の第2の部分において第2の磁区946を保持するための第2の側壁936と、自由層の第3の部分において第3の磁区948を保持するための第3の側壁938と、を含む。第1、第2の及び第3の磁区944、946、及び948は独立しており、データ値を格納するために好適する。特定の実施形態においては、第1の磁区944は、第1のビット値を表すために好適し、第2の磁区946は、第2のビット値を表すために好適し、第3の磁区948は、第3のビット値を表すために好適する。概して、磁区944、946、及び948の方位は、格納されたビット値によって決定される。例えば、“0”の値は、第1の方位によって表され、“1”の値は、第2の方位によって表される。特定の実施形態においては、“0”の値及び“1”の値は、固定された層と平行な又は反平行な方位によってそれぞれ表すことができる。]
[0035] 図10は、図9の線10−10に沿った図9の回路デバイス900の横断面図1000である。横断面図1000は、第1の層間誘電体層1050と、第2の層間誘電体層1052と、第1のキャップ層1054と、第3の層間誘電体層1056と、第2のキャップ層1058と、第3のキャップ層1060と、第4の層間誘電体層1062と、第5の層間誘電体層1064と、を有する基板902を含む。基板902は、第1の表面1080と、第2の表面1090と、を有する。基板902は、MTJスタック908を含むMTJ構造904も含む。底部電極906及びMTJスタック908は、基板902の溝内に配置される。溝は、深さ(d)を有する。] 図10 図9
[0036] 基板902は、第2の表面1090において配置され及びパターン形成された第1の配線トレース926を含む。第1の配線トレース926は、第1の側部ビア916に結合され、第1の側部ビア916は、第1の配線トレース926から底部電極906の一部分まで延びる。基板902は、第1の表面1080において配置され及びパターン形成された第2の配線トレース928も含む。第2の配線トレース928は、第1の中央ビア912及び914に結合され、第1の中央ビア912及び914は、第2の配線トレース928から中央電極910まで延びる。中央電極910は、MTJスタック908に結合される。基板902は、第2の表面1090における第5の配線トレース931も含む。第5の配線トレース931は、底部ビア1066及び1068に結合され、底部ビア1066及び1068は、第5の配線トレース931から底壁1070に隣接する底部電極906まで延びる。基板902は、プロセス開口部935も含み、プロセス開口部935は、MTJ構造904の一部分を選択的に取り除くことによって及び加工用開口部935内においてキャップ層及び層間誘電材を堆積することによって形成することができる。]
[0037] 特定の実施形態においては、MTJスタック908は、自由層の第1の部分において第1の磁区944を保持する第1の側壁934を含む。第1の磁区944は、第1のビット値を表すために好適する。MTJスタック908は、自由層の底部において底部磁区1072を有する底壁1070も含み、底部磁区1072は、第4のビット値を表すために好適する。特定の例においては、データ値は、第2の配線トレース928に電圧を印加することによって及び第1の配線トレース926及び/又は第5の配線トレース931における電流を基準電流と比較することによってMTJスタック908から読み出すことができる。代替として、ビット値は、第1の配線トレース926と第2の配線トレース928と第3の配線トレース931との間において書き込み電流を印加することによってMTJスタック908に書き込むことができる。特定の実施形態においては、図9に示されるMTJスタック908の長さ(a)及び幅(b)は、溝の深さ(d)よりも大きく、第1の側壁934によって保持される磁区944は、基板902の第1の表面1080に対して実質的に平行な方向に及び図9に示される幅(b)の方向に延びる。図10の特定の図においては、磁区944は、紙面(page view)に対して垂直に(矢の頭部(“・”)で示すように紙面から外側に向かって)又は矢の末端(“*”)で示すように紙面内に向かって)延びる。] 図10 図9
[0038] 図11は、図9の線11−11に沿った図9の回路デバイス900の横断面図1100である。横断面図1100は、第1の層間誘電体層1050と、第2の層間誘電体層1052と、第1のキャップ層1054と、第3の層間誘電体層1056と、第2のキャップ層1058と、第3のキャップ層1060と、第4の層間誘電体層1062と、第5の層間誘電体層1064と、を有する基板902を含む。基板902は、第1の表面1080と、第2の表面1090と、を含む。基板902は、底部電極906と、MTJスタック908と、中央電極910と、を有するMTJ構造904を含む。基板902は、第1の表面1080における第3の配線トレース930と、第2の配線トレース928と、第4の配線トレース932とを含む。第3の配線トレース930は、第2の側部ビア918に結合され、第2の側部ビア918は、第3の配線トレース930から底部電極906の第1の部分まで延びる。第2の配線トレース928は、中央ビア912に結合され、中央ビア912は、第2の配線トレース928から中央電極910まで延びる。第4の配線トレースは、第4の側部ビア922に結合され、第4の側部ビア922は、第4の配線トレース932から底部電極906の第2の部分まで延びる。基板902は、第2の表面1090における第5の配線トレース931を含む。第5の配線トレース931は、底部ビア1066に結合され、底部ビア1066は、第5の配線トレース931から底壁1070に隣接する底部電極906の一部分まで延びる。MTJスタック908は、自由層の第2の部分において第2の磁区946を保持するための第2の側壁936と、自由層の第3の部分において第3の磁区948を保持するための第3の側壁938と、自由層の底部において底部磁区1072を保持するための底部壁1070と、を含む。] 図11 図9
[0039] 特定の実施形態においては、MTJスタック908は、最大で4つの一意のビット値を格納するために好適する。第1のビット値は、自由層の第1の部分において第1の磁区944によって表すことができ、第2のビット値は、自由層の第2の部分において第2の磁区946によって表すことができ、第3のビット値は、自由層の第3の部分において第3の磁区948によって表すことができ、第4のビット値は、自由層の底部において底部磁区1072によって表すことができる。他の特定の実施形態においては、第5のビット値を表すことができる第4の磁区を保持するために第4の側壁を含めることができる。]
[0040] 図12は、複数のデータビットを格納するために好適する磁気トンネル接合(MTJ)セル1204を有する基板1202を含むメモリデバイス1200の特定の例示的実施形態の上面図である。基板1202は、底部電極1206と、MTJスタック1208と、中央電極1210と、を有する磁気トンネル接合(MTJ)構造1204を含む。MTJ構造1204は、長さ(a)と幅(b)とを有し、長さ(a)は幅(b)よりも大きい。基板1202は、中央電極1210に結合される第1の中央ビア1212と第2の中央ビア1214とを含む。基板1202は、第1の配線トレース1226と、第2の配線トレース1228と、を含む。第2の配線トレース1228は、第1及び第2の中央ビア1212及び1214に結合される。基板1202は、MTJの側壁の一部分を取り除くためのプロセス開口部1235も含む。] 図12
[0041] MTJスタック1208は、反強磁性AF層(示されていない)によって固定することができ及び固定された方位を有する固定された磁区を保持する固定磁気層と、トンネルバリア層と、書き込み電流を介して変化させる又はプログラミングすることが可能な磁区を有する自由磁気層と、を含む。特定の実施形態においては、MTJスタック1208の固定磁気層は、1つ以上の層を含むことができる。MTJスタック1208は、自由層の第1の部分において第1の磁区1244を保持するための第1の側壁1234と、自由層の第2の部分において第2の磁区1246を保持するための第2の側壁1236と、自由層の第3の部分において第3の磁区1248を保持するための第3の側壁1238と、を含む。第1、第2及び第3の磁区1244、1246、及び1248は独立しており、データ値を格納するために好適する。特定の実施形態においては、第1の磁区1244は、第1のビット値を表すために好適し、第2の磁区1246は、第2のビット値を表すために好適し、第3の磁区1248は、第3のビット値を表すために好適する。]
[0042] 図13は、図12の線13−13に沿った図12の回路デバイス1200の横断面図1300である。横断面図1300は、第1の層間誘電体層1350と、第2の層間誘電体層1352と、第1のキャップ層1354と、第3の層間誘電体層1356と、第2のキャップ層1358と、第3のキャップ層1360と、第4の層間誘電体層1362と、第5の層間誘電体層1364と、を有する基板1202を含む。基板1202は、第1の表面1380と、第2の表面1390と、を有する。基板1202は、MTJスタック1208を含むMTJ構造1204も含む。底部電極1206及びMTJスタック1208は、基板1202の溝内に配置される。溝は、深さ(d)を有する。MTJスタック1208は、自由層の第1の部分において第1の磁区1244を保持するための第1の側壁1234と、自由層の底部において底部磁区1372を保持するための底壁11370と、を含む。] 図12 図13
[0043] 基板1202は、第2の表面1390において配置された第1の配線トレース1226を含む。第1の配線トレース1226は、底部ビア1366及び1368に結合され、底部ビア1366及び1368は、第1の配線トレース1226から底壁1370に隣接する底部電極1206の一部分まで延びる。基板1202は、第1の表面1380における第2の配線トレース1228も含む。第2の配線トレース1228は、第1の中央ビア1212及び1214に結合され、第1の中央ビア1212及び1214は、第2の配線トレース1228から中央電極1210まで延びる。中央電極1210は、MTJスタック1208に結合される。基板1202は、プロセス開口部1235も含み、プロセス開口部1235は、MTJ構造1204の一部分を選択的に取り除くことによって及び加工用開口部1235内においてキャップ層及び層間誘電材を堆積することによって形成することができる。]
[0044] 特定の実施形態においては、MTJスタック1208は、自由層の第1の部分において第1の磁区1244を保持する第1の側壁1234を含む。第1の磁区1244は、第1のビット値を表すために好適する。MTJスタック1208は、自由層の底部において底部磁区1372を有する底壁1370も含み、底部磁区1372は、第4のビット値を表すために好適する。特定の例においては、ビット値は、第2の配線トレース1228に電圧を印加することによって及び第1の配線トレース1226における電流を基準電流と比較することによってMTJスタック1208から読み出すことができる。代替として、ビット値は、第1の配線トレース1226と第2の配線トレース1228との間において書き込み電流を印加することによってMTJスタック1208に書き込むことができる。特定の実施形態においては、図12に示されるMTJスタック1208の長さ(a)及び幅(b)は、溝の深さ(d)よりも大きく、第1の側壁1234によって保持される磁区1244は、基板1202の第1の表面1380に対して実質的に平行な方向に及び図12に示される幅(b)の方向に延びる。図13の特定の図においては、磁区1244は、紙面(page view)に対して垂直に(矢の頭部(“・”)で示すように紙面から外側に向かって)又は矢の末端(“*”)で示すように紙面内に向かって)延びる。] 図12 図13
[0045] 図14は、図12の線14−14に沿った図12の回路デバイス1200の横断面図1400である。横断面図1400は、第1の層間誘電体層1350と、第2の層間誘電体層1352と、第1のキャップ層1354と、第3の層間誘電体層1356と、第2のキャップ層1358と、第3のキャップ層1360と、第4の層間誘電体層1362と、第5の層間誘電体層1364とを有する基板1202を含む。基板1202は、第1の表面1380と、第2の表面1390と、を有する。基板1202は、底部電極1206と、MTJスタック1208と、中央電極1210と、を有するMTJ構造1204を含む。基板1202は、第1の表面1380における第2の配線トレース1228を含み、第2の表面1390における第1の配線トレース1226を含む。第1の配線トレース1226は、底部ビア1366に結合され、底部ビア1366は、第1の配線トレース1226から底壁1370に隣接する底部電極1206の一部分まで延びる。第2の配線トレース1228は、中央ビア1212に結合され、中央ビア1212は、第2の配線トレース1228から中央電極1210まで延びる。MTJスタック1208は、自由層の第2の部分において第2の磁区1246を保持するための第2の側壁1236と、自由層の第3の部分において第3の磁区1248を保持するための第3の側壁1238と、自由層の底部において底部磁区1372を保持するための底部壁1370と、を含む。] 図12 図14
[0046] 特定の実施形態においては、MTJスタック1208は、最大で4つの一意のビット値を格納するために好適する。第1のビット値は、自由層の第1の部分において第1の磁区1244によって表すことができ、第2のビット値は、自由層の第2の部分において第2の磁区1246によって表すことができ、第3のビット値は、自由層の第3部分において第3の磁区1248によって表すことができ、第4のビット値は、自由層の底部において底部磁区1372によって表すことができる。他の特定の実施形態においては、第5のビット値を表すことができる第4の磁区を保持するために第4の側壁を含めることができる。特定の実施形態においては、第4のビットのみが、配線トレース1226及び1228を介してアクセス可能である。]
[0047] 図15は、複数のデータビットを格納するために好適し磁気トンネル接合(MTJ)スタックの自由層1500の上面図である。この例においては、自由層1500は、ビットゼロの状態が例示され、磁区の各々はゼロ値を表す方位に向けられる。自由層1500は、第1の側壁1502と、第2の側壁1504と、第3の側壁1506と、底壁1508と、を含む。側壁1502、1504、及び1506の各々、及び底壁1508は、ビット値、例えば“1”の値又は“0”の値を表すように構成された各々の磁区を保持する。第1の側壁1502は、第1の磁区1512を保持する。第2の側壁1504は、第2の磁区1514を保持する。第3の側壁1506は、第3の磁区1516を保持する。底壁1508は、第4の磁区1518を保持する。] 図15
[0048] 第1の側壁1502の第1の磁区1512は、第1の領域バリア1530によって第2の側壁1504の第2の磁区1514から分離される。同様に、第1の側壁1502の第1の磁区1512は、第2の領域バリア1532によって第3の側壁1506の第3の磁区1516から分離される。概して、第1の領域バリア1530及び第2の領域バリア1532は、磁区、例えば磁区1512、1514、1516、及び1518、をそれぞれ分離する界面である領域壁を表す。該領域バリア1530及び1532は、異なる磁気モーメント間の遷移を表す。特定の実施形態においては、第1及び第2の領域バリア1530及び1532は、磁場が約90°又は270°の角変位を経る磁気モーメントの変化を表すことができる。]
[0049] 第1の側壁1502における第1の磁区1512と関連づけられた磁場の方向(すなわち、自由層内における磁場の方向)は、第1の書き込み電流1522を用いて変えることができる。同様に、側壁1504によって保持された第2の磁区1514と関連づけられた磁場の方向は、第2の書き込み電流1524を用いて変えることができる。第3の側壁1506によって保持される第3の磁区1516と関連づけられた磁場の方向は、第3の書き込み電流1526を用いて変えることができる。底壁1508によって保持された第4の磁区1518と関連づけられた磁場の方向は、第4の書き込み電流1528を用いて変えることができる。]
[0050] 概して、磁気トンネル接合(MTJ)スタックの固定層と関連づけられた固定された磁場に対する自由層1500によって保持された磁場の相対的方向は、その特定の側壁1502、1504、又は1506によって又は底壁1508によって格納されたビット値を決定する。示される例においては、固定層と関連づけられた磁区の磁気方位及び磁区1512、1514、1516、及び1518の自由層方位は、(図16において磁場1614及び1616によって例示されるように)平行である。従って、書き込み電流1522、1524、1526及び1528の各々は、書き込み“0”電流を表し、MTJスタックをビット“0”状態にする。] 図16
[0051] 図16は、磁気トンネル接合構造1600のブロック図である。MTJ構造1600は、上部電極1602と、自由層1604と、磁気トンネル接合トンネルバリア1606と、固定層1608と、反強磁性(AF)層(示されていない)と、底部電極1610と、を含む。概して、上部電極1602及び底部電極1610は、電流を搬送するために好適する電導層である。固定層1608は、固定層1608内の磁場1616の方向を固定するためにAF層によってピニングするためにアニールされている強磁性層である。自由層1604は、書き込み電流によって変えることが可能な方位を有する磁場を有する強磁性層である。MTJトンネルバリア又はバリア層1606は、酸化物(例えば、MgO、Al2O3)又はその他の反磁性材によって形成することができる。自由層1604内での磁場1614の方向は、書き込み電流を用いて変えることができる。] 図16
[0052] 固定層1608の固定された磁場に対する自由層1604内の磁場の方向は、特定のMTJセル1600の自由層1604において格納されたビットが“1”のビット値又は“0”のビット値のいずれであるかを示す。概して1614において示される自由層1604内の磁場の磁気方向は、書き込み電流1612を用いて変えることができる。示されるように、書き込み電流は、上部電極1602から自由層1604を通り、磁気トンネル接合バリア1606を通り、固定層1608を通り、さらに底部電極1610を通って流れる書き込み0電流を表す。]
[0053] 図17は、図15の線17−17に沿ったMTJスタックの自由層1500の横断面図1700である。自由層1500は、第1の側壁1502と、底壁1508と、を含む。この例においては、第1の側壁1502において磁区1512によって保持された第1の磁場の方向は、紙面(page)に対して垂直な角度で及び図15に示される矢印1512に対応する方向に延びる。底壁1508と関連づけられた第4の磁区1518は、基板の表面に対して実質的に平行な方向に延びる。] 図15 図17
[0054] 自由層1500は、第1の部分1740と、第1の領域バリア(壁)1742と、第2の領域バリア1744と、を含む。特定の例においては、第1の領域バリア1742は、第1の磁区1512を第1の部分1740から分離し、第2の領域バリア1744は、第1の磁区1512を底壁1508と関連づけられた第4の磁区1518から分離する。特定の実施形態においては、第1及び第2の領域バリア1742及び1744は、第1の側壁1502と第1の部分1740との間の構造上の界面及び第1の側壁1502と底壁1508との間の構造上の界面にそれぞれ対応することができる。第1の磁区1512は、書き込み電流1522を用いて設定することができる。第4の磁区1518は、書き込み電流1528を用いて設定することができる。特定の実施形態においては、第1及び第4の磁区1512及び1518は、一意のビット値を表すことができる。]
[0055] 図18は、図15の線18−18に沿ったMTJスタックの自由層1500の横断面図1800である。自由層1500は、第2及び第3の側壁1504及び1506と、底壁1508と、を含む。この特定の例においては、自由層1500は、第2の部分1850と、第3の磁区バリア1852と、第4の磁区バリア1854と、第5の磁区バリア1856と、第6の磁区バリア1858と、第3の部分1860と、を含む。第2の及び第3の磁区バリア(又は壁)1852及び1854は、第2の側壁1506によって保持された第2の磁区1516を第2の部分1850から及び底壁1508によって保持された4の磁区1518から分離し、第3の側壁1504を第3の部分1860から及び側壁1508と関連づけられた第4の磁区1518から分離する。特定の実施形態においては、第2、第4、及び第5の磁区バリア1744、1854、及び1856は、側壁1502、1504、及び1506と底壁1508との間の構造上の界面に対応することができる。] 図15 図18
[0056] 特定の例示的実施形態においては、図15、17、及び18に示される自由層1500は、磁場1512、1514、1516、及び1518によって表すことができる最大で4つのビットを格納するために好適する磁気トンネル接合(MTJ)スタックの一部分である。] 図15
[0057] 図19は、複数のビットを格納するために好適する磁気トンネル接合(MTJ)スタックの自由層1900の上面図である。この例において、自由層1900は、ビット“1”の状態が示されており、磁区の各々は、論理ハイ又はビット“1”値を表すように方位が定められる。自由層1900は、第1の側壁1902と、第2の側壁1904と、第3の側壁1906と、底壁1908と、を含む。側壁1902、1904、及び1906の各々、及び底壁1908は、ビット値、例えば“1”又は“0”値、を表すように構成される自由層の対応する部分における各々の磁区を保持する。第1の側壁1902は、自由層の第1の部分において第1の磁区1912を保持する。第2の側壁1904は、自由層の第2の部分において第2の磁区1914を保持する。第3の側壁1906は、自由層の第3の部分において第3の磁区1916を保持する。底壁1908は、自由層の底部において第4の磁区1918を保持する。] 図19
[0058] 第1の側壁1902の第1の磁区1912は、第1の領域バリア1930によって第2の側壁1904の第2の磁区1914から分離される。同様に、第1の側壁1902の第1の磁区1912は、第2の領域バリア1932によって第3の側壁1906の第3の磁区1916から分離される。概して、第1の領域バリア1930及び第2の領域バリア1932は、磁区、例えば磁区1912、1914、1916、及び1918をそれぞれを分離する界面である領域壁を表す。該領域バリア1930及び1932は、異なる磁気モーメント間における遷移を表す。特定の実施形態においては、第1及び第2の領域バリア1930及び1932は、磁場が約90°又は270°の角変位を経る磁気モーメントの変化を表す。]
[0059] 第1の側壁1902における第1の磁区1912と関連づけられた磁場の方向(すなわち、自由層内における磁場の方向)は、第1の書き込み電流1922を用いて変えることができる。同様に、側壁1904によって保持された第2の磁区1914と関連づけられた磁場の方向は、第2の書き込み電流1924を用いて変えることができる。第3の側壁1906によって保持される第3の磁区1916と関連づけられた磁場の方向は、第3の書き込み電流1926を用いて変えることができる。底壁1908によって保持された第4の磁区1918と関連づけられた磁場の方向は、第4の書き込み電流1928を用いて変えることができる。
概して、磁気トンネル接合(MTJ)スタックの固定層と関連づけられた固定された磁場に対する自由層1900によって保持された磁場の相対的方向は、その特定の側壁1902、1904、又は1906によって又は底壁1908によって格納されるビット値を決定する。示される例においては、固定層と関連づけられた磁区の磁気方位及び自由層磁区1912、1914、1916、及び1918の方位は、(図20において磁場2014及び2016によって示されるように)反平行である。従って、書き込み電流1922、1924、1926及び1928の各々は、書き込み“1”電流を表し、MTJスタックを論理ハイ又はビット“1”状態にする。] 図20
[0060] 図20は、磁気トンネル接合構造2000のブロック図である。MTJ構造2000は、上部電極2002と、自由層2004と、磁気トンネル接合トンネルバリア2006と、固定層2008と、底部電極2010と、を含む。概して、上部電極2002及び底部電極2010は、電流を搬送するために好適する電導層である。固定層2008は、固定層2008内の磁場2016の方向を固定するためにアニールされている強磁性層である。自由層2004は、アニールされていない強磁性層である。MTJトンネルバリア又はバリア層2006は、酸化物又はその他の反強磁性材によって形成することができる。自由層2004内の磁場2014の方向は、書き込み電流を用いて変えることができる。] 図20
[0061] 固定層2008の固定された磁場に対する自由層2004内の磁場の方向は、特定のMTJセル2000の自由層2004において格納されたビットが“1”のビット値又は“0”のビット値のいずれであるかを示す。概して2014において示される、自由層2004内の磁場の磁気方向は、書き込み電流2012を用いて変えることができる。示されるように、書き込み電流は、底部電極2010から固定層2008を通り、磁気トンネル接合バリア2006を通り、固定層2008を通り、磁気トンネル接合バリア2006を通り、自由層2004を通り、さらに上部電極2002を通って流れる書き込み1電流を表す。]
[0062] 図21は、図19の線21−21に沿ったMTJスタックの自由層1900の横断面図2100である。自由層1900は、第1の側壁1902と、底壁1908と、を含む。この例においては、第1の側壁1902において磁区1912によって保持された第1の磁場の方向は、紙面に対して垂直な角度で及び図11に示される矢印1912に対応する方向に延びる。底壁1908と関連づけられた第4の磁区1918は、基板の表面に対して実質的に平行な方向に延びる。] 図11 図19 図21
[0063] 自由層1900は、第1の部分2140と、第1の領域バリア(壁)2142と、第2の領域バリア2144と、を含む。特定の例においては、第1の領域バリア2142は、第1の磁区1912を第1の部分2140から分離し、第2の領域バリア2144は、第1の磁区1912を底壁1908と関連づけられた第4の磁区1918から分離する。特定の実施形態においては、第1及び第2の磁区2142及び2144は、それぞれ、第1の側壁1902と第1の部分2140との間の構造上の界面及び第1の側壁1902と底壁1908との間の構造上の界面にそれぞれ対応することができる。第1の磁区1912は、書き込み電流1922を用いて設定することができる。第4の磁区1918は、書き込み電流1928を用いて設定することができる。特定の実施形態においては、第1及び第4の磁区1912及び1918は、一意のビット値を表すことができる。]
[0064] 図22は、図19の線22−22に沿ったMTJスタックの自由層1900の横断面図2200である。自由層1900は、第2及び第3の側壁1904及び1906と、底壁1908と、を含む。この特定の例においては、自由層1900は、第2の部分2250と、第3の磁区バリア2252と、第4の磁区バリア2254と、第5の磁区バリア2256と、第6の磁区バリア2258と、第3の部分2260と、を含む。第2及び第3の磁区バリア(又は壁)2252及び2254は、第2の側壁1906によって保持された第2の磁区1916を第2の部分2250から及び底壁1908によって保持された第4の磁区1918から分離し、第3の側壁1904を第3の部分2260から及び底壁1908と関連づけられた第4の磁区1918から分離する。特定の実施形態においては、第2、第4、及び第5の磁区バリア2144、2254、及び2256は、側壁1902、1904、及び1906と底壁1908との間の構造上の界面に対応することができる。] 図19 図22
[0065] 特定の例示的実施形態においては、図19、21、及び22に示される自由層1900は、磁場1912、1914、1916、及び1918によって表すことができる最大で4つのビットを格納するために好適する磁気トンネル接合(MTJ)スタックの一部分である。] 図19
[0066] 図23は、ビットを格納するために好適する磁気トンネル接合(MTJ)セル2300の図である。MTJセル2300は、ビットライン、例えばビットライン2320、を含み、及びワードライン、例えばワードライン2322、を含むメモリアレイにおいて利用することができる。MTJセル2300は、底部電極2306と、MTJスタック2308と、中央電極2310と、を有するMTJ構造2304を含む。MTJスタック2308は、固定層と、磁気トンネルバリアと、書き込み電流を印加することによっ変えることができる方位を有するプログラミング可能な磁区を保持する自由層と、を含む。固定層は、反強磁性(AF)層(示されていない)によってピニングすることができる。ビットライン2320は、中央電極2310に結合される。ワードライン2322は、底部電極2306に結合された第1の端子2328を含むスイッチ2326の制御端子に結合される。特定の実施形態においては、スイッチ2326は、金属酸化膜半導体磁界効果トランジスタ(MOSFET)、トランジスタ、又はその他の切り替え回路構成要素であることができる。他の実施形態においては、スイッチ2326は、MTJ構造2304内への及びMTJ構造2304外への両方の電流の流れを可能にする双方向スイッチであることができる。スイッチ2326は、底部電極2306に結合された第1の端子2328と、ワードライン2322に結合された制御端子と、電源に結合可能なソースライン(SL)に結合された第2の端子2324と、を含む。] 図23
[0067] 特定の例示的実施形態においては、スイッチ2326を駆動させるためにビットライン2320及びワードライン2322に対して信号(又は電圧)を加えることができる。スイッチ2326を駆動後は、MTJセル2300を通る電流に基づいてMTJセル2300からデータを読み出すことができる。例えば、スイッチ2326を駆動させるためにビットライン2320には固定された電圧を印加することができ、ワードライン2322には電圧を印加することができる。MTJスタック2308の底壁2350における底部磁区2316の方位によって表されるビット値は、例えばビットライン2320において又は端子2324に結合されたソースラインにおいて測定された電流に基づいて決定することができる。この特定の例において、MTJセル2300は、単一のビット値を格納することができる。MTJセル2300は、メモリアレイ、例えば、磁気抵抗ランダムアクセスメモリ(MRAM)、Nウェイ(N−way)キャッシュ、非揮発性記憶装置、その他のメモリデバイス、又はその組み合わせ、内のメモリセルであることができる。]
[0068] さらに、追加のビット値の格納及び取り出しを目的として側壁2340と関連づけられた追加の磁区にアクセスするために追加の端子を側壁、例えば側壁2340、に結合できることが理解されるべきである。さらに、特定の例において、第3のビットの格納及び取り出しのための関連スイッチを第3の側壁に装備可能であることが理解されるべきである。]
[0069] 図24は、複数のデータビットを格納するために好適する磁気トンネル接合(MTJ)セル2400の図である。MTJセル2400は、底部電極2406と、MTJスタック2408と、中央電極2410と、を含むMTJ構造2404を含む。MTJスタック2408は、固定された磁気層と、磁気トンネル接合バリア層と、自由磁気層と、を含む。固定された磁気層は、反強磁性(AF)層(示されていない)によってピニングすることができる。自由磁気層は、ビット値を格納するために書き込み電流を用いて変化させることが可能な磁区を保持する。MTJセル2400は、メモリアレイ、例えば、磁気抵抗ランダムアクセスメモリ(MRAM)、Nウェイキャッシュ、非揮発性記憶装置、その他のメモリデバイス、又はその組み合わせ、内のメモリセルであることができる。] 図24
[0070] MTJスタック2408は、第1の側壁2440と、底壁2450と、第2の側壁2460と、を含む。ビットライン2420は、中央電極2410に結合される。ワードライン2422は、スイッチ2426の制御端子に結合される。スイッチ2426は、ノード2428に結合された第1の端子を含み、ノード2428は、ライン2430及び2432をそれぞれ介して第1の側壁2440及び第2の側壁2460に結合される。スイッチは、第1の電源に結合可能なソースライン(SL)に結合される第2の端子2424も含む。]
[0071] 特定の例において、スイッチ2426は、ワードライン2422に電圧又は電流を印加することによって駆動させることができる。データは、スイッチ2426を駆動させることによって及びビットライン2420に電力を加えることによってMTJセル2400から読み出すことができる。MTJセル2400は、第1及び第2の側壁2440及び2460を介して単一のビット値を表すために好適する。他の特定の実施形態においては、磁区2416にアクセスするために追加のスイッチを底壁2450に結合することができる。]
[0072] 図25は、複数のデータビットを格納するために好適する磁気トンネル接合セル2500の図である。MTJセル2500は、底部電極2506と、MTJスタック2508と、中央電極2510と、を含むMTJ構造2504を含む。MTJスタック2508は、固定された磁気層と、磁気トンネル接合バリアと、自由磁気層と、を含む。固定された磁気層は、反強磁性(AF)層(示されていない)によってピニングすることができる。自由磁気層は、ビット値を格納するために書き込み電流を用いて変化させることが可能な磁区を保持する。MTJセル2500は、メモリアレイ例えば、磁気抵抗ランダムアクセスメモリ(MRAM)、Nウェイキャッシュ、非揮発性記憶装置、その他のメモリデバイス、又はその組み合わせ、内のメモリセルであることができる。] 図25
[0073] MTJスタック2508は、第1の側壁2540と、底壁2550と、第2の側壁2560と、を含む。側壁2540と2560及び底壁2550の各々は、ビット値を表すために好適する各々の磁区を保持する。MTJスタック2508は、上部電極2510を介してビットライン2520に結合される。MTJスタック2508の第1の側壁2540は、底部電極2506を介して第1のスイッチ2526に結合される。第1のスイッチ2526は、底部電極2506の第1の部分に結合される第1の端子2525と、ノード2528に結合された制御端子と、第1のソースライン(SL1)に結合された第2の端子2524と、を含む。ワードライン2522は、ノード2528に結合される。MTJスタック2508の第2の側壁2560は、底部電極2506を介して第2のスイッチ2532に結合される。第2のスイッチ2532は、底部電極2506の第2の部分に結合される第3の端子2531と、ノード2528に結合された制御端子と、第2のソースライン(SL2)に結合された第4の端子2530と、を含む。]
[0074] 特定の例において、第1及び第2のスイッチ2526及び2532は、トランジスタであることができる。第1のスイッチ2526は、2561において示されるように、ビットライン2520から中央電極2510、MTJ構造2508、底部電極2506、第1の端子2525及び第1のスイッチ2526を通り第2の端子2524に至るまでの電流経路を提供するためにワードライン2522を介して駆動させることができる。電流経路2561を介する電流の流れを基準電流と比較し、第1の側壁2540の磁区によって表される“1”の値又は“0”の値を決定することができる。同様に、MTJセル2500の第2の側壁2560における磁区を介して格納されたデータにアクセスするために端子2531を介してスイッチ2532を通じて提供される電流経路を利用することができる。]
[0075] 特定の例示的実施形態においては、底壁2550と関連づけられた磁区によって表すことができる第3のビットにアクセスするために第3の電極をMTJセル2500の底壁2550に結合することができる。さらに、MTJセル2500は、第4のビットを格納及び取り出すために第3の側壁(示されていない)に結合された第4の端子を含むことができる。このようにして、MTJセル2500は、複数の一意のビット値を格納するために好適化することができる。]
[0076] 概して、側壁2540及び2560において及び底壁2550において複数のデータ値を格納するために複数の磁区を利用するために、スイッチ、例えば第1及び第2のスイッチ2526及び2532、を用いることができる。MTJセル2500の利点は、複数のビットを単一のセル内に格納するのを可能にし、それによって記憶密度を向上させることができるようにするために複数の側部磁区を形成することができる点である。]
[0077] 図26は、複数のビットを格納するために好適する磁気トンネル接合(MTJ)セル2600の図である。MTJセル2600は、底部電極2606と、MTJスタック2608と、中央電極2610と、を含むMTJ構造2604を含む。MTJスタック2608は、固定された磁気層と、磁気トンネル接合バリア層と、自由磁気層と、を含む。固定された磁気層は、反強磁性(AF)層(示されていない)によってピニングすることができる。自由磁気層は、ビット値を格納するために書き込み電流を用いて変化させることが可能な磁区を保持する。MTJセル2600は、メモリアレイ、例えば、磁気抵抗ランダムアクセスメモリ(MRAM)、Nウェイキャッシュ、非揮発性記憶装置、その他のメモリデバイス、又はその組み合わせ、内のメモリセルであることができる。] 図26
[0078] MTJスタック2608は、第1の側壁2640と、底壁2650と、第2の側壁2660と、第3の側壁2670(ファントムが示される)と、を含む。これらの側壁2640、2660、及び2670及び底壁2650の各々は、ビット値を表すために好適する各々の磁区を保持する。MTJスタック2608は、上部電極2610を介してビットライン2620に結合される。MTJスタック2608の第1の側壁2640は、底部電極2606を介して第1のスイッチ2626に結合される。第1のスイッチ2626は、底部電極2606の第1の部分に結合される第1の端子2625と、ワードライン2622に結合された制御端子と、第1のソースライン(SL1)に結合された第2の端子2624と、を含む。第2の側壁2660は、底部電極2606を介して第2のスイッチ2634に結合される。第2のスイッチ2634は、底部電極2606の第2の部分に結合される第3の端子2633と、ワードライン2622に結合された第2の制御端子と、第2のソースライン(SL2)に結合された第4の端子2632と、を含む。第3の側壁2670は、底部電極2606を介して第3のスイッチ2630に結合される。第3のスイッチ2630は、第3の側壁2670に隣接する底部電極2606の第3の部分に結合される第5の端子2629と、ワードライン2622に結合された第3の制御端子と、第3のソースライン(SL3)に結合された第6の端子2628と、を含む。]
[0079] 特定の実施形態においては、第1、第2の、及び第3のスイッチ2626、2630、及び2634は、MTJセル2600からデータを読み出すために及び/又はMTJセル2600にデータを書き込むために駆動させることができる。他の特定の実施形態においては、第1、第2、及び第3のスイッチ2626、2630、及び2634は、各々のワードラインに結合され、MTJセル2600からデータを読み出すために及び/又はMTJセル2600にデータを書き込むために選択的に駆動させることができる。]
[0080] 図27は、複数のビットを格納するために好適する磁気トンネル接合(MTJ)セル2700の図である。MTJセル2700は、底部電極2706と、MTJスタック2708と、中央電極2710と、を含むMTJ構造2704を含む。MTJスタック2708は、固定された磁気層と、磁気トンネル接合バリア層と、自由磁気層と、を含む。固定された磁気層は、反強磁性(AF)層(示されていない)によってピニングすることができる。自由磁気層は、ビット値を格納するために書き込み電流を用いて変化させることが可能な磁区を保持する。MTJセル2700は、メモリアレイ、例えば、磁気抵抗ランダムアクセスメモリ(MRAM)、Nウェイキャッシュ、非揮発性記憶装置、その他のメモリデバイス、又はその組み合わせ、内のメモリセルであることができる。
MTJスタック2708は、第1の側壁2740と、底壁2750と、第2の側壁2760と、第3の側壁2770(ファントムが示される)と、を含む。これらの側壁2740、2760、及び2770及び底壁2750の各々は、ビット値を表すために好適する各々の磁区を保持する。MTJスタック2708は、上部電極2710を介してビットライン2720に結合される。MTJスタック2708の第1の側壁2740は、底部電極2706を介して第1のスイッチ2726に結合される。第1のスイッチ2726は、底部電極2706の第1の部分に結合される第1の端子2725と、ワードライン2722に結合された制御端子と、第1のソースライン(SL1)に結合された第2の端子2724と、を含む。第2の側壁2760は、底部電極2706を介して第2のスイッチ2738に結合される。第2のスイッチ2738は、底部電極2706の第2の部分に結合される第3の端子2737と、ワードライン2722に結合された第2の制御端子と、第2のソースライン(SL2)に結合された第4の端子2736と、を含む。第3の側壁2770は、底部電極2706を介して第3のスイッチ2730に結合される。第3のスイッチ2730は、第3の側壁2770に隣接する底部電極2706の第3の部分に結合される第5の端子2729と、ワードライン2722に結合された第3の制御端子と、第3のソースライン(SL3)に結合された第6の端子2728と、を含む。底壁2750は、底部電極2706を介して第4のスイッチ2734に結合される。第4のスイッチ2734は、底壁2750に隣接する底部電極2706の第4の部分に結合される第7の端子2733と、ワードライン2722に結合された第4の制御端子と、第4のソースライン(SL4)に結合された第8の端子2732と、を含む。] 図27
[0081] 特定の実施形態においては、ソースライン(SL1、SL2、SL3、及びSL4)の各々は、共通の電源に結合することができる。他の特定の実施形態においては、ソースライン(SL1、SL2、SL3、及びSL4)の各々は、異なる電源に結合することができる。特定の実施形態においては、第1、第2、第3及び第4のスイッチ2726、2730、2734、及び2738は、MTJセル2700からデータを読み出すために及び/又はMTJセル2700にデータを書き込むために駆動させることができる。他の特定の実施形態においては、第1、第2、第3及び第4のスイッチ2726、2730、2734、及び2738は、各々のワードラインに結合され、MTJセル2700からデータを読み出すために及び/又はMTJセル2700にデータを書き込むために選択的に駆動させることができる。]
[0082] 図28及び29は、複数のビットを格納するために磁気トンネル接合(MTJ)構造を製造する方法の特定の例示的実施形態の流れ図を示す。概して、MTJ構造の形成のための溝の深さは、厳しく制御される。MTJ膜の溶着が行われ、継ぎ目のない狭いターンギャップ(turn gap)を形成するために上部電極の厚さが制御される。磁気アニールプロセスは、2つの寸法で(例えば、固定された磁場方向を有する底部磁区及び側部磁区を初期化するために図3、6、9,又は12の(a)方向及び(b)方向に沿って)行われる。長さが幅よりも大きく及び幅が奥行きよりも大きくなるようにセルの形状及びセルの奥行きを制御することによって、MTJセル内の磁場の方向を制御することができる。特定の例において、長さ対幅及び幅対奥行きの大きい縦横比は、底部のMTJの磁区及び側壁のMTJの磁区をより等方性にすることができる。特定の実施形態においては、MTJスタック構造は、製造中における写真及びエッチングプロセスを単純化する深い溝によって輪郭が定められる。] 図28 図3
[0083] 2802において、方法は、底部金属配線を溶着及びパターン形成することを含む。ダマシン法が用いられる場合は、底部配線のパターン形成は、下方ビアプロセスと組み合わせるべきである。2804に進み、層間誘電体層(IDL)膜が堆積され、化学機械研磨(CMP)が行われる。キャップ膜層が堆積される。2806に進み、回路デバイスが底部ビア接続を含む場合は、方法は、2808に進み、底部ビアが開けられて充填され、ビア化学機械研磨(CMP)プロセスが行われる。2806において、回路デバイスが底部ビア接続を含まない場合は、方法は、2808を飛び越して2810に進む。2810において、IDL膜及びキャップ膜層が堆積される。2812に進み、磁気トンネル接合(MTJ)溝がパターン形成されてエッチングされ、キャップ膜層において停止し、フォトレジスト(PR)が剥離され、溝が清掃される。]
[0084] 2814に進み、底部電極、MTJ膜層、及び上部電極が堆積され、磁気アニールが行われる。2816に進み、MTJハードマスクが堆積され、MTJ写真/エッチングされて底部電極において停止し、フォトレジスト(PR)が剥離されてMTJが清掃される。2818に進み、底部電極が写真/エッチングされ、フォトレジストが剥離されてMTJが清掃される。2820に進み、MTJスタックが写真/エッチングされ、1つ以上の側壁が取り除かれ、剥離されて清掃される。方法は、2822に続く。]
[0085] 図29を参照し、2822において、方法は、2924に進み、キャップ膜が堆積される。2926に進み、IDL膜が堆積され、CPMプロセスが行われる。2928に進み、最上ビアが開かれ、清掃及び充填され、ビアCPMプロセスが行われる。2930に進み、最上部金属配線が堆積及びパターン形成される。ダマシン法が用いられる場合は、2928ビア及び2930金属プロセスを組み合わせることができる。方法は、2932において終了する。特定の実施形態においては、MTJ膜層の堆積後に、磁気アニールプロセスは、固定された磁気層の固定磁区を構成するために図3、6、9、及び12において描かれるように例えば水平方向(a)及び(b)において行うことができる。] 図29 図3
[0086] 図30は、多ビットMTJセルの一意の磁区に格納されたデータにアクセスする方法の特定の例示的実施形態の流れ図である。3002において、方法は、複数の側壁を含む磁気トンネル接合構造の中央電極に結合されたビットラインを選択的に駆動させることを含み、複数の側壁の各々は、一意の磁区を保持するための自由層を含む。3004に進み、方法は、電流がMTJ構造に流れるのを可能にするために1つ以上の双方向スイッチを選択的に駆動させることを含み、1つ以上の双方向スイッチは、複数の側壁の各々の側壁に結合され及び電源に結合される。特定の実施形態においては、双方向スイッチは、底壁に結合することも可能である。特定の実施形態においては、双方向スイッチは、複数の電源に結合することができる。3006に進み、読み出し動作中においては、方法は、電流経路と関連づけられた抵抗に基づいて一意の磁区の各々と関連づけられたデータ値を決定することを含む。3008に進み、書き込み動作中においては、方法は、自由層内における選択的磁区の磁気補正(correction)を選択的に制御するために1つ以上のスイッチの各々を介してMTJ構造を通る電流方向を制御することを含み、磁気方向は、ビット値に関連する。方法は、3010において終了する。] 図30
[0087] 図31は、プロセッサ、例えばデジタル信号プロセッサ(DSP)3110、に結合されるMTJセル3132のメモリアレイとMTJセル3164のキャッシュメモリとを含む通信デバイス3100の例示的実施形態のブロック図である。通信デバイス3100は、DSP3110に結合される磁気抵抗ランダムアクセスメモリ(MRAM)デバイス3166も含む。特定の例において、MTJセルのメモリアレイ3132、MTJセルのキャッシュメモリ3164、及びMRAMデバイス3166は、複数のMTJセルを含み、各MTJセルは、図1乃至30に関して説明されるように、複数の独立したビット値を格納するために好適する。] 図1 図31
[0088] 図31は、デジタル信号プロセッサ3110及びディスプレイ3128に結合されるディスプレイコントローラ3126も示す。符号器/復号器(CODEC)3134もデジタル信号プロセッサ3110に結合することができる。スピーカー3136及びマイク3138をCODEC3134に結合することができる。] 図31
[0089] 図31は、無線コントローラ3140をデジタル信号プロセッサ3110及び無線アンテナ3142に結合可能であることも示す。特定の実施形態においては、入力デバイス3130及び電源3144がオンチップシステム3122に結合される。さらに、特定の実施形態においては、図31に示されるように、ディスプレイ3128、入力デバイス3130、スピーカー3136、マイク3138、無線アンテナ3142、及び電源3144は、オンチップシステム3122の外部に存在する。しかしながら、各々は、オンチップシステム3122の構成要素、例えばインタフェース又はコントローラ、に結合することができる。] 図31
[0090] ここにおいて開示される実施形態に関係させて説明される様々な例示的な論理ブロック、構成、モジュール、回路、及びアルゴリズム上のステップは、電子ハードウェアとして、コンピュータソフトウェアとして、又は両方の組み合わせとして実装可能であることを当業者はさらに理解するであろう。ハードウェアとソフトウェアのこの互換性を明確に例示するため、上記においては、様々な例示的構成要素、ブロック、構成、モジュール、回路、及びステップが、各々の機能の観点で一般的に説明されている。該機能がハードウェアとして又はソフトウェアとして実装されるかは、全体的システムに対する特定の用途上の及び設計上の制約事項に依存する。当業者は、説明されている機能を各々の特定の用途に合わせて様々な形で実装することができるが、これらの実装決定は、本開示の適用範囲からの逸脱を生じさせるものであるとは解釈すべきではない。
開示される実施形態に関する上記の説明は、当業者が開示される実施形態を製造又は使用できるようにすることを目的とするものである。これらの実施形態に対する様々な修正は、当業者にとって容易に明確になるであろう。さらに、ここにおいて定められる一般原理は、本開示の精神及び適用範囲を逸脱することなしにその他の実施形態に対しても適用することができる。以上のように、本開示は、ここにおいて示される実施形態に限定されることが意図されるものではなく、以下の請求項によって定義される原理及び斬新な特長に一致する限りにおいて最も広範な適用範囲が認められるべきである。]
权利要求:

請求項1
磁気トンネル接合(MTJ)構造であって、基板の表面に対して実質的に垂直に延びる複数の側壁を備えるMTJセルを備え、前記複数の側壁の各々は、一意の磁区を保持するための自由層を含み、前記一意の磁区の各々は、デジタル値を格納するために好適する、磁気トンネル接合(MTJ)構造。
請求項2
前記複数の側壁の各々に結合された底壁をさらに備え、前記底壁は、前記基板の前記表面に対して実質的に平行に延び、前記底壁は、自由層を含む請求項1に記載のMTJ構造。
請求項3
前記複数の側壁の各々の間における前記自由層内において磁区壁が形成され、前記複数の側壁の各々と前記底壁との間における前記自由層内において磁区壁が形成され、前記磁区壁は、前記一意の磁区を分離するために好適する請求項2に記載のMTJ構造。
請求項4
前記複数の側壁のうちの少なくとも1つの側壁の奥行きは、前記複数の側壁のうちの少なくとも2つの側壁の間の距離よりも小さい請求項1に記載のMTJ構造。
請求項5
前記MTJセルに結合された電極をさらに備え、前記電極は、前記MTJセルからデータを読み出すために又は前記MTJセルにデータを書き込むために電流を印加するために好適する請求項1に記載のMTJ構造。
請求項6
前記複数の側壁の各々の側壁の奥行きは、前記複数の側壁の各々の側壁の長さよりも小さい請求項1に記載のMTJ構造。
請求項7
前記MTJセルは、第1の磁区を有する第1の側壁と、第2の磁区を有する第2の側壁と、第3の磁区を有する第3の側壁と、を備える請求項1に記載のMTJ構造。
請求項8
前記MTJセルは、前記第1、第2、及び第3の側壁に結合された底壁をさらに備え、前記底壁は、第4の磁区を保持するための自由層を含む請求項7に記載のMTJ構造。
請求項9
前記第1の側壁に結合された第1の端子構造と、前記第2の側壁に結合された第2の端子構造と、前記第3の側壁に結合された第3の端子構造と、前記底壁に結合された第4の端子構造と、をさらに備える請求項8に記載のMTJ構造。
請求項10
前記MTJセルは、実質的にU字形である請求項1に記載のMTJ構造。
請求項11
磁気トンネル接合(MTJ)構造であって、複数の側壁を備えるMTJセルを備え、前記複数の側壁は、第1のデータビットを表すための第1の磁区を保持するための第1の自由層を含む第1の側壁を含み及び第2のデータビットを表すための第2の磁区を保持するための第2の自由層を含む第2の側壁を含む、磁気トンネル接合(MTJ)構造。
請求項12
前記第1の側壁は、前記第2の側壁に対して実質的に垂直である請求項11に記載のMTJ構造。
請求項13
前記第1の磁区は、基板の表面に対して実質的に平行である第1の方向に延び、前記第2の磁区は、前記基板の前記表面に対して実質的に平行である第2の方向に延びる請求項11に記載のMTJ構造。
請求項14
前記第1の磁区は、基板の平らな表面に対して実質的に平行である方向に延び、前記第2の磁区は、前記基板の前記平らな表面に対して実質的に垂直である方向に延びる請求項11に記載のMTJ構造。
請求項15
前記複数の側壁は、 第3のデータビットを表すための第3の磁区を保持するための第3の自由層を含む第3の側壁と、前記複数の側壁の各々に結合された底壁であって、第4のデータビットを表すための第4の磁区を保持するための第4の自由層を含む底壁と、をさらに備える請求項11に記載のMTJ構造。
請求項16
前記MTJセルは、前記複数の側壁の各々及び前記底壁に隣接し及び前記複数の側壁の各々及び前記底壁からほぼ等しい間隔で配置された中央電極をさらに含む請求項15に記載のMTJ構造。
請求項17
前記中央電極の厚さは、前記MTJセルの幅と前記複数の側壁の2つの反対の側壁の幅との間の差の約1/2である請求項16に記載のMTJ構造。
請求項18
前記中央電極に結合された第1の端子と、前記第1の側壁に結合された第2の端子と、 前記第2の側壁に結合された第3の端子と、 前記第3の側壁に結合された第4の端子と、 前記底壁に結合された第5の端子と、をさらに備える請求項16に記載のMTJ構造。
請求項19
前記第1の磁区に結合された第1の端子と、 前記第2の磁区に結合された第2の端子と、中央電極に結合された第3の端子と、をさらに備え、 前記第1の端子、前記第2の端子及び前記第3の端子は、選択的に前記第1及び第2の磁区にデータを書き込むために及び第1及び前記第2の磁区からデータを読み出すために協力するために好適する請求項11に記載のMTJ構造。
請求項20
磁気ランダムアクセスメモリ(MRAM)であって、磁気トンネル接合(MTJ)セルのアレイを備え、前記MTJセルの各々は、 複数の側壁を備え、前記複数の側壁の各々は、デジタル値を格納するために好適する各々の独立した磁区を保持するための自由層を含む、磁気ランダムアクセスメモリ(MRAM)。
請求項21
前記MTJセルの各々は、4つの独立した磁区を備える請求項20に記載のMRAM。
請求項22
各MTJセルは、 第1のビットを格納するために好適する第1の磁区を保持するための第1の自由層を含む第1の側壁と、 第2のビットを格納するために好適する第2の磁区を保持するための第2の自由層を含む第2の側壁と、 第3のビットを格納するために好適する第3の磁区を保持するための第3の自由層を含む第3の側壁と、 第4のビットを格納するために好適する第4の磁区を保持するための第4の自由層を含む底壁と、を備える請求項20に記載のMRAM。
請求項23
前記第1の側壁に結合された第1のスイッチと、 前記第2の側壁に結合された第2のスイッチと、 前記第3の側壁に結合された第3のスイッチと、 前記底壁に結合された第4のスイッチと、 前記側壁の各々に隣接する中央電極に結合されたビットラインと、 前記第1、第2、第3及び第4のスイッチの各々に結合されたワードラインであって、前記MTJセルからデータを読み出すために及び前記MTJセルにデータを書き込むために前記第1、第2、第3及び第4のスイッチのうちの少なくとも1つを選択的に駆動させるためのワードラインと、をさらに備える請求項22に記載のMRAM。
請求項24
前記第1の側壁に第1の電流を選択的に印加するために前記第1のスイッチに結合された第1のソースラインと、 前記第2の側壁に第2の電流を選択的に印加するために前記第2のスイッチに結合された第2のソースラインと、 前記第3の側壁に第3の電流を選択的に印加するために前記第3のスイッチに結合された第3のソースラインと、 前記底壁に第4の電流を選択的に印加するために前記第4のスイッチに結合された第4のソースラインと、をさらに備え、 前記第1、第2、第3及び第4の電流のうちの少なくとも1つは、データ書き込み動作中に印加される請求項23に記載のMRAM。
請求項25
前記MTJセルの各々は、実質的にU字形である請求項20に記載のMRAM。
类似技术:
公开号 | 公开日 | 专利标题
CN106104830B|2017-10-20|用于多步骤磁性隧道结|蚀刻的替代导电硬掩模
US9496486B2|2016-11-15|Perpendicular spin transfer torque memory | device having offset cells and method to form same
US9275713B2|2016-03-01|Magnetoresistive element and method of manufacturing the same
US8542524B2|2013-09-24|Magnetic random access memory | manufacturing process for a small magnetic tunnel junction | design with a low programming current requirement
EP2513904B1|2014-12-17|Spin torque magnetic integrated circuit and method of fabricating therefor
JP5756760B2|2015-07-29|磁気メモリ、磁気メモリの製造方法、及び、磁気メモリの駆動方法
US8885396B2|2014-11-11|Memory device and method for manufacturing the same
KR100608248B1|2006-08-04|엠램 전극용 키퍼
KR101551272B1|2015-09-08|논리 통합과 호환가능한 mram 디바이스 및 통합 기술들
CN101960630B|2013-12-04|形成磁隧道结结构的方法
TW594725B|2004-06-21|Multi-bit magnetic memory cells
KR101120808B1|2012-03-26|고밀도 평면형의 자성 도메인 벽 메모리 장치 및 그 형성 방법
US6960815B2|2005-11-01|Magnetic memory device having yoke layer, and manufacturing method thereof
KR101659106B1|2016-09-22|Stt-mram 셀 구조들
KR100498182B1|2005-07-01|반도체 기억 장치 및 그 제조 방법
JP2015029119A|2015-02-12|メモリセルおよびメモリセルの磁気トンネル接合(mtj)の形成方法
KR100948009B1|2010-03-18|Mtj mram 셀, mtj mram 셀들의 어레이, 및 mtj mram 셀을 형성하는 방법
US7381573B2|2008-06-03|Self-aligned, low-resistance, efficient memory array
DE102005034665B9|2012-09-06|Verfahren zum Herstellen einer Leiterbahn einer resistiven Speichereinrichtung
US7170775B2|2007-01-30|MRAM cell with reduced write current
JP4966011B2|2012-07-04|半導体装置、メモリ装置及びその製造及び形成方法、メモリ読出し機構及び方法、プロセッサシステム
DE60226005T2|2009-07-02|Nicht orthogonale mram-einrichtung
KR100885184B1|2009-02-23|전기장 및 자기장에 의해 독립적으로 제어될 수 있는 저항특성을 갖는 메모리 장치 및 그 동작 방법
US8796793B2|2014-08-05|Magnetoresistive element, magnetic random access memory and method of manufacturing the same
US7535755B2|2009-05-19|Magnetic memory device and method for fabricating the same
同族专利:
公开号 | 公开日
CA2713337C|2013-12-10|
BRPI0907144B1|2019-11-12|
CN101965615B|2013-09-11|
EP2240934B1|2014-08-27|
US7936596B2|2011-05-03|
RU2463676C2|2012-10-10|
RU2010136657A|2012-03-10|
KR20100107064A|2010-10-04|
CN101965615A|2011-02-02|
WO2009099826A1|2009-08-13|
KR101187831B1|2012-10-05|
ES2520342T3|2014-11-11|
EP2240934A1|2010-10-20|
JP5432187B2|2014-03-05|
BRPI0907144A2|2016-11-01|
MX2010008268A|2010-10-20|
US20090194832A1|2009-08-06|
CA2713337A1|2009-08-13|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
JP2002111096A|2000-09-29|2002-04-12|Toshiba Corp|磁気抵抗素子、磁気抵抗素子を用いた半導体記憶装置、およびこれらの製造方法|
JP2002353415A|2001-05-23|2002-12-06|Internatl Business Mach Corp <Ibm>|記憶素子、メモリセル及び記憶回路ブロック|
JP2003243744A|2002-02-15|2003-08-29|Sony Corp|磁気抵抗効果素子および磁気メモリ装置|JP2011517065A|2008-03-25|2011-05-26|クゥアルコム・インコーポレイテッドQualcommIncorporated|Magnetic tunnel junction cell with multiple perpendicular domains|US6072718A|1998-02-10|2000-06-06|International Business Machines Corporation|Magnetic memory devices having multiple magnetic tunnel junctions therein|
JP2002025015A|2000-07-06|2002-01-25|Sony Corp|磁気トンネル効果型磁気ヘッド及びその製造方法|
JP2003209228A|2001-11-07|2003-07-25|Toshiba Corp|磁気記憶装置及びその製造方法|
US6795334B2|2001-12-21|2004-09-21|Kabushiki Kaisha Toshiba|Magnetic random access memory|
US6621730B1|2002-08-27|2003-09-16|Motorola, Inc.|Magnetic random access memory having a vertical write line|
US7109539B2|2004-03-09|2006-09-19|International Business Machines Corporation|Multiple-bit magnetic random access memory cell employing adiabatic switching|
US7072208B2|2004-07-28|2006-07-04|Headway Technologies, Inc.|Vortex magnetic random access memory|
US7221584B2|2004-08-13|2007-05-22|Taiwan Semiconductor Manufacturing Company, Ltd.|MRAM cell having shared configuration|
RU2310928C2|2004-10-27|2007-11-20|Самсунг Электроникс Ко., Лтд.|Усовершенствованное многоразрядное магнитное запоминающее устройство с произвольной выборкой и способы его функционирования и производства|
US7154773B2|2005-03-31|2006-12-26|Infineon Technologies Ag|MRAM cell with domain wall switching and field select|
KR100763910B1|2006-02-23|2007-10-05|삼성전자주식회사|마그네틱 도메인 드래깅을 이용하는 자성 메모리 소자|
US7804668B2|2006-11-16|2010-09-28|Headway Technologies, Inc.|Enhanced hard bias in thin film magnetoresistive sensors with perpendicular easy axis growth of hard bias and strong shield-hard bias coupling|US8634231B2|2009-08-24|2014-01-21|Qualcomm Incorporated|Magnetic tunnel junction structure|
US8674465B2|2010-08-05|2014-03-18|Qualcomm Incorporated|MRAM device and integration techniques compatible with logic integration|
US8446757B2|2010-08-18|2013-05-21|International Business Machines Corporation|Spin-torque transfer magneto-resistive memory architecture|
US8422287B2|2010-09-09|2013-04-16|Magic Technologies, Inc.|Pulse field assisted spin momentum transfer MRAM design|
WO2015038118A1|2013-09-11|2015-03-19|Intel Corporation|Clocked all-spin logic circuit|
WO2015047368A1|2013-09-30|2015-04-02|Intel Corporation|Spintronic logic element|
US9190260B1|2014-11-13|2015-11-17|Globalfoundries Inc.|Topological method to build self-aligned MTJ without a mask|
CN104795489A|2015-04-20|2015-07-22|北京航空航天大学|一种新型的四端磁存储器件|
JP6216403B2|2016-03-22|2017-10-18|株式会社東芝|磁気記憶素子及び不揮発性記憶装置|
US9972771B2|2016-03-24|2018-05-15|Taiwan Semiconductor Manufacturing Co., Ltd.|MRAM devices and methods of forming the same|
法律状态:
2012-11-02| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121102 |
2012-11-14| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121113 |
2013-02-13| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130212 |
2013-02-20| A602| Written permission of extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130219 |
2013-04-16| A601| Written request for extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130415 |
2013-04-23| A602| Written permission of extension of time|Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130422 |
2013-05-14| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130513 |
2013-10-30| TRDD| Decision of grant or rejection written|
2013-11-06| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131105 |
2013-12-12| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131205 |
2013-12-13| R150| Certificate of patent or registration of utility model|Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5432187 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
2016-12-06| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2017-12-12| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2018-12-11| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2019-12-03| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2020-11-30| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2021-11-30| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
优先权:
申请号 | 申请日 | 专利标题
[返回顶部]