专利摘要:
燃料電池発電装置100は、セル102からなるスタックを備え、セル102の各々は、アノード104とカソード106との間の電解質108と、冷媒チャネル103と、空気ブロワ144と、空気入口弁139aと、空気出口弁141aと、空気ブロワを使用するカソード再循環弁135と、混合容器173とを備える。停止処理は、電圧が約0.2ボルト以下に低下するまで、もしくは所定の時間の間、アノードを通して新しい空気および再循環空気を流入させながらカソード空気を再循環させることを含む。起動時には、空気ブロワは、弁135を開にした状態で始動され、空気入口弁は、通常の動作中の空気流の約半分の空気流が通流するように開にされる。これにより、カソードの水素が徐々に消費され、空気出口管の水素レベルが燃焼性下限値を超過することが防止される。水素レベルは、排出部で監視され、最大値を過ぎた後に多量の空気が供給される。
公开号:JP2011508947A
申请号:JP2010540623
申请日:2007-12-28
公开日:2011-03-17
发明作者:ウィルソン,マシュー;モラン,マーク;ヤダ,ベンカト
申请人:ユーティーシー パワー コーポレイション;
IPC主号:H01M8-04
专利说明:

[0001] 少量の水素が平衡に達した状態である、カソードガス空間およびアノードガス空間を備えた燃料電池発電装置の起動処理は、カソードへ少量の酸素を通流させることを含む。これにより、水素は、触媒作用を受けながら安全に消費され、カソード排出部の水素濃度が燃焼性の下限値を超過することが防止される。上記の水素の流れは、定常流、もしくはパルス状のものとなる。]
背景技術

[0002] 陽子交換膜を用いた燃料電池システムでは、よく知られているように、電気回路が開にされ、セルを停止処理させたときおよびセルを停止処理させている間など、もはやセルの両端間に負荷がないときに、カソード上の空気が存在すると、アノード上に残っている水素燃料と結合し、電極電位が高くなるという望ましくない状況が生じることが多く、これにより、触媒および触媒支持体の酸化および腐食、さらに、付随するセル性能の劣化が生じる。アノードおよびカソードを不活性化し、上記のようなセル性能の劣化を最小化するかもしくは防止するように、セルを停止させた直後にアノード流れ場およびカソード流れ場の双方をパージするように不活性ガスが使用されてきた。]
[0003] 特に、小型および低コストが重要であるとともに、システムを頻繁に停止および再起動することが必要である特に自動車の用途においては、独立した不活性ガスの供給源の貯蔵ならびに供給に必要なコスト、空間および重量を回避することが望ましい。米国特許第6,635,370号明細書では、燃料電池システムは、主負荷の接続を解除し、空気の流れを停止し、空気入口弁および空気出口弁を閉にし、少量の水素と、燃料電池セル内において水素または酸素と反応することがなく、セル性能を著しく劣化させない残部の燃料電池セルにとって不活性なガスと、からなるガス組成において維持した状態で、燃料電池セルのガスがセルにわたって平衡に達するような方法でシステムを出入りする燃料の流れを制御することによって停止される。]
[0004] この特許では、主負荷の接続を解除し、カソード流れ場への空気の流れの供給ならびに排気を停止した後でも、残った酸化剤が消費されるまでは、燃料がアノード流れ場へと供給され続けている。この酸化剤の消費は、カソードの出口からカソードの入口内へとガスを再循環させること、および、カソードの電位を迅速に低下させる小さい補助負荷をセルを横断して接続することにより促進される。カソード内のガスを再循環させることにより、カソード内に残ったガスが十分に混合することが確実となり、これにより、酸素が燃料電池セル全体にわたってより均一に拡散し、より迅速に消費されるようになる。]
[0005] カソードのガスが再循環しているときには、アノード流れ場の中の水素が膜を通してカソードへと拡散し、カソード流れ場の中の酸素が消費される。これにより、カソード流れ場の中の酸素の全体積が減少し、空気中に存在する窒素や他のガスの濃度が増加する。]
[0006] 最終的に、酸化剤流れ場は、大気圧で安定し、かつ水素濃度が約0〜50%で、残部が燃料電池セルにとって不活性なガスとなる。]
課題を解決するための手段

[0007] 本発明の起動処理は、カソードのガス空間、特に、カソード出口管や他の排気管において蓄積された高濃度の水素がパージされることを防止する。この起動処理は、起動時に、カソードへ少量の空気を通流させることを含む。これにより、停止後にカソードガス空間に残った水素が触媒作用を受けながら安全に消費される。いかなる形態の停止処理であっても、結果として、水素が、カソードへ到達することがあり、カソード内の残留水素となる。]
[0008] 本発明のプロセスは、燃料電池発電装置を起動する通常の処理の一部として、水素用センサがカソード排出部(または他の出口管)内の水素含有量を監視し、カソードに少量の空気を通流させるために、空気ブロワを開にすること、および、空気入口弁を開にすることを含む。これは、水素濃度がその最大値に達し、この最大値を過ぎるまで継続される。この最大値に到達するには、約15〜20秒の時間を要するが、この時間は、発電装置の設計仕様によって変更され得る。このプロセスでは、カソード排出部は、カソードを通して定常的な空気流を通流させるように開にされるか、カソードを通して短期間のパルス状空気流を繰り返し通流させるように、開および閉(または閉に近い状態)にされる。パルスは、通常は、1秒または数秒の間に、長くても10秒の間にオン・オフされる。パルスを用いることによって、排出される希釈混合物と該混合物が接する周囲環境との混合が向上する。]
[0009] 停止処理中にカソードのガスを再循環させることができるシステムでは、カソードガスの循環は、この停止処理中に、少量の空気を通流させることを組み合わせて行われる。カソードのガスを再循環させることができれば、これを利用することによって、カソードガス空間内の水素がカソード触媒に容易に到達し、カソード触媒において、水素が、持ち込まれた空気中の酸素と確実に反応する。]
[0010] カソードガス空間内の水素の量が制限されているので、生じる熱の量は、許容できる程度のものである。]
[0011] 本発明の処理は、残った酸素を消費するのに寄与する水素供給源を使用するシステムとともに使用することができ、カソードの再循環ブロワおよび再循環ループに関しては、使用しても使用しなくてもよい。]
[0012] 本発明の他の変更は、以下の発明を実施するための形態を考慮することにより、より明らかになるであろう。]
図面の簡単な説明

[0013] 燃料電池システムの停止処理によって停止される燃料電池システムの第1の実施例を示した概略図である。
時間に対する水素濃度の値を概略的に示したグラフである。
図1の実施例を修正して部分的に示した図である。] 図1
実施例

[0014] 図1では、燃料電池システム100が、互いに隣接した燃料電池セル102を直列に電気的に接続してなるスタック101を有しており、該スタック101は、1つのセルのカソード流れ場プレート120とこのセルに隣接したセルのアノード流れ場プレート118との間に冷媒流れ場103を備える。図1の燃料電池セルに関するより詳細な情報は、米国特許第5,503,944号明細書において説明されている。米国特許第5,503,944号明細書は、電解質が陽子交換膜(PEM)である固体高分子電解質型燃料電池について説明している。] 図1
[0015] 燃料電池セル102は、(アノード電極と呼ばれることもある)アノード104と、(カソード電極と呼ばれることもある)カソード106と、アノードとカソードとの間に配置された電解質108と、を備える。電解質は、米国特許第6,024,848号明細書において説明されている形式のような陽子交換膜(PEM)の形態を取り得る。アノードの各々は、アノード基体110と電解質108との間に配置されたアノード触媒層112を備える。カソードの各々は、カソード基体114と電解質108との間に配置されたカソード触媒層116を備える。また、各燃料電池セルは、アノード基体110に隣接したアノード流れ場プレート118と、カソード基体114に隣接したカソード流れ場プレート120も備えている。]
[0016] カソード流れ場プレート120の各々は、カソード基体に隣接してカソード流れ場プレート120を横断して延びる複数のチャネル122を備えており、該チャネル122は、入口124からカソードを横断して出口126へと酸化剤、例えば、空気を運ぶためのカソード流れ場を形成している。アノード流れ場プレート118は、アノード基体に隣接してアノード流れ場プレート118を横断して延びる複数のチャネル128を備えており、該チャネル128は、入口130からアノードを横断して出口132へと水素含有燃料を運ぶためのアノード流れ場を形成している。また、スタック101は、反応ガス流れ場プレート118,120の間に、セルから熱を除去するための冷媒流れ場131も備えており、このセルの熱の除去は、例えば、冷媒流れ場131、排熱用ラジエータ136および流れ制御弁もしくはオリフィス138を接続するループ132を通して、冷媒ポンプ134を用いて冷媒を循環させることにより実施される。]
[0017] 図1の燃料電池システムは、水素含有燃料供給源140および空気供給源142を備える。燃料は、高純度水素、または改質天然ガスやガソリンなどの他の水素リッチ燃料とすることができる。空気は、導管139を介して、一般に周囲空気である供給源142から空気入口弁139aを通してカソード流れ場の入口124内へと運ばれる。使用した空気は、導管141を介して、出口126から空気出口弁141aを通してチェック弁169へと運ばれる。また、酸化剤再循環ループ133が、内部に配置された酸化剤再循環弁135を有し、この酸化剤再循環ループ133は、停止処理時または起動処理時に、カソード流れ場の出口126からカソード流れ場の入口124内へと使用した空気を選択的に戻すように、導管139に配置された空気ブロワ144の入口へと延びている。再循環モードでは、ブロワ144は、低速で、一般に、通常の動作速度の約半分の速度で動作する。] 図1
[0018] 燃料電池システムは、さらに、アノードおよびカソードに接続された外部の電気回路143と、燃料再循環ループ146と、該燃料再循環ループ146内に配置された燃料再循環ループ用ブロワ147を備える。外部電気回路143は、主負荷148と、該主負荷148と並列に接続された補助抵抗負荷150と、該補助抵抗負荷150と直列に接続されたダイオード149と、を備える。]
[0019] 燃料電池セルの通常の動作中には、主負荷スイッチ154が、閉であり(主負荷スイッチ154は、図では開で示されている)、かつ補助負荷スイッチ156が開であり、これにより、燃料電池セルは、主負荷148へ電気を供給している。ここで、空気ブロワ144、燃料再循環ループ用ブロワ147および冷媒ポンプ134は、全てオンになっている。空気弁139a,141aは、開である。アノード排出管164のアノード排出物用排出弁162が開であるように、アノード流れ場へと延びる燃料供給管160の燃料供給弁158も開であり、同時に、冷媒ループ用流れ制御弁138も開にされている。しかし、空気再循環弁135は、閉にされている。上記のような状態は、一般に、通常のコントローラ170によって管理されている。]
[0020] このように、燃料電池セルの通常の動作中は、空気は、供給源142から導管139を介してカソード流れ場の入口124内へと連続的に供給され、導管141を介して出口126から流出する。また、水素含有燃料は、供給源140から導管160を介してアノード流れ場の中へと連続的に供給される。消耗した水素燃料を含むアノード排出物の一部分は、導管164を介して、排出弁162を通してアノード流れ場から流出する。一方、燃料再循環ループ用ブロワ147は、再循環ループを介してアノード流れ場を通してアノード排出物の残りを再循環させている。アノード排出物の一部分を再循環することは、アノード流れ場の入口130から出口132まで比較的に均一なガス組成を維持することに寄与し、水素の利用率を増加させる。水素は、アノード流れ場を通流するときに、周知のように、アノード触媒層において、電気化学的に反応して、水素イオンおよび電子を生成する。電子は、アノード104から外部回路143を通してカソード106へと流れ、主負荷148に電力を供給する。]
[0021] 1つの「水素−オン」法によって、燃料電池システムの動作を停止させるために、外部回路143内のスイッチ154は、開にされて、主負荷148の接続が解除される。このとき、燃料供給弁158は、開いたままであり、燃料再循環ループ用ブロワ147は、オンのままで、アノード排出物の一部分の再循環が継続される。しかし、アノード排出物用排出弁162は、以下に説明されるように、流入燃料内の水素の割合と、燃料電池セルのアノード側およびカソード側の相対的な容積とに依存して、開にされたままか、または、閉にされることになる。]
[0022] カソード流れ場を通過する新しい空気の流れは、空気出口弁141aを閉じることにより停止される。一方、空気ブロワ144は、オンのままであり、酸化剤再循環弁135は、開となり、カソード流れ場の出口126からカソード流れ場の入口124内へと空気を循環させる。これにより、カソード流れ場の中で均一なガス組成が生成され、最後には、燃料電池セル内のガスがセル内で平衡となる速度に寄与する。また、補助負荷150は、スイッチ156を閉にすることによって接続される。補助負荷に電流が流れることで、通常の電気化学反応がセル内で生じ、これにより、カソード流れ場の中の酸素濃度が減少し、セル電圧が低下する。アノード流れ場の中の水素は、カソード内の酸素を消費するセル内の反応に寄与しており、カソード内で付加的に酸素を消費させるように、電解質を通してカソードへとある程度の低速で拡散していく。]
[0023] 補助負荷の印加は、酸化剤と電気化学的に反応させるのに十分な水素が燃料電池セル内にある間に開始されるのが好ましい。この負荷の接続は、少なくとも、セル電圧が1つのセルにつき約0.2ボルト以下の所定の値に低下するまで、あるいはカソードの酸素濃度が約4%よりも低い値に低下するまで、あるいはカソードの水素濃度が50%近傍に増加するまで、もしくは所定の時間の間、継続することができる。カソードおよびアノードの間に接続されたダイオード149が、セル電圧を検出し、セル電圧が所定の値よりも高い限り、負荷148に電流を流す。このように、セル電圧は、所定の値まで低下させられ、以後、この値に制限される。セル電圧が1つのセルにつき約0.2ボルトに低下したときは、カソード流れ場の中の実質的に全ての酸素と、セルを横断して拡散したいかなる酸素も消費されたことになる。ここで、補助負荷は、スイッチ156を開にすることによって接続を解除してもよいが、停止処理の残りの全体を通して補助負荷を接続したままにして、セルの停止処理中は、1つのセルにつき0.2ボルトを超えないように制限してもよい。燃料電池スタックの「水素−オン」法による停止のある実施例では、補助の負荷を省略することもできる。]
[0024] 上記の停止処理中に、アノード排出物用排気弁162を開にしておく必要があるかは、流入燃料の水素濃度と、セルのアノード側およびカソード側におけるガス空間の相対的な体積とによって決定される。酸素を消費しているときに、燃料を供給し続ける必要があるか、および、どの程度の長さの時間を必要とするかは、上述の米国特許第6,635,370号明細書の説明を考慮して、当業者によって容易に決定される。]
[0025] アノード流れ場およびカソード流れ場の中の酸素の全てが消費されたときには、燃料供給弁158およびアノード排出物用排出弁162は、開である場合には、閉にされる。燃料再循環ループ用ブロワ147、酸化剤再循環弁135および冷媒ポンプ134は、ここで、閉にされる。しかし、補助負荷用スイッチ156を閉にしたままにすることが有効なこともある。ある場合には、アノード排出物用排出弁は、完全には閉にされない。]
[0026] 上述の米国特許第6,635,370号明細書において、より完全に説明されているように、停止処理が最適に制御されているときには、アノードおよびカソード内のガスの平衡は、水素濃度が約0〜50%の範囲で実現することができる。保管中に酸素が流入することに対処するために、定期的に燃料再循環ループ用ブロワを起動することができ、再循環ガス中の水素濃度を監視することもできる。水素濃度が、ある所定の割合よりも低い値に低下したときは、付加的な新しい水素を追加することができる。このようにして、燃料電池セルは、保管中の触媒の腐食を防止するように、適切な水素濃度で維持されている。]
[0027] 燃料電池システムは、この時点で、停止されたとみなされるが、これは、以下では、主負荷が再接続されてシステムが再起動されるまで「保管」されていると呼ばれることもある。上記の停止処理では、上述の米国特許第6,635,370号明細書において説明されているような専用のカソード用ガス再循環ブロワを使用することもできる。]
[0028] 図1の形式の燃料電池システムを停止するための上記の処理では、停止処理中のいかなる期間でも空気入口弁139aは、完全に開いたままか、もしくは全く真空部分が存在しないことを確実にするように少なくとも部分的に開かれていた。カソード流れ場チャネル122内の反応により酸素が減少すると、弁141aの前後で負の圧力差が生じ、非常に少量の空気が、弁139aまたは弁141aを通して再循環ループ133へと流入する。] 図1
[0029] 停止中に、アノードおよびカソードに全く真空部分が存在しないようにして、チャネル103からアノードまたはカソードのガス空間への冷媒の引き込みを防止することをより確実にするために、所望であれば、大気と空気用導管139との間や大気と燃料用導管160との間に逆止弁(図示せず)を設けてもよい。停止が完了しているときには、弁139a,141a,158,162は、全て閉にされる。]
[0030] 燃料電池スタックが約50%を超過しない水素濃度でもって保管された後に起動処理を行うときは、この起動処理は、制御した量の空気をカソードに導入することにより開始され、この空気が同量の水素含有ガスをアノード排出管を通して燃料電池セルの排出部へと押し出す。安全規定では、排出される水素の濃度レベルが4%を超過することは、危険な状況を生じさせる1つの要因となり得ることが規定されている。ここで、上記の「4%」は、燃焼性の下限値として知られている。本発明の処理では、残った水素は、基本的に、燃料電池セルのカソード内で消費され、カソードでは、セルの触媒による燃焼によって水素が消費され、排出されるガス中の水素の割合は低く保たれる。さらに、この処理中には、隣接したセルの冷媒によって燃焼により生じた熱の大部分が確実に除去される。]
[0031] 以下のプロセスは、カソードのガス通路内に水素が存在する場合における燃料電池発電装置の起動処理に使用される。この燃料電池発電装置用の起動処理は、コントローラ170からの指令によって制御されている。また、この起動処理は、電圧制限部である補助負荷150が所定の位置に配置された状態で、弁158を開にすることによってアノードへの水素の通流を開始するステップと、アノードが水素で満たされたら上記電圧制限部150を取り外すステップと、次いでカソードの再循環弁135を開にするステップと、最大50%の値まで入口弁139aを開にするステップ(この設定値は、空気ブロワ144の作動中に出口を周期的に開にしたときに、補充する空気が容易に利用できるように選択される)と、次いで(a)可能な限り効率的に燃料電池セルのカソード内に残った水素を消費するという要求と、(b)燃料電池セルの出口で計測される水素濃度が燃焼性下限値よりも低い値を維持するように燃料電池セルの出口からパージされる水素を制限すること、との間で均衡を保つように、カソードの出口弁141aをパルス状に開にする(つまり、短時間で繰り返し開く)ステップと、を備える。また、コントローラは、混合容器内のパージ用空気の既知の流量と、水素用センサからのフィードバックとに応じてセルからのパルス状(または定常流)出口流量を計量(パルスであれば変調)する。この出口流量の計量は、水素用センサにより検出した出口流量が、(図2に示されているほど常に高いわけではない)最大値に達するか、またはこの値を過ぎるまで実行される。] 図2
[0032] この段階で、燃料電池発電装置は、カソードの再循環を使用せず、かつ出口弁141aが完全に開にされている通常の動作で起動する準備が整ったことになる。このプロセスによって、流入空気がカソード排気管を通して燃料電池セルの出口から流出することにより水素濃度が最大値を超過する(即ち、水素濃度が4%を超過する)ことが防止される。]
[0033] 図1の実施例では、カソード排出物が、(いずれも必ずしも必要ではない)弁141aおよび逆止弁169を通して混合容器173へと流入する。この混合容器は、車両の客室用換気システムのような燃料電池発電装置の実質的な部分を取り囲むエンクロージャとすることがでる。このエンクロージャは、スタックから漏れたガスを収集し、この集めたガスを新しいガスと混合し、この混合ガスを排出部174へと通流させ、これにより、水素濃度レベルが、燃焼性下限値(約4%)よりも十分に低い値となることが確実になる。空気は、ファン176によって混合容器を通して通流する。] 図1
[0034] 混合容器173は、他の構造体からなる排気ガス混合用のチャンバとすることもできる。混合容器173を使用しない場合は、水素用センサ179によって、排出部174における水素濃度を検出する。図3では、本発明の構成が、混合容器173を有していない燃料電池発電装置に使用されている。ここで、水素用センサ179は、カソードから流出した水素の濃度を検出しており、この水素濃度は、図2に示されているように、約50%を超えない範囲で著しく高いものとなる。混合容器を使用しないで上記プロセスを実行するためには、出口においてパージを実施する前に、空気再循環モードで、カソード内に残った水素を消費させるために、非常に長い時間がかかることになる。空気希釈用の混合容器を使用しないときは、パルスおよびカソードの再循環を使用することにより、水素の消費に寄与することができる。] 図2 図3
[0035] 図2には、水素濃度が、時間の関数として示されている。図の最初の部分は、弁139aが少し開いたときにカソードに流入してくる空気よりも前には、カソード出口から排出される水素が、実質的にゼロであることを示している。しかし、最終的には、水素濃度は増加し、センサにより検出される値は、高い値が示される。水素濃度の変化速度は、ガスの流量、ハードウェアの構成、配管ラインの大きさなどを含む多くの要素に依存している。特定の曲線形状に関係なく、重要なことは、水素濃度レベルの最大値が設定限界値、この場合には、2%の水素もしくは50%の燃焼性下限値を超過することがなく、その後に、カソード出口から排出される水素が実質的にゼロである上記最初の部分の水素濃度レベルまで完全に低下することである。したがって、水素は、最大値を過ぎた直後には、カソードから実質的に流出していることが明らかである。このとき、水素濃度が既に最大値を越えたことを、コントローラが検出し、空気入口を完全に開くように制御することができ、これにより、起動処理が継続されることになる。] 図2
[0036] この構成は、燃料電池セルが短時間だけ、例えば、数分間だけ停止される状況において特に有利であり、本明細書の説明もこの状況に関するものである。燃料電池セルが長時間にわたって停止されるときは、反応ガス、特に、水素が外部に漏れるか、もしくはセル内で消費される。ここで、燃料電池発電装置の停止中に水素を補充しなくても、燃料電池セルの構成にとって重大な欠陥となることはなく、燃料電池は、依然として、確実に安全な起動を実行するように使用される。]
权利要求:

請求項1
(a)燃料電池発電装置(100)の燃料電池セル(102)における酸化剤流れ場(122)の出口(126)から排出部(174)へガスを通流させるステップと、(b)前記燃料電池発電装置の通常の動作中に使用される空気流よりも少量の空気を供給源(142)から前記酸化剤流れ場(122)の入口(124)内へ供給(139,139a,144)するステップと、(c)前記出口から前記排出部へ通流するガスの水素濃度を監視(170,179)するステップと、(d)前記水素濃度がその最大値に達し、該最大値を過ぎたことに応答して、前記燃料電池発電装置の通常の動作中に使用される空気流を前記入口へ供給するステップと、を含む燃料電池発電装置(100)の起動処理中に使用される方法。
請求項2
前記ステップ(b)は、前記燃料電池発電装置の通常の動作中に使用される空気流の約半分の空気流を供給(139,139a,144)することを特徴とする請求項1に記載の方法。
請求項3
前記ステップ(b)は、短期間の間、空気を繰り返し供給(139,139a,144)することを含むことを特徴とする請求項1に記載の方法。
請求項4
前記ステップ(a)は、前記出口(126)からガス混合容器(173)を通して前記排出部(174)へ通流させることを含み、前記ステップ(c)は、前記ガス混合容器の出口において水素濃度を監視(170,179)することを含むことを特徴とする請求項1に記載の方法。
請求項5
前記ステップ(d)の後に、前記燃料電池発電装置のアノード(128)にガスの燃料(140)を通流させる(158,160,162)ことを含むことを特徴とする請求項1に記載の方法。
請求項6
前記ステップ(c)の前に、前記酸化剤流れ場(122)の前記出口(126)から入口(124)へガスを戻すようにカソードのガス再循環ループ(133,144)を有効(135)にすることを含むことを特徴とする請求項1に記載の方法。
請求項7
前記ステップ(a)から前記ステップ(d)までの間隔が、約5〜30秒であることを特徴とする請求項1に記載の方法。
請求項8
前記ステップ(a)から前記ステップ(d)までの間隔が、約15〜20秒であることを特徴とする請求項1に記載の方法。
类似技术:
公开号 | 公开日 | 专利标题
US8067123B2|2011-11-29|Fuel cell system and shutdown method of the same
JP3972675B2|2007-09-05|燃料電池システム
CA2555951C|2009-11-17|Fuel cell system
DE10295887B4|2012-03-01|Verfahren zum Abschalten eines Brennstoffzellensystems mit einer Anodenabgas-Rückführungsschleife
JP4137796B2|2008-08-20|アノード排気再循環ループを有する燃料電池システム始動手順
JP4357836B2|2009-11-04|燃料パージを用いる燃料電池装置の始動方法
JP4417068B2|2010-02-17|燃料電池の停止方法
US8232014B2|2012-07-31|Fuel cell operational methods for hydrogen addition after shutdown
JP4633354B2|2011-02-23|燃料電池の停止方法
JP5793782B2|2015-10-14|燃料電池モジュールおよび燃料電池を遮断するプロセス
JP4538190B2|2010-09-08|燃料電池内の高い燃料利用率
CN101227009B|2011-08-24|减轻由于启动和关闭而导致电池性能发生劣化的方法
CA2597119C|2013-04-02|Fuel cell start-up control system
US7579097B2|2009-08-25|Fuel cell voltage feedback control system
JP4350944B2|2009-10-28|燃料電池電力設備の作動効率の向上方法
JP2005100827A|2005-04-14|燃料電池システム
KR101095606B1|2011-12-19|연료전지 시스템
JP2004172027A|2004-06-17|燃料電池システム
US20060216555A1|2006-09-28|Fuel cell system and method for removing residual fuel gas
JP4750420B2|2011-08-17|空気パージを用いる燃料電池装置の運転停止方法
JP2005174855A|2005-06-30|燃料電池システム
JP3349742B2|2002-11-25|燃料電池自動車
CA2433167C|2009-11-24|Fuel cell and method of controlling same
US20070122668A1|2007-05-31|Fuel cell system and method of starting it
JP2008177162A|2008-07-31|水素/窒素の格納によって始動及び停止に起因した燃料電池の劣化を緩和する方法
同族专利:
公开号 | 公开日
CN101911356A|2010-12-08|
KR20100100925A|2010-09-15|
EP2235776A1|2010-10-06|
US20100310955A1|2010-12-09|
WO2009085034A1|2009-07-09|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
2011-10-29| A761| Written withdrawal of application|Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20111028 |
优先权:
申请号 | 申请日 | 专利标题
[返回顶部]