专利摘要:
磁気共鳴コイルは:ある磁場強度で選択された負荷の送信感度領域と結合する送信チャネル(66,74)と操作することで接続可能な第1組のコイル素子(54,56,80);及び、前記の磁場強度で選択された負荷の受信感度領域結合する受信チャネル(66,74)と操作することで接続可能な第2組のコイル素子(52,54,82);を有する。前記第1組のコイル素子は前記送信感度領域に近接して設けられるが前記送信感度領域を取り囲むようには設けられず、前記第2組のコイル素子は前記受信感度領域に近接して設けられるが前記受信感度領域を取り囲むようには設けられない。前記第1組のコイル素子及び前記第2組のコイル素子は共有しないコイル素子(52,56)を少なくとも1つ有する。前記第1組のコイル素子及び前記第2組のコイル素子は、前記の磁場強度で選択された負荷についての、実質的に等しい送信感度領域と受信感度領域を画定する。
公开号:JP2011505955A
申请号:JP2010537586
申请日:2008-12-12
公开日:2011-03-03
发明作者:ユ;ピン ウォン,エディ;チャールズ ガウス,ロバート;ジャイ,ジヨン;デメスター,ゴードン;ミッチェル ニーマン,ケヴィン;モリッチ,マイケル
申请人:コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ;
IPC主号:A61B5-055
专利说明:

[0001] 本発明は磁気共鳴の分野に関する。本発明は、磁気共鳴イメージング及び分光への応用を見いだし、かつ以降の記載を具体的に参照することで説明される。しかし本発明は、他の磁気共鳴での応用及び高周波での応用をも見いだす。]
背景技術

[0002] 低磁場-たとえば1.5テスラ(T)-では、磁気共鳴周波数は相対的に低い。その結果、対応する高周波(RF)波長は、対象物のサイズと比較して相対的に長くなる。その結果低磁場は、典型的なヒトの身体構造の関心領域(たとえば頭、胴、手足等)のスケールで良好な空間的均一性を供する傾向にある。従って当業者は一般的に、磁気共鳴励起には体積コイル-たとえばバードケージコイル-を用い、かつ磁気共鳴信号受信には体積コイル又はローカルコイル(場合によっては複数のコイル素子を有する)を用いてきた。低磁場で磁気共鳴の空間的均一性が良好になろうとする傾向にあるため、係るシステムは臨床上及び診断上かなりの成功を収めてきた。しかし低磁場は、取得時間の制約-たとえば低い空間分解能、低い信号強度、及びその結果として生じる低い信号対雑音比(SNR)等-という特定の欠点を有する。]
[0003] 従って、高磁場で磁気共鳴イメージング及び分光を実行することに以前から関心が持たれていた。高磁場-たとえば7T-では、磁気共鳴周波数が(主磁場に比例して)実質的に高くなり、対応する高周波(RF)波長は実質的に短くなり、かつ細胞組織の特性及び対象物の形状(負荷)によって、典型的なヒトの頭又は四肢-たとえばふくらはぎ-のスケールでB1が実質的に不均一になってしまう恐れがある。その結果高磁場では、当業者は、磁気共鳴励起及び受信について、頭のイメージングを行うためにB1の均一性を改善し、かつ他の身体構造領域のためにローカルコイルを使用することを考えた。]
発明が解決しようとする課題

[0004] 1.5Tでは、同一の表面コイル(繰り返しになるがアレイであっても良いし、又は他の複数のコイル素子であっても良い)が励起と受信の両方に用いられる場合、コイルは、隣接負荷の同一感度領域を励起し、かつ読み取りを行うことが一般的に認められてきた。この理由は、送信磁場|B1+|とコイルによって検知される磁場|B1-|のいずれも十分同程度であり、実質的に重なる感度領域を有している。高磁場-たとえば7T-では、感度領域は、たとえ均一な対象物でも、実質的に負荷が誘起する不均一性及び非対称性を示す恐れがある。さらに悪いことに、送受信感度パターンは空間的に異なっている。本明細書において感度とは、単位電流あたりのある空間地点で発生する磁場|B1+|、及び受信アンテナ中に単位電流を発生させることのできる空間磁場|B1-|の強度を意味する。送受信磁場が実質的に重なっているという推定が誤っていることを認識することで、本明細書に開示したように当技術分野において確かな進歩が実現される。]
課題を解決するための手段

[0005] 例示されたある特定の実施例では、磁気共鳴コイルが開示される。当該磁気共鳴コイルは:ある磁場強度で選択された負荷の送信感度領域と結合する送信チャネルと操作することで接続可能な第1組のコイル素子;及び、前記の磁場強度で選択された負荷の受信感度領域結合する受信チャネルと操作することで接続可能な第2組のコイル素子;を有する。前記第1組のコイル素子は前記送信感度領域に近接して設けられるが前記送信感度領域を取り囲むようには設けられず、前記第2組のコイル素子は前記受信感度領域に近接して設けられるが前記受信感度領域を取り囲むようには設けられない。前記第1組のコイル素子及び前記第2組のコイル素子は共有しないコイル素子を少なくとも1つ有する。前記第1組のコイル素子及び前記第2組のコイル素子は、前記の磁場強度で選択された負荷についての、実質的に等しい送信感度領域と受信感度領域を画定する。]
[0006] 例示されたある特定の実施例では、磁気共鳴コイルが開示される。当該磁気共鳴コイルは:ある磁場強度で選択された負荷の送信感度領域と結合する送信チャネルと操作することで接続可能な第1組のコイル素子;並びに、前記の磁場強度で選択された負荷の受信感度領域結合する受信チャネルと操作することで接続可能な第2組のコイル素子;を有する。前記第1組のコイル素子及び前記第2組のコイル素子は共有しないコイル素子を少なくとも1つ有する。前記第1組のコイル素子及び前記第2組のコイル素子は、互いにオフセットされ、かつ共有しないコイル素子を少なくとも1つ有する。]
[0007] 例示されたある特定の実施例では、磁気共鳴方法が開示される。当該方法は:ある磁場強度で選択された負荷の選択された感度領域に対して非対称的に第1組のコイル素子を位置設定する手順;前記の磁場強度で選択された負荷の選択された感度領域に対して非対称的に第2組のコイル素子を位置設定する手順であって、前記の第2組のコイル素子の非対称的な位置は前記の第1組のコイル素子の非対称的な位置とは異なる、手順;前記の非対称的に位置設定された第1組のコイル素子を用いることによって、前記の磁場強度で選択された負荷の選択された感度領域で磁気共鳴を発生させる手順;並びに、前記の第1組のコイル素子とは異なるように非対称的に位置設定された第2組のコイル素子を用いることによって、前記の磁場強度で選択された負荷の選択された感度領域から磁気共鳴信号を受信する手順;を有する。]
[0008] 一の利点は、送信感度領域と受信感度領域との間での対応が改善されることである。]
[0009] 他の利点は、高磁場での磁気共鳴が改善されることである。]
[0010] 他の利点は、磁気共鳴コイルの高磁場での性能が改善されることである。]
[0011] 他の利点は、磁気共鳴励起及び信号受信の狙いが改善されることである。]
[0012] 本発明のさらに他の利点は、以降の詳細な説明を読むことによって、当業者には理解される。]
図面の簡単な説明

[0013] 磁気共鳴スキャナシステムを概略的に図示している。
図1のシステムにおいて用いられる2つの表面コイルを有する磁気共鳴コイルを概略的に図示している。前記コイルは主磁場B0(z軸)の方向に沿って位置合わせされている。
均一の円筒形の対象物が設けられている図2のコイルの中心の横方向スライスでの90°位相のずれた送信磁場|B1+|(左側)及び90°位相のずれた受信磁場|B1-|(右側)についての有限差分時間領域法(FDTD)法の結果をプロットしている。磁場B1の磁場強度が高い領域は、B1の磁場強度が低い領域よりも相対的に明るくプロットされている。
3つの表面コイルを有する磁気共鳴コイルを概略的に図示している。前記コイルは主磁場B0の方向(z軸)に沿って位置合わせされている。
送信段階と受信段階とでそれぞれ異なるコイル素子(ループ)を用いた図4の3つの素子からなるコイルの操作に用いられる送受信選択ボックスを概略的に図示している。
図2の負荷が設けられ、かつ図5の選択ボックスによって動作する図4のコイルの中心の横方向スライスでの90°位相のずれた送信磁場|B1+|(左側)及び90°位相のずれた受信磁場|B1-|(右側)についての有限差分時間領域法(FDTD)法の結果をプロットしている。磁場B1の磁場強度が高い領域は、B1の磁場強度が低い領域よりも相対的に明るくプロットされている。
磁気共鳴コイル及び該コイルを操作する単一の送受信チャネルを概略的に図示している。挿入された送受信スイッチボックスは、送信段階用のコイル素子の第1サブセット及び受信段階用のコイル素子の第2サブセットを用いることによって前記コイルを操作するように備えられている。]
実施例

[0014] 本発明の上記及び他の態様は、添付図面を参照しながら以降の実施例に基づくことで、以降でより詳細に説明する。]
[0015] 図1を参照すると、磁気共鳴スキャナ10は、対象物16(図1では破線で示されている)が設けられている検査領域14内において、軸すなわち(図1で示されている)”z”方向に対して平行又は反平行に配向する方向を有する静磁場(B0)を発生させる主磁石を有する。図示された磁気共鳴スキャナ10は、選択された部品を明らかにする断面で示されているように水平穴型のスキャナである。しかし他の種類の磁気共鳴スキャナが用いられても良い。磁気共鳴スキャナ10は、主磁石12が3Tよりも高い-場合によっては約5T以上-磁場強度で検査領域14内に静的な主磁場(磁場B0としても知られている)を発生させる高磁場スキャナである。一部の実施例では、主磁石12は、7Tの磁場強度で検査領域14内に静磁場(B0)を発生させる。より高い磁場強度も考えられる。]
[0016] 磁気共鳴スキャナ10はまた磁場勾配コイル18をも有する。磁場勾配コイル18は、選択された磁場勾配を静磁場(B0)に重ね合わせることで様々な課題を実行する。様々な課題とはたとえば、磁気共鳴励起を空間的に制限すること、磁気共鳴周波数及び/又は位相を空間的にエンコーディングすること、磁気共鳴を失わせること等である。任意で磁気共鳴スキャナは、図1に図示されていない他の素子を有して良い。前記他の素子とはたとえば、ボアライナー、能動コイル、又は受動強磁性シム等である。対象物16は、可動の対象物支持体20上に設けられることによって適切に準備される。続いて磁気共鳴を取得するため、可動の対象物支持体20は、対象物16と共に図示された位置へ挿入される。たとえば対象物支持体20はパレット又はテーブルであって良い。前記パレット又はテーブルは最初磁気共鳴スキャナ10に隣接するカウチ22上に設けられ、対象物16が支持体20上に設けられ、その後対象物16はスライドさせながらカウチ22から磁気共鳴スキャナ10の穴へ搬送される。]
[0017] 続いて図1を参照しながらさらに図2を参照すると、検査領域14内において対象物16に磁気共鳴コイル30が設けられている。図2から分かるように、磁気共鳴コイル30は、対象物16上に設けられた2つの表面コイル32と34、及び離れた位置に設けられた高周波スクリーン又はシールド36を有する。高周波スクリーン又はシールド36は有利な効果を有することができる。有利な効果とはたとえば、漂遊高周波干渉の減少、磁気共鳴周波数での対象物とのカップリングの改善等である。図示されたコイル素子32と34はわずかに横方向で重なっている。しかし他の実施例では、コイル素子32と34は間隔を空けて設けられる、すなわち重ならない状態で厳密に接合しても良い。図2では、高周波コイル30が結合しようとする感度領域40が破線にて概略的に図示されている。図示された例では、感度領域40は円筒形であり、かつ表面コイル素子32と34の曲率にほぼ適合する。しかし他の形状又は配向の関心領域も考えられる。図示された例は成人の下肢を十分シミュレートしている。]
[0018] 図2の図示された例では、コイル30は、典型的には受信専用コイルとして1.5T若しくは3Tで、又は、送受信コイルとして4Tで用いられる種類の半分の体積の表面コイル若しくは部分体積の表面コイルである。そのコイルはヒトの四肢のイメージング又は分光に適した2つの曲率を有するループコイル素子32と34で作られる。関心対象である核は1Hである(1.5Tで64MHz、3Tで128MHz、及び7Tで298MHz)。高磁場でのコイル性能をシミュレートするため、有限差分時間領域法(FDTD)法を用いてコイル30のシミュレーションが行われた。ここで7Tの磁場B0中での足の一部を表すため、コイルには均一な直径11.4cmの円筒形ファントム(σ=0.855S/m、εr=80)が設けられている。左側のループ32及び右側のループ34のいずれも、90°位相のずれた送受信スイッチボックス(図示されていない)を介して送受信中に用いられる。1.5T又は3Tでは、コイルアレイは、ファントム底部領域において相対的に均一で対称的なB1を発生させることが予想される。ここでB1には上部から底部にかけて規則的なグラデーションがかかっている。]
[0019] しかし図3を参照すると、7Tでは、送信磁場|B1+|(図3の左側)及び受信磁場|B1-|(図3の右側)はかなり非対称な不均一性を示している。送受信用の最大感度領域は重ならない。図3から分かるように、送受信磁場B1の強度分布は、ファントムの底部領域へ向かって中心から外れている。より一般的には、不均一性は、7Tの選択された磁場での選択された負荷の形状及び特性の関数であり、かつ高磁場(たとえば3Tよりも高い磁場)にあるほとんどのコイルについて示すことが予想される。送信磁場のシミュレーション(図3の左側)と受信磁場のシミュレーション(図3の右側)との観測された差異は、動作周波数の増大と共に一般に悪化するという振る舞いである。その振る舞いは3Tで体内において観測されたが、この振る舞いを解決する方法は、多チャネル送信又はB1のシミングを用いることであった。多チャネル送信による解決法は高価で複雑になりがちである。]
[0020] これまで一般に補正されてこなかった効果を認識することで、実質的なハードウエア及びソフトウエアのコストをかけることなく、その効果を緩和するコイル及び/又はコイル設計が可能となる。たとえば図3を検討すると、送信感度領域は左側に回転している一方で、受信感度領域は右側に回転していることが分かる。従ってファントムの底部領域での送信感度領域の重なりは、B1励起磁場を送信するコイル素子32と34をある程度反時計回りに物理的に回転させることによって改善されることが期待される。同様にファントムの底部領域での受信感度領域の一致又は重なりも、磁気共鳴を受信するするコイル素子32と34をある程度時計回りに物理的に回転させることによって改善されることが期待される。実際には、MRイメージング時間中にコイル素子32と34を物理的に回転させることは現実的ではない。しかしコイル30に追加された1つ以上のコイル素子によって、送受信コイル素子を物理的に回転させることと等価な効果が、各機能について、3つのコイル素子(又は他の選択されたコイルアレイのサブセット)のうちの2つを選択的に用いることによって実現可能である。]
[0021] より一般的には、均一なファントム40が設けられている半体積の位相が90°ずれたアレイコイル30のモデルによるFDTD計算によって不均一な磁場B1が示されたことで、コイル素子のアレイによって空間的に選択的な送受信を行うという基本構想にたどり着いた。送受信(T/R)アレイコイルの素子は、適切なT/Rスイッチボックスによって選択/デチューニングされる。前記適切なT/Rスイッチボックスは、送信段階中に用いられるコイル素子の一部又は全部を選択し、かつ受信段階中に用いられる(一般的には異なる)コイル素子の一部又は全部を選択する。従来の直線又は位相が90°ずれたT/Rスイッチボックスは、送受信中にアレイコイルの選択された素子のチューニング/デチューニングを選択的に行うため、別なダイオードスイッチ回路と共に用いられて良い。一部の実施例では、選択励起及び受信の構成は、固定された高周波(RF)振幅及び90°位相のずれた状態での対象物と表面コイル形状に基づいて選ばれる。他の実施例では、コイル形状及び磁場B1の最適化に依存して、90°以外の位相差も考えられる。任意でコイルアレイ中での送信ライン長は、90°の位相差又は他の選択された位相差を供するように調節されて良い。]
[0022] 図4及び図5を参照すると、磁気共鳴コイル50は、高周波シールド又はスクリーン58によって遮蔽される3つの曲がったループコイル素子52、54、56からなる部分体積表面コイルであり、かつ図5において概略的に図示されている送受信スイッチボックス60によって駆動される。この実施例では、アレイのうちの最も右側の2つのコイル素子54と56が送信段階の90°位相がずれたモードで用いられる一方で、アレイのうちの最も左側の2つのコイル素子52と54が受信段階の90°位相がずれたモードで用いられる。図5の回路は、-90°位相シフタ62及びスイッチングダイオード64を用いることによって、この動作を実現する。すべてのスイッチングダイオード64がON状態(つまり伝導状態)であるとき、コイル素子54と56は位相が90°ずれた状態で駆動される一方で、コイル素子52は切り離される、つまり操作によって孤立させられる。これは送信段階の構成である。コイル素子52が切り離される、つまり操作によって孤立させられることを保証するため、ダイオードがONであるときには、接続している送信ライン長65と67は、高インピーダンスを与える1/4波長の送信ラインでなければならない。全てのスイッチングダイオード64がOFF状態(つまり非伝導状態)であるとき、コイル素子52と54は位相が90°ずれた状態で駆動される一方で、コイル素子56は切り離される、つまり操作によって孤立させられる。これは受信段階の構成である。コイル素子52を用いずに2つのコイル素子54と56を用いた位相が90°ずれた状態での送信の効果は、右側に回転した2素子アレイでの送信である。コイル素子56を用いずに2つのコイル素子52と54を用いた位相が90°ずれた状態での受信の効果は、左側に回転した2素子アレイでの受信である。戻って図3を参照すると、これらの回転の効果は、相対的な位置合わせの改善、又は送受信感度領域の重なりの改善である。]
[0023] 図6を参照すると、3つの素子からなるコイル50のFDTDシミュレーションはこの結論を支持し、かつ、送受信スイッチボックス60を介して送受信チャネル66を用いることによって動作する3つの素子からなるコイル50が、特に3つの素子からなるコイル50に最も近い下側領域において、送信感度領域と受信感度領域とを良好に位置合わせすることを示した。]
[0024] 図7を参照すると、一般的な構成では、2つ以上のコイル素子72(図7の実施例では4つのコイル素子72)のアレイを有する磁気共鳴コイル70が、送受信スイッチボックス76によって、単一の送受信チャネル74と選択的に操作することで接続可能である。送受信スイッチボックス76は、送信段階中ではコイル素子72の第1サブセット80と操作することで接続し、かつ受信段階中ではコイル素子72の第1サブセット80とは異なる(場合によっては重なる)第2サブセット82と操作することで接続するように備えられている。コイル素子選択信号84は、送信構成と受信構成との間で構成を変化させるようにスイッチボックス76に入力を与える。たとえば信号84は、二値の信号(たとえば送信構成は”1”で、受信構成は”0”)であって良いし、又は各コイル素子72を独立に選択及び選択解除する1組の信号であっても良い。コイル素子の送信サブセット80は一般的に送信感度領域に対して非対称的に位置設定されている。同様にコイル素子の受信サブセット82は一般的に受信感度領域に対して非対称的に位置設定されている。サブセット80と82は、送信感度領域と受信感度領域が実質的に同一となるように選ばれる。たとえば「実質的に同一」
とは、少なくとも最大送信感度領域と最大受信感度領域とが空間的に重なることによって満足されうる。このことは、励起又は受信に用いられるコイル素子と該コイル素子に対応する送受信感度領域との間での非対称性を認識及び適合させることによって実現される。その結果、送信に用いられるコイル素子の第1サブセット及び受信に用いられるコイル素子の第2サブセットは、実質的に同一の関心送受信領域を供するように互いに非対称に位置設定されている。実施例によっては、この適合の効果は、送信感度領域及び該送信感度領域実質的に同一である受信感度領域はそれぞれ、コイル素子の第1サブセット80及び第2サブセット82の結合に対して実質的に対称的に位置設定される。同様に、コイル素子の第1サブセット80と第2サブセット82の構成する一部のコイル素子が共通する実施例では、1つ以上の共通するコイル素子からなる組は、実質的に同一である送信感度領域と受信感度領域に対して実質的に対称的に位置設定されている。たとえば図4の3つのコイル素子からなるコイル50では、共通のコイル素子54は、図6のFDTDシミュレーションによって示されているように、実質的に同一である送信感度領域と受信感度領域に対して実質的に対称的に位置設定されている。]
[0025] 非対称性を適合させる際、コイル素子の第1サブセット80と第2サブセット82は、互いに空間的にオフセットされ、かつ共有していないコイル素子を少なくとも1つ有する。たとえば図4に図示されているようなコイル素子の第1サブセットがコイル素子54と56を有し、かつコイル素子の第2サブセットがコイル素子52と54を有するような実施例では、2つのサブセットは、1つ以上のコイル素子を共有している(具体的には図4であればコイル素子54)。実施例によっては、2つのサブセットはコイル素子を共有していなくても良い。]
[0026] 3Tよりも大きな磁場強度-たとえば5Tよりも大きな磁場、又は7Tよりも大きな磁場-では、送信磁場|B1+|と受信磁場|B1-|の分布パターンは、可視化される対象物によって課せられる負荷によって実質的な影響を受ける。その結果、送受信磁場B1の分布は一般的には均一にも対称的にもならない。そして(図示されているように)同一のコイル素子が送信段階と受信段階の両方で用いられているときには、送受信磁場B1の分布は送信段階と受信段階で異なる。従って本明細書では、送信段階及び受信段階でそれぞれコイル素子の非対称的な選択を利用することが開示されている。驚くべき結果として、各異なる送信コイル素子のサブセット及び受信コイル素子のサブセットを適切に選ぶことによって、送信感度領域と受信感度領域は、特定の磁場強度での所与の負荷について実質的に同一となることが可能である。特定の人体組織の可視化用に設計された特定のアレイコイルについての送信コイル素子のサブセット及び受信コイル素子のサブセットの選択は、どの素子を送信に使用し、かつどの素子を受信に使用するかを決定するB1マップの測定又は数値計算に基づいてされて良い。それに加えて、係るマッピング又は数値計算は、個々のコイル素子の位置を調節すなわち最適化することで、送信感度領域と受信感度領域との実質的同一性をさらに改善させるのに用いられて良い。同様に、この目的のため、90°位相のずれた励起及び受信を用いる実施例では、名目上90°位相がずれた状態での操作に係る位相シフトは調節されて良い。]
[0027] 図示された実施例では、コイル素子は単一ループの表面コイル素子として図示されている。より一般的には、コイル素子は、単一ループ表面コイル素子、多重ループ表面コイル素子、チューニングされた軸ストリップライン表面コイル素子、他の種類のコイル素子、又はこれらの様々な組合せであって良い。それに加えてコイルのアレイは、軸方向において隣接するコイルの群で構成されることで、選択された人体組織の被覆を増大させることができる。たとえば図4に図示されたコイルは、関心領域に基づいて選択的に選ばれた2つのコイルを生成するように軸方向に複製される。このようにして人体組織の被覆をより大きくすることができる。図示された実施例は表面コイルを用いているものの、他のコイル素子の非体積アレイも同様に、ユニットとして動作するときには送信感度領域と受信感度領域とで非対称性を示すことが予想され、かつ実質的に同一の送信感度領域と受信感度領域を供するように、送受信で用いられるコイル素子の各異なるサブセットを選択する送受信スイッチボックスを追加することによって同様に改善することが可能である。図示された実施例では、信号送受信チャネルは、90°位相がずれた状態での送受信用のコイルと操作によって接続される。しかし直線的な動作接続又は他の電気的接続も考えられる。あるいは送信チャネルと受信チャネルを別々に配置しても良い。]
权利要求:

請求項1
ある磁場強度で選択された負荷の送信感度領域と結合する送信チャネルと操作することで接続可能な第1組のコイル素子;及び、前記の磁場強度で選択された負荷の受信感度領域と結合する受信チャネルと操作することで接続可能な第2組のコイル素子;を有する磁気共鳴コイルであって、前記第1組のコイル素子は前記送信感度領域に近接して設けられるが前記送信感度領域を取り囲むようには設けられず、前記第2組のコイル素子は前記受信感度領域に近接して設けられるが前記受信感度領域を取り囲むようには設けられず、前記第1組のコイル素子及び前記第2組のコイル素子は共有しないコイル素子を少なくとも1つ有し、かつ前記第1組のコイル素子及び前記第2組のコイル素子は、前記の磁場強度で選択された負荷についての、実質的に等しい送信感度領域と受信感度領域を画定する、磁気共鳴コイル。
請求項2
前記第1組のコイル素子及び前記第2組のコイル素子が少なくとも1つのコイル素子を共有する、請求項1に記載の磁気共鳴コイル。
請求項3
前記第1組のコイル素子が:第1段階で前記送信チャネルと接続可能な1つ以上のコイル素子からなる第1サブセット;及び前記第1段階に対して90°位相のずれた第2段階で前記送信チャネルと接続可能な1つ以上のコイル素子からなる第2サブセット;を有し、かつ前記第2組のコイル素子が:第1段階で前記受信チャネルと接続可能な1つ以上のコイル素子からなる第1サブセット;及び前記第1段階に対して90°位相のずれた第2段階で前記送信チャネルと接続可能な1つ以上のコイル素子からなる第2サブセット;を有する、請求項1に記載の磁気共鳴コイル。
請求項4
前記第1組のコイル素子が:第1段階で前記送信チャネルと接続可能な1つ以上のコイル素子からなる第1サブセット;及び前記第1段階とは異なる第2段階で前記送信チャネルと接続可能な1つ以上のコイル素子からなる第2サブセット;を有し、かつ前記第2組のコイル素子が:第3段階で前記受信チャネルと接続可能な1つ以上のコイル素子からなる第1サブセット;及び前記第3段階とは異なる第4段階で前記送信チャネルと接続可能な1つ以上のコイル素子からなる第2サブセット;を有する、請求項1に記載の磁気共鳴コイル。
請求項5
前記第1段階と第2段階との間の位相差、及び前記第3段階と第4段階との間の位相差が、対応するコイル素子の送信ライン長の調節によって選択される、請求項4に記載の磁気共鳴コイル。
請求項6
前記第1組のコイル素子及び前記第2組のコイル素子の各コイル素子が、前記の選択された負荷上又は該負荷の付近に設けられる表面コイル素子である、請求項1に記載の磁気共鳴コイル。
請求項7
前記第1組のコイル素子及び前記第2組のコイル素子の各表面コイル素子が、(i)単一ループ表面コイル素子、(ii)多重ループ表面コイル素子、及び(iii)チューニングされた軸ストリップライン表面コイル素子からなる群から選ばれる、請求項6に記載の磁気共鳴コイル。
請求項8
前記送信感度領域が前記第1組のコイル素子に対して非対称的に位置設定され、かつ実質的に同一の前記受信感度領域が前記第2組のコイル素子に対して非対称的に位置設定される、請求項1に記載の磁気共鳴コイル。
請求項9
前記送信感度領域及び前記の実質的に同一の受信感度領域はそれぞれ、前記第1組のコイル素子及び前記第2組のコイル素子の結合に対して実質的に対称的に位置設定される、請求項8に記載の磁気共鳴コイル。
請求項10
前記第1組のコイル素子及び前記第2組のコイル素子が互いに非対称に位置設定され、かつ前記送信感度領域及び前記の実質的に同一の受信感度領域はそれぞれ、前記第1組のコイル素子及び前記第2組のコイル素子の結合に対して実質的に対称的に位置設定される、請求項1に記載の磁気共鳴コイル。
請求項11
前記第2組のコイル素子が前記第1組のコイル素子から空間的にオフセットされ、かつ前記送信感度領域及び前記の実質的に同一の受信感度領域はそれぞれ、前記第1組のコイル素子及び前記第2組のコイル素子の結合に対して実質的に中心に位置設定される、請求項1に記載の磁気共鳴コイル。
請求項12
ある磁場強度で選択された負荷の選択された感度領域に対して非対称的に第1組のコイル素子を位置設定する手順;前記の磁場強度で選択された負荷の選択された感度領域に対して非対称的に第2組のコイル素子を位置設定する手順であって、前記の第2組のコイル素子の非対称的な位置は前記の第1組のコイル素子の非対称的な位置とは異なる、手順;前記の非対称的に位置設定された第1組のコイル素子を用いることによって、前記の磁場強度で選択された負荷の選択された感度領域で磁気共鳴を発生させる手順;及び、前記の第1組のコイル素子とは異なるように非対称的に位置設定された第2組のコイル素子を用いることによって、前記の磁場強度で選択された負荷の選択された感度領域から磁気共鳴信号を受信する手順;を有する磁気共鳴方法。
請求項13
前記第1組のコイル素子及び前記第2組のコイル素子の結合が前記の選択された感度領域に対して実質的に対称的に位置設定される、請求項12に記載の方法。
請求項14
前記の磁気共鳴を発生させる手順が:第1段階で前記第1組のコイル素子の1つ以上のコイル素子からなる第1サブセットを起動する手順;及び、前記第1段階とは90°の位相がずれる第2段階で前記第1組のコイル素子の1つ以上のコイル素子からなる第2サブセットを起動する手順;を有する、請求項12に記載の方法。
类似技术:
公开号 | 公开日 | 专利标题
US10627463B2|2020-04-21|Simultaneous TX-RX for antenna devices
Ertürk et al.2017|A 16‐channel combined loop‐dipole transceiver array for 7 T esla body MRI
US9977101B2|2018-05-22|Active transmit elements for MRI coils and other antenna devices, and method
US9733324B2|2017-08-15|Magnetic resonance imaging system with a multi-channel impedance matching network
US6396271B1|2002-05-28|Tunable birdcage transmitter coil
US6727703B2|2004-04-27|Method and apparatus for decoupling RF detector arrays for magnetic resonance imaging
Adriany et al.2005|Transmit and receive transmission line arrays for 7 Tesla parallel imaging
JP5357010B2|2013-12-04|コイルシステム及び磁気共鳴システム
KR100677021B1|2007-01-31|Rf바디 코일
EP1687653B1|2010-06-30|Rf coil system for super high field | mri
US7276906B2|2007-10-02|Self-shielded gradient field coil for magnetic resonance imaging
US7042222B2|2006-05-09|Phased array knee coil
US7714581B2|2010-05-11|RF coil assembly for magnetic resonance imaging and spectroscopy systems
US7282915B2|2007-10-16|Multi-turn element RF coil array for multiple channel MRI
US7088104B2|2006-08-08|MRI tunable antenna and system
US7268554B2|2007-09-11|RF coil for imaging system
US7180291B2|2007-02-20|Degenerate birdcage coil and transmit/receive apparatus and method for same
US5543711A|1996-08-06|Multiple quadrature volume coils for magnetic resonance imaging
US4721913A|1988-01-26|NMR local coil network
JP5207662B2|2013-06-12|磁場コイル及び磁気共鳴撮像装置
US9671478B2|2017-06-06|Antenna and antenna arrangement for magnetic resonance applications
US7049819B2|2006-05-23|Diagonal-arranged quadrature MRI radio frequency array coil system for three dimensional parallel imaging
US7642782B2|2010-01-05|Active decoupling of transmitters in MRI
US7525313B2|2009-04-28|System and method for multi-channel MR transmission
CN103492898B|2016-09-07|用于mri的多通道rf体积共振器
同族专利:
公开号 | 公开日
CN101896831B|2015-01-28|
CN101896831A|2010-11-24|
US20110115483A1|2011-05-19|
JP5793304B2|2015-10-14|
EP2223135A1|2010-09-01|
WO2009074965A1|2009-06-18|
US8441259B2|2013-05-14|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
JPH09276248A|1996-04-12|1997-10-28|Hitachi Medical Corp|磁気共鳴イメージング装置|
JP2001503662A|1996-11-12|2001-03-21|ベズイズレイルディーコネスメディカルセンターインコーポレイテッド|空間調波の同時取得法(smash):高周波コイル配列を用いた超高速映像法|
JPH10290793A|1997-04-18|1998-11-04|Ge Yokogawa Medical Syst Ltd|磁気共鳴撮像方法および装置|
JPH1156813A|1997-08-27|1999-03-02|Ge Yokogawa Medical Syst Ltd|信号受信回路|
JP2003180659A|2001-11-21|2003-07-02|Koninkl Philips Electronics Nv|磁気共鳴撮像装置用のrfコイル系|
WO2004060156A1|2002-12-27|2004-07-22|Hitachi Medical Corporation|磁気共鳴イメージング装置|
JP2006297110A|2005-04-22|2006-11-02|Siemens Ag|Magnetic resonance imaging method and apparatus|
JP2008538968A|2005-04-28|2008-11-13|コーニンクレッカフィリップスエレクトロニクスエヌヴィ|マルチチャネル送信/受信アンテナ装置を動作させる方法及び回路構成|
JP2007050235A|2005-07-21|2007-03-01|Toshiba Corp|磁気共鳴イメージング装置および高周波コイルユニット|
JP2007275164A|2006-04-04|2007-10-25|Hitachi Ltd|コイル装置およびそれを用いた核磁気共鳴撮像装置|
JP2007289690A|2006-04-20|2007-11-08|General Electric Co <Ge>|並列rf送信を伴うmr撮像におけるsar低減|JP2012035082A|2010-08-06|2012-02-23|Toshiba Corp|磁気共鳴イメージング方法及び磁気共鳴イメージングシステム|
WO2017033887A1|2015-08-27|2017-03-02|株式会社日立製作所|高周波コイルおよび磁気共鳴撮像装置|US4881034A|1988-01-19|1989-11-14|The Regents Of The University Of California|Switchable MRI RF coil array with individual coils having different and overlapping fields of view|
US5457386A|1991-11-26|1995-10-10|Hitachi, Ltd.|Multiple-coil adopting a quadrature detection method applied thereto and a signal processing circuit employing the same in an MRI apparatus in a vertical magnetic system|
US5374890A|1992-07-24|1994-12-20|Picker International, Inc.|Simultaneous magnetic resonance imaging of multiple human organs|
US5666055A|1995-10-02|1997-09-09|Jones; Randall W.|Surface coil system for a single channel NMR receiver|
US5682098A|1996-01-11|1997-10-28|W. L. Gore & Associates, Inc.|Open quadrature whole volume imaging NMR surface coil array including three figure-8 shaped surface coils|
JP3562902B2|1996-04-26|2004-09-08|株式会社日立メディコ|磁気共鳴イメージング装置用rfプローブ|
US6177795B1|1998-05-19|2001-01-23|Elscint Ltd.|Spectral component imaging using phased array coils|
US6437567B1|1999-12-06|2002-08-20|General Electric Company|Radio frequency coil for open magnetic resonance imaging system|
US6377044B1|2000-03-01|2002-04-23|Philips Medical Systems, Inc.|Multi-mode receiver coils for MRI|
DE10124465A1|2001-05-19|2002-11-21|Philips Corp Intellectual Pty|Sende- und Empfangsspule für MR-Gerät|
US6975115B1|2001-06-08|2005-12-13|Ge Medical Systems Global Technology Company, Llc|Coil arrays for parallel imaging in magnetic resonance imaging|
US6930480B1|2001-06-08|2005-08-16|General Electric Company|Head coil arrays for parallel imaging in magnetic resonance imaging|
JP3455530B1|2001-12-14|2003-10-14|株式会社東芝|Mr信号受信装置及び磁気共鳴イメージング装置|
US6639406B1|2002-05-08|2003-10-28|Ge Medical Systems Global Technology Company, Llc|Method and apparatus for decoupling quadrature phased array coils|
US6608480B1|2002-09-30|2003-08-19|Ge Medical Systems Global Technology Company, Llc|RF coil for homogeneous quadrature transmit and multiple channel receive|
US7049819B2|2003-01-21|2006-05-23|General Electric Company|Diagonal-arranged quadrature MRI radio frequency array coil system for three dimensional parallel imaging|
US6940282B2|2003-12-19|2005-09-06|General Electric Company|Switchable transmit array coil|
CN1954230B|2004-05-14|2014-10-15|皇家飞利浦电子股份有限公司|用于超高磁场mr的短元件tem线圈|
US7394253B2|2004-11-16|2008-07-01|Kabushiki Kaisha Toshiba|Radio frequency coil assembly and magnetic resonance imaging apparatus|
US7227360B2|2005-01-14|2007-06-05|Invivo Corporation|Phased array MRI coil with controllable coupled ring resonator|
WO2006094354A1|2005-03-10|2006-09-14|The University Of Queensland|Phased array coil for mri|
JP2007050230A|2005-07-22|2007-03-01|Nifco Inc|基板ケース|
DE102005039686B3|2005-08-22|2007-05-10|Siemens Ag|Magnetic resonance imaging method for the generation of homogeneous MR images and magnetic resonance tomography and CP coils for the application of this method|
US7800368B2|2006-02-17|2010-09-21|Regents Of The University Of Minnesota|High field magnetic resonance|
WO2007098190A2|2006-02-21|2007-08-30|Beth Israel Deaconess Medical Center, Inc.|Magnetic resonance imaging and radio frequency impedance mapping methods and apparatus|
US8030926B2|2006-03-15|2011-10-04|Albert Einstein College Of Medicine Of Yeshiva University|Surface coil arrays for simultaneous reception and transmission with a volume coil and uses thereof|
WO2007124245A1|2006-04-21|2007-11-01|Koninklijke Philips Electronics, N.V.|Magnetic resonance with time sequential spin excitation|
US7336074B2|2006-05-05|2008-02-26|Quality Electrodynamics|Active decoupling of MRI RF transmit coils|
KR100927380B1|2007-06-18|2009-11-19|가천의과학대학교 산학협력단|자기공명영상장치|
JP4879829B2|2007-07-19|2012-02-22|株式会社日立製作所|高周波コイル及び磁気共鳴撮像装置|
KR100900862B1|2007-11-22|2009-06-04|가천의과학대학교 산학협력단|자기공명영상 시스템용 rf 코일 어셈블리|US8674695B2|2009-04-01|2014-03-18|New York University|Radio frequency coil arrangement for high field magnetic resonance imaging with optimized transmit and receive efficiency for a specified region of interest, and related system and method|
RU2589275C2|2011-04-21|2016-07-10|Конинклейке Филипс Н.В.|Многоканальный радиочастотный объемный резонатор для магнитно-резонансной визуализации|
US9971001B2|2011-11-28|2018-05-15|The Texas A&M University System|Volume array coil with enforced uniform element currents for improved excitation homogeneity|
DE102013218224B3|2013-09-11|2015-01-29|Siemens Aktiengesellschaft|Determination of B1 cards|
法律状态:
2011-12-09| A621| Written request for application examination|Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111208 |
2013-06-28| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130628 |
2013-07-10| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130709 |
2013-10-10| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131009 |
2014-05-21| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140520 |
2014-08-20| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140819 |
2015-02-04| A02| Decision of refusal|Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150203 |
2015-05-20| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150520 |
2015-05-29| A911| Transfer to examiner for re-examination before appeal (zenchi)|Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20150528 |
2015-07-03| TRDD| Decision of grant or rejection written|
2015-07-15| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150714 |
2015-08-13| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150810 |
2015-08-14| R150| Certificate of patent or registration of utility model|Ref document number: 5793304 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
2018-08-14| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2019-08-13| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2020-08-05| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2021-08-13| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
优先权:
申请号 | 申请日 | 专利标题
[返回顶部]