![]() Melanogenesis inhibitor comprising d-pantothenyl alcohol, and skin-whitening cosmetic containing sam
专利摘要:
Provided is a new application for D-pantothenyl alcohol. It is a melanogenesis inhibitor comprising D-pantothenyl alcohol. 公开号:EP3708148A1 申请号:EP20170770.0 申请日:2015-04-02 公开日:2020-09-16 发明作者:Chihiro Kondo;Shoko SASSA;Yuko Saitoh;Yasuhito Mori;Kouji Yokoyama 申请人:Pola Chemical Industries Inc; IPC主号:A61K8-00
专利说明:
[0001] The present invention relates to a melanogenesis inhibitor containing D-pantothenyl alcohol. The present invention also relates to a skin-whitening cosmetic containing the melanogenesis inhibitor. Background Art [0002] D-pantothenyl alcohol is an alcohol type derivative of a pantothenic acid and is a substance that is converted into vitamin B5 (pantothenic acid) in the body. It has also been used as a material for skin external preparations since long ago, and many skin external preparations containing D-pantothenyl alcohol have been proposed. [0003] For example, Patent Literature 1 mentions that a skin cosmetic containing D-pantothenyl alcohol improves rough skin, particularly dry skin, and conditions skin quality. [0004] Patent Literature 2 also mentions that a hair cosmetic containing D-pantothenyl alcohol makes the firmness, body, and smoothness of hair better. Citation ListPatent Literature [0005] Patent Literature 1: Japanese Patent Application Laid-Open No. 2012-41302 Patent Literature 2: Japanese Patent Application Laid-Open No. 2012-167042Summary of InventionTechnical Problem [0006] The present invention provides a new application for the aforementioned D-pantothenyl alcohol. Solution to Problem [0007] The present inventors have found from experiments that D-pantothenyl alcohol has a melanogenesis inhibitory action, and have completed the present invention. In other words, a first aspect of the present invention is a melanogenesis inhibitor containing D-pantothenyl alcohol. Another aspect of the present invention is a skin-whitening cosmetic containing the aforementioned melanogenesis inhibitor. Advantageous Effects of Invention [0008] According to the present invention, a new melanogenesis inhibitor is provided. Moreover, according to another aspect of the present invention, a skin-whitening cosmetic having a high skin-whitening effect is provided. Brief Description of Drawings [0009] Fig. 1 is a graph illustrating a melanogenesis inhibitory action of D-pantothenyl alcohol in an experimental example. Fig. 2 is a graph illustrating a keratinocyte cell proliferation action of D-pantothenyl alcohol in an experimental example. Description of Embodiments [0010] The present invention will be described below in detail, and of course, the present invention is not limited to only the specific embodiments. [0011] D-pantothenyl alcohol is a compound represented by the following structural formula (1). [0012] D-pantothenyl alcohol is used as a material for skin external preparations such as cosmetics, there is no difficulty in availability, and it is possible to use a commercially available product as appropriate. [0013] The present inventors conducted the experiments described below, and have found from the results that D-pantothenyl alcohol has a melanogenesis inhibitory action in addition to a keratinocyte cell proliferation action. <Experiment 1: Melanogenesis Inhibition Experiment> [0014] According to the method described below, 2-thiouracil (14C-labeled 2-thiouracil in the present test) which is specifically incorporated into melanin in the melanin synthesis process within cells was used to evaluate the melanogenesis inhibitory action. With a complete medium for melanocyte culture (Invitrogen Corporation) used in a 24-well plate, human normal melanocytes (Kurabo Industries, Ltd.) were seeded in each well at a concentration of 6.0 × 104 cells/well/0.5mL. Under a 5% carbon dioxide atmosphere, the culture was conducted at 37°C for 24 hours. Then, replacement was made such that a 0.5 mL medium containing D-pantothenyl alcohol at 0 mM or 1 mM was in each of three wells for each concentration and, to these nine wells, 0.5 µCi/well of 2-[2-14C] thiouracil (Daiichi Clarity Co., Ltd.) was further added. And it was further cultured for 3 days under the same conditions as the aforementioned culture conditions. After completion of the culture, the culture medium was removed from each well, which was washed with PBS (phosphate-buffered saline), and the number of cells was measured using the WST-8 reagent (Dojindo Laboratories). The WST-8 reagent was removed from each well, which was washed with PBS, and using 100 (w/v) % trichloroacetic acid (Wako Pure Chemical Industries, Ltd.), the cells were separated from the bottom of the wells, to which water was then added for dilution so that the concentration of the trichloroacetic acid could be 10 (w/v) %, and which were allowed to stand in a refrigerator for 30 minutes. After the cells were recovered by centrifugation, the amount of 14C-thiouracil in the cells recovered from each well was measured with a liquid scintillation counter (Aloka Co., Ltd.). [0015] Relative to the radiation doses of the cells cultured in the media containing 0 mM D-pantothenyl alcohol (control), the radiation doses of the cells cultured in the media containing 1 mM D-pantothenyl alcohol were each obtained in percentage as the amount of melanin (%) . In other words, it is possible to determine that the smaller the radiation dose incorporated into each cell is, the smaller the amount of melanin is, and accordingly, it is possible to determine that the melanin inhibition titer of the added ingredient is larger. The results are shown in Fig. 1. <Experiment 2: Keratinocyte Cell Proliferation Experiment> [0016] According to the method described below, the cell proliferation promoting action was evaluated. With a complete medium for keratinocyte culture (Kurabo Industries, Ltd.) used in a 24-well plate, human normal keratinocytes (Kurabo Industries, Ltd.) were seeded in each well at a concentration of 1.0 × 104 cells/well/1mL. Under a 5% carbon dioxide atmosphere, the culture was conducted at 37°C for 24 hours. Then, replacement was made such that a 1 mL medium containing D-pantothenyl alcohol at 0 µM, 15 µM, or 150 µM was in each of three wells for each concentration. And it was further cultured for 2 days under the same conditions as the aforementioned culture conditions. After completion of the culture, 20µL of the WST-8 reagent (Dojindo Laboratories) was added to each well, and color reaction was allowed at 37°C for 3 hours. After the reaction, absorbances at 450 nm and 650 nm were measured using a microplate reader, Benchmark Plus (Bio-Rad Laboratories), and the 450 nm absorbance measurement minus the 650 nm absorbance measurement was calculated to give a cell proliferation measurement. [0017] Relative to the cell proliferation measurements for the wells cultured in the media containing 0 µM D-pantothenyl alcohol (control), the cell proliferation measurements for the wells cultured in the media containing D-pantothenyl alcohol were each obtained in percentage as a cell proliferation rate (%). In other words, it is possible to determine that the larger the absorbance value is, the higher the cell proliferation rate is, and accordingly, it is possible to determine that the cell proliferation promotion titer of the added ingredients is larger. The results are shown in Fig. 2. [0018] It is recognized from the aforementioned Experiment 1 that D-pantothenyl alcohol has a melanogenesis inhibitory action and is a material having a skin-whitening effect. [0019] It is also recognized from the aforementioned experiment 2 that D-pantothenyl alcohol also has a keratinocyte cell proliferation action, and the keratinocyte cell proliferation is considered to promote turnover of keratinocytes and to promote melanin discharge. [0020] It is recognized from the aforementioned experiments that D-pantothenyl alcohol not only inhibits melanogenesis but also promotes melanin discharge, and through the skin-whitening action by such two action mechanisms, D-pantothenyl alcohol achieves a high skin-whitening effect. Furthermore, having the two action mechanisms, particularly having the turnover promoting action of keratinocytes, can be expected to allow a faster skin-whitening effect to be obtained (faster skin-whitening rate) compared to conventional skin-whitening agents. In addition, having such action mechanisms different from those of conventional skin-whitening agents, with combined use of other skin-whitening agents, can be expected to allow a skin-whitening effect durability and a higher skin-whitening effect. [0021] Thus, since D-pantothenyl alcohol achieves a high skin-whitening effect, it is preferably formulated into skin-whitening cosmetics. It is also preferably formulated as an effective ingredient into skin-whitening cosmetics. When D-pantothenyl alcohol is formulated into skin-whitening cosmetics, the amount of formulation is usually 0.0001% by mass or more, preferably 0.001% by mass or more, more preferably 0.01% by mass or more, still more preferably 0.1% by mass or more. Meanwhile, the upper limit is usually 20% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less. [0022] Examples of an aspect of applying D-pantothenyl alcohol to the skin include, for example, a method for applying it in combination with a plant extract having a melanogenesis inhibitory action. The skin-whitening effect of D-pantothenyl alcohol can be significantly enhanced in combination with a plant extract having a melanogenesis inhibitory action. Preferable examples of plant extracts can include Uncaria gambir extract, Isodon japonicus extract, Echinacea angustifolia leaf extract, Lithospermum erythrorhizon root extract, Carthamus tinctorius flower extract, Persea gratissima fruit extract, Abelmoschus esclentus fruit extract, Actinidia chinensis fruit extract, Alpinia speciosa leaf extract, Saponaria officinalis extract, Caprifoliaceae extract, green tea extract, Benincasa cerifera seed exract, Allium sativum extract, Citrus aurantifolia fruit juice extract, natto extract, Citrus aurantium dulsis fruit extract, Valeriana officinalis extract, Cucumis sativus extract, Prunus armeniaca extract, Gardenia florida extract, Citrus grandis fruit extract, Arctium lappa root extract, black tea extract, Equisetum arvense extract, Malva sylvestris extract, Jujube extract, Solanum lycopersicum extract, Daucus carota sativa extract, Hoelen extract, Lilium candidum bulb extract, Litchi chinensis extract, Lactuca scariola sativa leaf extract, Citrus medica limonum fruit extract, royal jelly extract, and the like. Among these plant extracts, one species alone may be used, or a combination of two or more species may be used. [0023] When a plant extract having a melanogenesis inhibitory action and D-pantothenyl alcohol are applied to the skin, they are preferably applied simultaneously or nearly simultaneously. As used herein, "nearly simultaneously" refers to, for example, within one day, more preferably within 12 hours, more preferably within 6 hours, particularly preferably within 1 hour. [0024] Specifically, preferable examples can include a method in which both are formulated in a skin external preparation and are applied to the skin as effective ingredients of the skin external preparation. [0025] Such an applying method can be adapted to a skin-whitening method in which a skin-whitening ingredient other than a plant extract and D-pantothenyl alcohol are combined. [0026] When a plant extract having a melanogenesis inhibitory action is formulated into a skin-whitening cosmetic, the amount of formulation is usually 0.0001% by mass or more, preferably 0.001% by mass or more, more preferably 0.01% by mass or more, still more preferably 0.1% by mass or more. Meanwhile, the upper limit is usually 20% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less. [0027] Methods for extracting these plant extracts are not particularly limited, and preferably include an extracting method using a solvent. When the extraction is conducted, the aforementioned raw materials may be used directly, whereas those pulverized and shredded into powder to be served for extraction allows the effective ingredient to be extracted at a higher extraction efficiency under milder conditions in a shorter period of time. [0028] The extraction temperature is not particularly limited and may be appropriately set in accordance with the size, solvent type, and the like of the raw material to be pulverized. It is normally set within the range from room temperature to the boiling point of the solvent. The extraction time is also not particularly limited and may be appropriately set in accordance with the size, solvent type, extraction temperature, and the like of the raw material to be pulverized. Furthermore, the extraction may be conducted under stirring, allowed to stand without stirring, or ultrasonicated. [0029] For example, the raw materials of the aforementioned plant extracts can be immersed in a solvent and extracted at room temperature or 80°C to 100°C. The extract liquid obtained by the extraction process is filtered and can be used as an active ingredient, directly or after being concentrated or dried hard, if desired. For this extraction process, shredded or pulverized raw materials may be used. Crude raw materials or dried raw materials may also be used, or roasted raw materials may be used. Roasting methods are not particularly limited, and can include a method for roasting at 80°C to 120°C for 0.5 hours to 2 hours. [0030] The type of solvent to be used for extraction is not particularly limited, and water (including hot water etc.), alcohol (for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol), glycol (for example, 1,3-butylene glycol, propylene glycol), glycerin, ketone (for example, acetone, methyl ethyl ketone), ether (for example, diethyl ether, dioxane, tetrahydrofuran, propyl ether), acetonitrile, ester (for example, ethyl acetate, butyl acetate), aliphatic hydrocarbon (for example, hexane, heptane, liquid paraffin), aromatic hydrocarbon (for example, toluene, xylene), halogenated hydrocarbon (for example, chloroform), or a mixed solvent of two or more thereof is preferred. [0031] By such an extracting operation, the effective ingredient is extracted from the raw material, and dissolves in a solvent. The solvent containing the extract may be used directly or may be used after being allowed to stand several days for aging. In addition, it may be used after being subjected to a common purification processing such as sterilization, washing, filtration, decolorization, or deodorization. It may also be used after concentration or dilution as needed. Furthermore, the solid (dried material) resulting after all of the solvent is volatized may be used, or the dried material may be redissolved in any solvent and be used. [0032] Examples of another aspect of applying D-pantothenyl alcohol to the skin include a method for applying it in combination with a skin-whitening compound. Examples of skin-whitening compounds preferably include a 4-alkyl resorcinol, a compound represented by the following general formula (1), a compound represented by the following general formula (2), a compound represented by the following general formula (3), ursolic acid phosphate ester, salts thereof, and the like. It should be noted that, unless otherwise specified, for compounds having optical isomers, any of the L form, the D form, and the racemate (DL form) is intended to be included in the present invention. [0033] A salt, as used herein, refers to one which may be used without particular limitation as long as it is one which is used for skin external preparations. For example, sodium, alkali metal salts such as potassium, alkaline earth metal salts such as calcium and magnesium, ammonium salts, organic amine salts such as triethylamine and triethanolamine, basic amino acid salts such as lysine and arginine, and the like are preferably exemplified. Among these salts, particularly preferred are alkali metals, and among others, sodium salts are particularly preferred. [0034] About 4-alkyl resorcinols, see WO2007/148472 . For alkyl groups in 4-alkyl resorcinols, C3-C10 alkyl groups are preferable, and among these, C3-C6 alkyl groups are preferable. Specifically, examples can include n-propyl groups, isopropyl groups, n-butyl groups, isobutyl groups, sec-butyl groups, tert-butyl groups, amyl groups, n-hexyl groups, cyclohexyl groups, octyl groups, isooctyl groups, and the like. In the method of the present invention, 4-n-butyl resorcinol in particular is preferably used. [0035] In the general formula (1), A1, A2, and A3 independently represent a phenyl which optionally contains a substituent. The substituent is selected from hydroxyl, C1-C4 alkyl, and C1-C4 alkyloxy. X is a nitrogen atom or oxygen atom. [0036] In the general formula (1), -X-R1 is represented by the following general formula (4): [0037] In the general formula (4), X1 is a nitrogen atom. R2 and R3 are bound to each other to form, together with X1, a C2-C8 heterocyclic ring or hydrocarbon ring which optionally has a substituent. Here, the carbon number is defined by an actual carbon number. When the heterocyclic ring or hydrocarbon ring has a substituent, the substituent is preferably selected from a C1-C4 alkyl, C1-C4 alkyloxy, hydroxyl, amino, and oxo. Here, the heterocyclic ring includes any of an aromatic heterocyclic ring, non-aromatic unsaturated heterocyclic ring, and saturated heterocyclic ring. The heterocyclic ring is preferably a saturated heterocyclic ring. In addition, the carbon number of the heterocyclic ring is preferably 3 to 5, more preferably 4 to 5. [0038] The hydrocarbon ring also includes any of an aromatic hydrocarbon ring, non-aromatic unsaturated hydrocarbon ring, and cycloalkyl. [0039] For more detail about a compound of the general formula (1) wherein -X-R1 is represented by the general formula (4), see WO2010/074052 . Preferable examples include the following compounds 1 to 12. [0040] Alternatively, in the general formula (1), -X-R1 is represented by the following general formula (5): [0041] In the general formula (5), X2 is a nitrogen atom or oxygen atom.n is an integer of 1 to 5.n is preferably an integer of 1 to 3.Y is a hydroxyl group or amino group.When Y is amino, X2 is preferably an oxygen atom. [0042] In the general formula (5), R4 exists when X2 is a nitrogen atom, and represents a hydrogen atom. R4 does not exist when X2 is an oxygen atom. [0043] For more detail about a compound of the general formula (1) wherein -X-R1 is represented by the general formula (5), see WO2010/074052 . [0044] Preferable examples include the following compounds 13 to 22. [0045] Alternatively, in the general formula (1), -X-R1 is represented by the following general formula (6): X3-Hp (6) [0046] In the general formula (6) , X3 is an oxygen atom or nitrogen atom. [0047] In the general formula (6), p is the number corresponding to X3. [0048] For more detail about a compound of the general formula (1) wherein -X-R1 is represented by the general formula (6), see WO2010/074052 . [0049] Preferable examples include the following compounds 23 to 29. [0050] In the general formula (2), R'1 represents an aromatic group which is unsubstituted or contains a substituent; the substituent is a C1-C4 linear or branched alkyl group, C1-C4 linear or branched alkoxy group, halogen atom, or C1-C4 halogenated alkyl group; and the aromatic group is a phenyl group, naphthyl group, or biphenyl group. [0051] R'2 represents a hydrogen atom, C1-C4 linear or branched alkyl group, or C1-C3 linear or branched alkyl acyl group. [0052] R'3 represents a hydrogen atom or C1-C4 linear or branched alkyl group. [0053] For more detail about a compound represented by the general formula (2), see WO2011/074643 . [0054] Preferable examples include the following compounds 30 to 44. [0055] In the general formula (3), R"1 represents -SH, -SO3H, -S-S-X1, -S-X2, -SO-X3, or -SO2-X4, in which X1 to X4 are independently a hydrogen atom or C1-C8 aliphatic hydrocarbon group. R"2 represents a C5-C12 aromatic group which may be unsubstituted or optionally contains a substituent, and the aromatic group is preferably a phenyl group. n represents an integer of 1 or 2. The substituent is preferably a C1-C4 alkyl group, C1-C4 alkoxy group, or phenyl group. [0056] For more detail about a compound represented by the general formula (3), see WO2010/058730 . [0057] Preferable examples include the following compounds 45 to 52. [0058] An ursolic acid phosphate ester is represented by the following formula. For more detail, see WO2006/132033 . [0059] When a 4-alkyl resorcinol, a compound represented by the general formula (1), (2), or (3), or a salt thereof is formulated into a skin external preparation for the purpose of a skin-whitening effect, among a 4-alkyl resorcinol, a compound represented by the general formula (1), (2), or (3), an ursolic acid phosphate ester, and salts thereof, one species alone may be contained or two or more species may be contained. [0060] The content of a 4-alkyl resorcinol, or a compound represented by the general formula (1), (2), or (3), or a salt thereof in a skin external preparation is preferably 0.001 to 10% by mass, more preferably 0.01 to 5% by mass, still more preferably 0.1 to 3% by mass, relative to the total amount of the skin external preparation. [0061] A method in which a 4-alkyl resorcinol, a compound represented by the general formula (1), (2), or (3), an ursolic acid phosphate ester, or a salt thereof is applied in combination with D-pantothenyl alcohol to the skin for the purpose of a skin-whitening effect follows the aforementioned case where a plant extract having a melanogenesis inhibitory action and D-pantothenyl alcohol are applied to the skin. <Experiment 3: Confirmation of Synergistic Effect Based on Combination of either Plant Extract Having Melanogenesis Inhibitory Action or Existing Skin-whitening Compound and D-pantothenyl Alcohol> [0062] In order to confirm the synergistic effect based on combining D-pantothenyl alcohol and the aforementioned plant extract having a melanogenesis inhibitory action and in order to confirm the synergistic effect based on combining D-pantothenyl alcohol and a skin-whitening compound, the experiment was conducted in the same manner as in the aforementioned <Experiment 1: Melanogenesis Inhibition Experiment> and <Experiment 2: Keratinocyte Cell Proliferation Experiment>. While 0 mM or 0 µM D-pantothenyl alcohol was used as a control similarly, the 1 mM D-pantothenyl alcohol in <Experiment 1> was replaced with each of the following samples (1) to (3) for experimenting. Sample (1): 1 mM D-pantothenyl alcohol Sample (2) : one 1% species selected from the plant extracts listed Table 1 (extracts 1 to 50), or one 0.1 µg/mL species selected from existing skin-whitening compounds Sample (3) : a combination of the sample (1) and each of the samples (2) [0063] In addition, the 15 µM and the 150 µM D-pantothenyl alcohol in <Experiment 2> were replaced with the aforementioned samples (1) to (3) respectively for experimenting. The results are shown in Table 2. Note that the amount of melanin (%) and the cell proliferation rate (%) in Table 2 are both a ratio to the control, as described in Experiment 1 and Experiment 2. [0064] As a note, the existing skin-whitening compounds used here are "4-n-butyl resorcinol", "ursolic acid phosphate ester", the aforementioned compounds 1, 31, and 45. [0065] In the present experiment, as the compound 1, 1- (triphenylmethyl) imidazole was synthesized by the method described in WO2010/074052 and was used. As the compound 31, N-benzoyl-L-serine was synthesized by the method described in WO2011/074643 and was used. As the compound 45, N-(toluyl) methionine was made by the method described in WO2010/058730 and was used. The below-mentioned <Skin-whitening Rate> is as above. Table 1 No. Plant Extracts 1 Uncaria gambir extract 2 Isodon japonicus extract 3 Echinacea angustifolia leaf extract 4 Lithospermum erythrorhizon root extract 5 Carthamus tinctorius flower extract 6 Persea gratissima fruit extract 7 Abelmoschus esclentus fruit extract 8 Actinidia chinensis fruit extract 9 Alpinia speciosa leaf extract 10 Saponaria officinalis extract 11 Caprifoliaceae extract 12 green tea extract 13 Benincasa cerifera seed exract 14 Allium sativum extract 15 Citrus aurantifolia fruit juice extract 16 natto extract 17 Citrus aurantium dulsis fruit extract 18 Valeriana officinalis extract 19 Cucumis sativus extract 20 Prunus armeniaca extract 21 Gardenia florida extract 22 Citrus grandis fruit extract 23 Arctium lappa root extract 24 black tea extract 25 Equisetum arvense extract 26 Malva sylvestris extract 27 Jujube extract 28 Solanum lycopersicum extract 29 Daucus carota sativa extract 30 Hoelen extract 31 Lilium candidum bulb extract 32 Litchi chinensis extract 33 Lactuca scariola sativa leaf extract 34 Citrus medica limonum fruit extract 35 royal jelly extract 36 Pleurotus cornucopiae extract 37 Algae extract 38 Zanthoxylum bungeanum pericarp extract 39 Coprinus comatus extract 40 Salix alba bark extract 41 horsetail extract Ampelopsis grossedentata leaf 42 extract 43 Acer palmatum leaf extract 44 Opuntia streptacantha stem extract 45 Bidens pilosa extract 46 Prunus mume fruit water extract 47 Mallotus philippinensis bark extract 48 Salacia reticulata wood extract 49 Euphrasia officinalis extract 50 Nelumbo nucifera germ extract Table 2 Melanin Amount (%) Cell Proliferation Rate (%) Sample (1) Sample (2) Sample (3) Sample (1) Sample (2) Sample (3) Plant extract 1 69.8 96.2 61.2 123.3 103.2 136.3 Plant extract 2 69.8 95.8 62.1 123.3 96.5 130.6 Plant extract 3 69.8 96.8 60.2 123.3 106.3 126.2 Plant extract 4 69.8 98.6 60.8 123.3 102.3 128.6 Plant extract 5 69.8 97.2 61.1 123.3 101.2 130.1 Plant extract 6 69.8 99.4 65.3 123.3 118.9 129.3 Plant extract 7 69.8 98.3 64.3 123.3 109.5 128.1 Plant extract 8 69.8 97.9 63.8 123.3 103.5 130.3 Plant extract 9 69.8 98.6 63.5 123.3 91.2 143.8 Plant extract 10 69.8 99.4 65.4 123.3 114.5 128.4 Plant extract 11 69.8 98.6 64.4 123.3 105.7 130.6 Plant extract 12 69.8 98.3 64.6 123.3 122.1 166.2 Plant extract 13 69.8 99.5 65.3 123.3 117.0 137.9 Plant extract 14 69.8 97.7 63.4 123.3 106.0 128.4 Plant extract 15 69.8 98.4 64.3 123.3 98.4 136.3 Plant extract 16 69.8 98.9 65.1 123.3 106.0 142.0 Plant extract 17 69.8 97.8 64.1 123.3 109.5 128.4 Plant extract 18 69.8 97.7 64.0 123.3 93.5 130.3 Plant extract 19 69.8 99.3 65.5 123.3 112.2 129.6 Plant extract 20 69.8 98.2 64.1 123.3 115.9 130.0 Plant extract 21 69.8 98.6 64.7 123.3 111.3 133.0 Plant extract 22 69.8 99.4 65.4 123.3 112.2 131.9 Plant extract 23 69.8 98.3 64.0 123.3 93.1 128.9 Plant extract 24 69.8 97.8 63.7 123.3 94.7 130.9 Plant extract 25 69.8 98.5 64.6 123.3 114.1 132.1 Plant extract 26 69.8 99.1 65.0 123.3 117.3 131.4 Plant extract 27 69.8 99.0 64.8 123.3 114.8 136.5 Plant extract 28 69.8 98.7 64.6 123.3 115.0 128.6 Plant extract 29 69.8 98.3 64.3 123.3 112.2 129.6 Plant extract 30 69.8 99.2 65.0 123.3 119.2 134.9 Plant extract 31 69.8 97.6 63.6 123.3 106.5 137.2 Plant extract 32 69.8 98.6 64.5 123.3 120.8 143.9 Plant extract 33 69.8 98.8 64.6 123.3 104.8 132.8 Plant extract 34 69.8 99.8 65.8 123.3 116.4 136.0 Plant extract 35 69.8 98.6 64.9 123.3 117.8 137.2 Plant extract 36 69.8 99.8 69.7 123.3 101.5 129.8 Plant extract 37 69.8 97.6 69.7 123.3 102.4 129.9 Plant extract 38 69.8 99.1 69.4 123.3 102.8 130.1 Plant extract 39 69.8 99.5 69.6 123.3 102.3 129.8 Plant extract 40 69.8 98.7 69.7 123.3 100.2 130.3 Plant extract 41 69.8 98.8 65.0 123.3 101.3 123.2 Plant extract 42 69.8 98.3 64.3 123.3 102.3 123.1 Plant extract 43 69.8 98.6 64.8 123.3 105.3 123.3 Plant extract 44 69.8 98.9 64.1 123.3 100.8 122.9 Plant extract 45 69.8 98.8 64.5 123.3 99.9 123.5 Plant extract 46 69.8 99.8 69.9 123.3 99.8 123.3 Plant extract 47 69.8 98.6 69.8 123.3 100.9 123.4 Plant extract 48 69.8 99.1 69.8 123.3 101.6 123.3 Plant extract 49 69.8 98.6 69.7 123.3 102.7 123.0 Plant extract 50 69.8 99.3 69.8 123.3 100.6 123.1 4-n-butyl resorcinol 69.8 93.2 59.4 123.3 120.3 140.7 Ursolic acid phosphate ester 69.8 98.4 61.0 123.3 118.6 139.8 Compound 1 69.8 93.1 59.1 123.3 112.1 139.7 Compound 31 69.8 94.6 60.1 123.3 118.7 139.8 Compound 45 69.8 93.4 59.8 123.3 113.2 140.2 [0066] It is recognized from the above results that the synergistic effect of a melanogenesis inhibitory action and a keratinocyte cell proliferation action is obtained by applying the plant extracts 1 to 35, the compounds 1, 31, or 45, 4-n-butyl resorcinol, or an ursolic acid phosphate ester, in combination with D-pantothenyl alcohol. It is also recognized that the synergistic effect of a keratinocyte cell proliferation action is obtained by applying D-pantothenyl alcohol and the plant extracts 36 to 40 in combination and that the synergistic effect of a melanogenesis inhibition is obtained by applying D-pantothenyl alcohol and the plant extracts 41 to 45 in combination. [0067] Above all, when the synergistic effect is achieved for a melanogenesis inhibitory action and a keratinocyte cell proliferation action, it is considered that the turnover promoting function, i.e., the melanin discharge promoting function, of D-pantothenyl alcohol was able to be further enhanced, and the skin-whitening rate for pigmented skin can be expected to be further accelerated. [0068] In the preparation of skin-whitening cosmetics with D-pantothenyl alcohol formulated thereinto, the cosmetics can contain an ingredient used in ordinary cosmetics. In addition, their dosage forms are not limited in any way. Below, ingredients which can be contained in skin-whitening cosmetics when applied to skin-whitening cosmetics will be described. [0069] Examples of effective ingredients include skin-whitening ingredients other than D-pantothenyl alcohol, anti-wrinkle ingredients, anti-inflammatory ingredients other than pantothenyl alcohol, and extracts derived from plants and animals, and the like. When D-pantothenyl alcohol is used as an effective ingredient, two or more effective ingredients may be contained. [0070] The skin-whitening ingredients are not particularly limited as long as they are generally used for cosmetics. Examples include 4-n-butyl resorcinol, ascorbic acid glucoside, 3-O-ethyl ascorbic acid, tranexamic acid, arbutin, 1-triphenylmethylpiperidine, 1-triphenylmethylpyrrolidine, 2-(triphenylmethyloxy)ethanol, 2-(triphenylmethylamino)ethanol, 2-(triphenylmethyloxy)ethylamine, triphenylmethylamine, triphenylmethanol, triphenylmethane, and aminodiphenylmethane, N-(p-toluyl)cysteic acid, N-(p-methoxybenzoyl)cysteic acid, and the like. Still other skin-whitening ingredients include N-benzoyl-serine, N-(p-methylbenzoyl)serine, N-(p-ethylbenzoyl)serine, N-(p-methoxybenzoyl)serine, N-(p-fluorobenzoyl)serine, N-(p-trifluoromethylbenzoyl)serine, N-(2-naphthoyl)serine, N-(4-phenylbenzoyl)serine, N-(p-methylbenzoyl)serine methyl ester, N-(p-methylbenzoyl)serine ethyl ester, N-(2-naphthoyl)serine methyl ester, N-benzoyl-O-methylserine, N-(p-methylbenzoyl)-O-methylserine, N-(p-methylbenzoyl)-O-acetyl serine, N-(2-naphthoyl)-O-methylserine, and the like. [0071] These skin-whitening ingredients can be already commercially available or can also be obtained synthetically. [0072] The content of skin-whitening ingredients in skin-whitening cosmetics is usually 0.01 to 30 % by mass, preferably 0.1 to 10 % by mass, more preferably 1 to 5% by mass. [0073] The anti-wrinkle ingredients are not particularly limited as long as they are generally used for cosmetics. Examples include vitamin A or a derivative thereof, retinol, retinal, retinoic acid, tretinoin, isotretinoin, tocopherol retinoate, retinol palmitate, retinol acetate, benzyl ursolate ester, ursolic acid phosphate ester, benzyl betulinate ester, and benzilic acid phosphate ester. The content of the anti-wrinkle ingredients in cosmetics is usually 0.01 to 30 % by mass, preferably 0.1 to 10 % by mass, more preferably 1 to 5% by mass. [0074] The extracts derived from plants and animals are not particularly limited as long as they are generally used for pharmaceuticals, cosmetics, food, and the like. Examples of preferable extracts include Akebia quinata extract, Thujopsis dolabrata branch extract, Asparagus officinalis extract, Persea gratissima fruit extract, Hydrangea serrata leaf extract, Prunus amygdalus dulcis seed extract, Arnica extract, Aloe extract, Aronia extract, Prunus armeniaca extract, Ginkgo biloba extract, Indian kino extract, Foeniculum vulgare fruit extract, Aralia cordata extract, Rosa multiflora fruit extract, Acanthopanax senticosus extract, Isodonis japonicus extract, Scutellaria root extract, Phellodendron amurense extract, Coptis extract, Panax ginseng extract, Hypericum erectum extract, Lamium album extract, Citrus aurantium dulsis fruit extract, Pyracantha fortuneana extract, Pueraria lobata root extract, Chamomilla extract, Daucus carota sativa extract, Artemisia capillaris extract, Hemerocallis fulva extract, Actinidia chinensis fruit extract, Cucumis sativus extract, Psidium guajava extract, Sophora root extract, Gardenia florida extract, Sasa veitchii leaf extract, Sophora flavescens extract, Juglans extract, Citrus grandis fruit extract, black rice extract, Chlorella vulgaris extract, Morus alba extract, Mucuna birdwoodiana stem extract, Alpinia speciosa leaf extract, Gentiana lutea extract, Geranium thunbergii extract, black tea extract, Arctium lappa root extract, Oryza sativa extract, Rice ferment extract, Rice bran ferment extract, Oryza sativa germ oil, Vaccinium vitis-idaea extract, Salvia sclarea extract, Saponaria officinalis extract, Sasa extract, Crataegus cuneata fruit extract, Coriandrum sativum fruit extract, Zanthoxylum piperitum extract, Lentinus edodes extract, Rehmannia root extract, Lithospermum erythrorhizon root extract, Perilla extract, Tilia japonica extract, Spiraea ulmaria flower extract, Paeonia albiflora extract, Zingiber officinale root extract, Acorus calamus root extract, Betula alba extract, Equisetum arvense extract, Stevia rebaudiana extract, Stevia fermented product, Hedera helix extract, Crataegus oxyacantha extract, Sambucus nigra extract, Achillea milefolium extract, Mentha piperita extract, Salvia officinalis extract, Malva sylvestris extract, Cnidium officinale extract, Swertia japonica extract, Morus alba root extract, Rheum extract, Glycine soja extract, Jujube extract, Thymus vulgaris extract, Taraxacum extract, tea extract, Eugenia caryophyllus flower extract, Rutaceae extract, sweet tea extract, Capsicum annuum extract, Angelica acutiloba extract, Calendula officinalis extract, Prunus persica extract, Citrus aurantium extract, Houttuynia cordata extract, Solanum lycopersicum extract, natto extract, Daucus carota sativa extract, Allium sativum extract, Rosa canina fruit extract, Hibiscus sabdariffa flower extract, Ophiopogon japonicus extract, Nelumbo nucifera extract, Carum petroselinum extract, birch extract, Hamamelis virginiana extract, Isodon japonicus extract, Cupressaceae extract, Eriobotrya japonica extract, Tussilago farfara extract, butterbur sprout extract, Hoelen extract, Ruscus aculeatus root extract, Vitis vinifera fruit extract, Vitis vinifera seed extract, Luffa cylindrica extract, Carthamus tinctorius flower extract, Mentha piperita extract, Tilia platyphyllos flower extract, Paeonia suffruticosa root extract, Humulus lupulus extract, Pinus sylvestris cone extract, Origanum majorana leaf extract, Aesculus hippocastanum extract, Lysichiton extract, Sapindus mukorossi peel extract, Melissa officinalis extract, Spermatochnaceae extract, Prunus persica extract, Centaurea cyanus flower extract, Eucalyptus globulus extract, Saxifraga sarmentosa extract, Citrus junos fruit extract, Lilium candidum bulb extract, coix seed extract, Artemisia extract, Lavandula angustifolia extract, green tea extract, Pyrus malus fruit extract, rooibos tea extract, Litchi chinensis extract, Lactuca scariola sativa leaf extract, Citrus medica limonum fruit extract, Forsythia extract, Astragalus sinicus extract, rose extract, Rosmarinus officinalis extract, Anthemis nobilis flower extract, royal jelly extract, and Sanguisorba officinalis root extract. [0075] The content of the extracts derived from plants and animals in cosmetics is usually 0.01 to 30 % by mass, preferably 0.1 to 10 % by mass, more preferably 1 to 5% by mass. [0076] Examples of anti-inflammatory ingredients include Kurarinone, glabridin, glycyrrhizic acid and glycyrrhetinic acid and the like, and are preferably, glycyrrhizic acid and a salt thereof, glycyrrhetinic acid alkyl and a salt thereof, as well as glycyrrhetinic acid and a salt thereof. [0077] The content of the anti-inflammatory ingredients in cosmetics is usually 0.01 to 30 % by mass, preferably 0.1 to 10 % by mass, more preferably 1 to 5% by mass. [0078] Examples of oily ingredients include polar oils, volatile hydrocarbon oils, and the like. [0079] Examples of polar oils include, as synthetic ester oils, isopropyl myristate, cetyl octanoate, octyldodecyl myristate, isopropyl palmitate, butyl stearate, hexyl laurate, myristyl myristate, decyl oleate, hexyl decyl dimethyl-octanoate, cetyl lactate, myristyl lactate, lanolin acetate, isocetyl stearate, isocetyl isostearate, cholesteryl 12-hydroxystearate, ethylene glycol di-2-ethylhexylate, dipentaerythritol fatty acid ester, N-alkyl glycol monoisostearate, neopentyl glycol dicaprate, diisostearyl malate, glycerin di-2-heptylundecanoate, trimethylol propane tri-2-ethylhexylate, trimethylolpropane triisostearate, pentane erythritol tetra-2-ethylhexylate, glycerin tri-2-ethylhexylate, and trimethylolpropane triisostearate. [0080] Additional examples include cetyl 2-ethylhexanoate, 2-ethylhexyl palmitate, glycerin trimyristate, glyceride tri-2-heptylundecanoate, castor oil fatty acid methyl ester, oil oleate, cetostearyl alcohol, acetone glyceride, 2-heptylundecyl palmitate, diisobutyl adipate, 2-octyldodecyl N-lauroyl-L-glutamate ester, di-2-heptylundecyl adipate, ethyl laurate, di-2-ethylhexyl sebacate, 2-hexyldecyl myristate, 2-hexyldecyl palmitate, 2-hexyldecyl adipate, diisopropyl sebacate, 2-ethylhexyl succinate, ethyl acetate, butyl acetate, amyl acetate, triethyl citrate, octyl methoxycinnamate, and the like. [0081] Examples of natural oils include avocado oil, camellia oil, turtle oil, macadamia nut oil, corn oil, mink oil, olive oil, rapeseed oil, egg yolk oil, sesame oil, persic oil, wheat germ oil, sasanqua oil, castor oil, linseed oil, safflower oil, cottonseed oil, perilla oil, soybean oil, peanut oil, tea seed oil, kaya oil, rice bran oil, Chinese tung oil, Japanese tung oil, jojoba oil, germ oil, triglycerol, glycerin trioctanoate, glycerin triisopalmitate, and the like. [0082] Examples of volatile hydrocarbon oils include isododecane, isohexadecane, and the like. [0083] Examples of surfactants include anionic surfactants such as fatty acid soap (sodium laurate, sodium palmitate, etc.), potassium laurylsulfate, and triethanolamine alkylsulfate ether, and cationic surfactants such as stearyl trimethyl ammonium chloride, benzalkonium chloride, and lauryl amine oxide;amphoteric surfactants such as betaine-based surfactants (alkyl betaine, amido betaine, sulfobetaine, etc.), imidazoline-based amphoteric surfactants (2-cocoyl-2-imidazolinium hydroxide-1-carboxyethyloxy disodium salt etc.), and acyl methyl taurine; andnon-ionic surfactants such as sorbitan fatty acid esters (sorbitan monostearate, sorbitan sesquioleate, etc.), glycerin fatty acids (glycerin monostearate etc.), propylene glycol fatty acid esters (propylene glycol monostearate etc.), hydrogenated castor oil derivatives, glycerin alkyl ethers, POE sorbitan fatty acid esters (POE sorbitan monooleate, polyoxyethylene sorbitan monostearate, etc.), POE sorbitol fatty acid esters (POE-sorbit monolaurate etc.), POE glycerine fatty acid esters (POE-glycerine monoisostearate, etc.), POE fatty acid esters (polyethylene glycol monooleate, POE distearate, etc.), POE alkyl ethers (POE2-octyldodecyl ether etc.), POE alkylphenyl ethers (POE nonylphenyl ether etc.), Pluronic type ethers, POE/POP alkyl ethers (POE/POP2-decyltetradecyl ether etc.), Tetronic ethers, POE castor oil/hydrogenated castor oil derivatives (POE castor oil, POE hydrogenated castor oil, etc.), sucrose fatty acid esters, and alkyl glucosides [0084] Examples of polyhydric alcohols include polyethylene glycol, glycerine, 1,3-butylene glycol, erythritol, sorbitol, xylitol, maltitol, propylene glycol, dipropylene glycol, diglycerine, isoprene glycol, 1,2-pentanediol, 2,4-hexylene glycol, 1,2-hexanediol, 1,2-octanediol, and the like. [0085] Examples of thickeners include guar gum, quince seed, carrageenan, galactan, gum arabic, pectin, mannan, starch, xanthan gum, curdlan, methyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, methyl hydroxypropyl cellulose, chondroitin sulfate, dermatan sulfate, glycogen, sodium heparan sulfate, hyaluronic acid, sodium hyaluronate, tragacanth, keratan sulfate, chondroitin, mucoitin sulfate, hydroxyethyl guar gum, carboxymethyl guar gum, dextran, keratosulfate sulfate, locust bean gum, succinoglucan, charonic acid, chitin, chitosan, carboxymethyl chitin, agar, polyvinyl alcohol, polyvinyl pyrrolidone, carboxyvinyl polymers, alkyl-modified carboxyvinyl polymers, sodium polyacrylate, polyethylene glycol, and bentonite. [0086] Examples of powders include powder which may be surface-treated, such as mica, talc, kaolin, synthetic mica, calcium carbonate, magnesium carbonate, silicic anhydride (silica), aluminum oxide, and barium sulfate; inorganic pigments which may be surface-treated, such as red iron oxide, yellow iron oxide, black iron oxide, cobalt oxide, ultramarine, iron blue, titanium oxide, and zinc oxide; pearl agents which may be surface-treated such as mica titanium, fish scale guanine, and bismuth oxychloride; organic dyes which may be laked, such as Red No. 202, Red No. 228, Red No. 226, Yellow No. 4, Blue No. 404, Yellow No. 5, Red No. 505, Red No. 230, Red No. 223, Orange No. 201, Red No. 213, Yellow No. 204, Yellow No. 203, Blue No. 1, Green No. 201, Purple No. 201, and Red No. 204; and organic powders such as polyethylene powder, methyl polymethacrylate, nylon powder, and organopolysiloxane elastomer. [0087] Examples of ultraviolet absorbers include para-aminobenzoic acid-based ultraviolet absorbers, anthranilic acid-based ultraviolet absorbers, salicylic acid-based ultraviolet absorbers, cinnamic acid-based ultraviolet absorbers, benzophenone ultraviolet absorbers, sugar-based ultraviolet absorbers, and ultraviolet absorbers such as 2-(2'-hydroxy-5'-t-octylphenyl)benzotriazole and 4-methoxy-4'-t-butyldibenzoyl methane. [0088] Skin-whitening cosmetics, without a manufacturing method therefor being particularly limited, can be manufactured using a known method as appropriate, in accordance with the dosage form to be applied of skin-whitening cosmetics. The dosage form, as applied as a skin-whitening cosmetic, can take any of a lotion dosage form, emulsion dosage form, essence dosage form, cream dosage form, and powder-containing dosage form which are normally known. Examples [0089] Below, the present invention will be described in further detail with reference to specific experimental examples, but the present invention is not limited to the following aspects only. <Examples 1 to 4> [0090] The skin-whitening cosmetics 1 to 4 formulated as shown in the following Tables 3 to 6 were prepared. Table 3: Example 1 (lotion) (parts by mass) (A) D-pantothenyl alcohol 1.0 glycerin 5.0 propylene glycol 4.0Artemisia extract 0.1Origanum majorana leaf extract 0.1 purified water balance (B) POE(20) sorbitan monolaurate ester 1.5 POE(20) lauryl ether 0.5 ethanol 10.0 perfume 0.1 Total 100.0 (Preparation Method) The ingredients of (A) were combined and dissolved at room temperature. The ingredients of (B) were also dissolved at room temperature, added to the formulation (A), and solubilized, to obtain the skin-whitening cosmetic 1. Table 4: Example 2 (emulsion) (parts by mass) (A) POE(20) hydrogenated castor oil 1.5 coconut oil fatty acid monoglyceride 1.0 oleic acid triglyceride 7.5 (B) D-pantothenyl alcohol 1.0 glycerin 2.5Artemisia extract 0.1Origanum majorana leaf extract 0.1 purified water balance (C) perfume 0.2 Total 100.0 (Preparation Method) The ingredients of (A) were combined and mixed/heated to 70°C. The ingredients of (B) were combined and mixed/heated to 70°C, the formulation (A) was added thereto and emulsified, and (C) was added under cooling, to obtain the skin-whitening cosmetic 2. Table 5: Example 3 (hand cream) (parts by mass) (A) petrolatum 18.0 cetanol 8.0 POE(20) oleyl ether 1.4 sorbitan monostearate 0.8 (B) D-pantothenyl alcohol 1.0 preservative 0.3Artemisia extract 0.1Origanum majorana leaf extract 0.1 purified water balance (C) perfume 0.2 Total 100.0 (Preparation Method) The skin-whitening cosmetic 3 was obtained in the same manner as in Example 2. Table 6: Example 4 (cream) (parts by mass) (A) POE(30) cetyl ether 2.0 glycerin monostearate 10.0 liquid paraffin 10.0 petrolatum 4.0 cetanol 5.0 preservative 0.2 (B) D-pantothenyl alcohol 1.0 propylene glycol 10.0Artemisia extract 0.1Origanum majorana leaf extract 0.1 purified water balance Total 100.0 (Preparation Method) The ingredients of (A) were combined and heated to 80°C. The ingredients of (B) were combined and heated to 80°C. The mixture of (B) was added to the mixture of (A) under stirring, emulsified under stirring, and then cooled, to obtain the skin-whitening cosmetic 4. <Evaluation of Skin-whitening> [0091] The comparative cosmetics 1 to 3 were made in the same manner as the method described in Example 1 except that the "D-pantothenyl alcohol" in Example 1 was replaced with "water", replaced with an existing skin-whitening ingredient, "2-hydroxy-2'-hydroxy-5,5'-dipropyl-1,1'-biphenyl", having a formulation concentration of 1%, and replaced with "disodium adenosine monophosphate" having a formulation concentration of 2%, for the comparative cosmetics 1 to 3 respectively. The skin-whitening cosmetic 1 and the comparative cosmetics 1 to 3 were evaluated for pigmentation inhibitory action in accordance with the following procedure. [0092] A total of four 1.5 cm × 1.5 cm sites were provided inside an upper arm of a panelist who voluntarily participated. The provided sites were subjected to a minimal erythema dose (1MED) of ultraviolet irradiation once a day, three times for three consecutive days. The skin-whitening cosmetic 1 and the comparative cosmetics 1 to 3 were applied at 50 µL twice a day for 21 consecutive days after completion of the ultraviolet irradiation in Experiment Day 1 (after completion of the first irradiation). Twenty-four hours after completion of the application in Day 21, each test site was measured for skin brightness (L* value) with a color difference meter (CR-300, Konica Minolta Inc.), and the difference between the L* value of the applied site of the comparative cosmetic 1 (control) and the L* value of the applied site of the skin-whitening cosmetic 1 or the comparative cosmetic 2 or 3 was calculated (ΔL* value = L* value of the applied site of the skin-whitening cosmetic 1 (or the comparative cosmetic 2 or 3) - L* value of the applied site of the comparative cosmetic 1). The greater the degree of pigmentation is, the lower the L* value is. Accordingly, it is possible to determine that the larger the ΔL* value is, the more improved the pigmentation has been. The calculated ΔL* value of 0.4 or more was determined to be A, and less than 0.4 to be B. The results are shown in Table 7. Table 7 Formulation Concentration (% by mass) L* value ΔL* value Determination Skin-whitening cosmetic 1 1% 63.92 0.40 A Comparative cosmetic 2 1% 63.82 0.30 B Comparative cosmetic 3 2% 63.85 0.33 B Comparative cosmetic 1 (Control) - 63.52 - - [0093] According to the results in Table 7, the skin-whitening cosmetic 1 of the present invention has a strong pigmentation inhibitory action, compared with the comparative cosmetic 2 and the comparative cosmetic 3, and this shows that the skin-whitening cosmetic 1 of the present invention exhibits an excellent skin-whitening effect (pigmentation improving effect). This is a skin-whitening effect by the melanogenesis inhibitor (D-pantothenyl alcohol) contained in the skin-whitening cosmetic 1 of the present invention. It can also be appreciated that since the melanogenesis inhibitor of the present invention also has a keratinocyte cell proliferation action in addition to the melanogenesis inhibitory action, it can achieve a higher skin-whitening effect compared with existing skin-whitening agents. <Reference Examples 1 to 64 (Skin-whitening Cosmetics 5 to 68)> [0094] The skin-whitening cosmetic 5 formulated as shown in Table 8 below was prepared. In addition, the skin-whitening cosmetics 5 to 55 further containing in the formulation (A) the plant extracts shown in Table 1 at a concentration of 1.0% by mass relative to the total amount of the cosmetic were prepared. In addition, the plant extracts were replaced with "4-n-butyl resorcinol", "ursolic acid phosphate ester", "2-hydroxy-2'-hydroxy-5,5'-dipropyl-1,1'-biphenyl", "disodium adenosine monophosphate", the aforementioned compounds 1, 2, 13, 30, 31, 33, 45, 47, or 49, to prepare the skin-whitening cosmetics 56 to 68. The concentrations of the "4-n-butyl resorcinol", "ursolic acid phosphate ester", compounds 1, 2, 13, 30, 31, 33, 45, 47, and 49 were 0.1% by mass relative to the total amount of the cosmetic, and the concentrations of the "2-hydroxy-2'-hydroxy-5,5'-dipropyl-1,1'-biphenyl", and "disodium adenosine monophosphate" were 1.0% by mass relative to the total amount of the cosmetic. [0095] As a note, in the present experiment, 1-(triphenylmethyl)piperidine was synthesized by the method described in WO2010/074052 and was used for the compound 2, and 2-(triphenylmethyloxy)ethanol was synthesized by the method described in the same literature and was used for the compound 13. N-(pmethylbenzoyl)-L-serine was synthesized by the method described in WO2011/074643 and was used for the compound 30, and N-(p-methoxybenzoyl)-L-serine was synthesized by the method described in the same literature and was used for the compound 33. N-(toluyl)cysteic acid was synthesized by the method described in WO2010/058730 and was used for the compound 47, and N-(4-methoxybenzoyl)-L-cysteic acid was synthesized by the method described in the same literature and was used for the compound 49. The compounds 1, 31, and 45 are the same as in the aforementioned <Experiment 3>. [0096] Any of the skin-whitening cosmetics 5 to 68 was obtained by the same preparation method as the cosmetic 1, in which the ingredients of (A) were combined and dissolved at room temperature, and the ingredients of (B) were dissolved at room temperature, added to the formulation (A), and solubilized. Table 8: Skin-whitening Cosmetic 5 (lotion) (parts by mass) (A) D-pantothenyl alcohol 1.0 glycerin 5.0 propylene glycol 4.0 purified water balance (B) POE(20) sorbitan monolaurate ester 1.5 POE(20) lauryl ether 0.5 ethanol 10.0 perfume 0.1 Total 100.0 <Evaluation of Skin-Whitening Rate> [0097] The aforementioned skin-whitening cosmetics 5 to 68 were evaluated for skin-whitening rate in accordance with the following procedure. The comparative cosmetic 4 was prepared in the same manner as the cosmetic 5 except that the D-pantothenyl alcohol formulated into the cosmetic 5 was replaced with water. [0098] A total of eight 1.0 cm × 1.0 cm sites were provided inside the right and left upper arms of a panelist who voluntarily participated. The provided sites were subjected to a minimal erythema dose (1MED) of ultraviolet irradiation once a day, three times for three consecutive days. The skin-whitening cosmetics 5 to 68 and the comparative cosmetic 4 were applied at 50 µL twice a day for 21 consecutive days after completion of the ultraviolet irradiation in Experiment Day 1 (after completion of the first irradiation). Twenty-four hours after completion of the second application of each day, each test site was measured for skin brightness (L* value) with a color difference meter (CR-300, Konica Minolta Inc.), and the difference between the L* value of the applied site of the comparative cosmetic 4 and the L* value of the applied site of the skin-whitening cosmetics 5 to 68 was calculated (ΔL* value = L* value of the applied site of the skin-whitening cosmetic 5 (or the skin-whitening cosmetics 6 to 68) - L* value of the applied site of the comparative cosmetic 4). The greater the degree of pigmentation is, the lower the L* value is. Accordingly, it is possible to determine that the larger the ΔL* value is, the more improved the pigmentation has been. The number of days taken for the calculated ΔL* value to become 0.4 and the ΔL* value measured/calculated 24 hours after completion of the application in Day 21 are shown in Tables 9 to 19. [0099] Furthermore, the cosmetics 6' to 68' each were prepared in the same manner as the cosmetic 5 except that the D-pantothenyl alcohol formulated into the cosmetics 6 to 68 was replaced with water, in order to calculate the ΔL* value and the number of days taken for the ΔL* value to become 0.4 for the cosmetics 6 to 68 containing none of the skin-whitening ingredient D pantothenyl alcohol, i.e., containing only any of the aforementioned plant extract or an existing skin-whitening compound as a skin-whitening ingredient. Subsequently, in the same manner as in the aforementioned <Evaluation of Skin-whitening Rate>, the comparative cosmetic 4 was used as a control, and the number of days taken for the ΔL* value to become 0.4 as well as the L* value and ΔL* value measured 24 hours after completion of the application in Day 21 was obtained. The ΔL* values measured/calculated 24 hours after completion of the application in Day 21 are shown as "ΔL* value for no D-pantothenyl alcohol" in Tables 9 to 19. The number of days taken for the ΔL* value to become 0.4 was more than 21 days in every case. Table 9 Skin-whitening Cosmetic Skin-whitening Ingredient ΔL* Value No. of Days Taken for ΔL* Value = 0.4 ΔL* Value for No D-pantothenyl Alcohol 5 D-pantothenyl alcohol 0.41 21 - 6 D-pantothenyl alcohol + plant extract 1 0.44 18 0.10 7 D-pantothenyl alcohol + plant extract 2 0.43 19 0.08 8 D-pantothenyl alcohol + plant extract 3 0.44 18 0.11 9 D-pantothenyl alcohol + plant extract 4 0.44 19 0.12 10 D-pantothenyl alcohol + plant extract 5 0.43 20 0.11 11 D-pantothenyl alcohol + plant extract 6 0.42 20 0.08 Comparative cosmetic 4 (Control) - - - - Table 10 Skin-whitening Cosmetic Skin-whitening Ingredient ΔL* Value No. of Days Taken for ΔL* Value = 0.4 ΔL* Value for No D-pantothenyl Alcohol 5 D-pantothenyl alcohol 0.40 21 - 12 D-pantothenyl alcohol + plant extract 7 0.41 20 0.07 13 D-pantothenyl alcohol + plant extract 8 0.41 20 0.07 14 D-pantothenyl alcohol + plant extract 9 0.41 20 0.08 15 D-pantothenyl alcohol + plant extract 10 0.41 20 0.09 16 D-pantothenyl alcohol + plant extract 11 0.41 20 0.08 17 D-pantothenyl alcohol + plant extract 12 0.41 20 0.10 Comparative cosmetic 4 (Control) - - - - Table 11 Skin-whitening Cosmetic Skin-whitening Ingredient ΔL* Value No. of Days Taken for ΔL* Value = 0.4 ΔL* Value for No D-pantothenyl Alcohol 5 D-pantothenyl alcohol 0.40 21 - 18 D-pantothenyl alcohol + plant extract 13 0.41 20 0.08 19 D-pantothenyl alcohol + plant extract 14 0.41 20 0.08 20 D-pantothenyl alcohol + plant extract 15 0.41 20 0.07 21 D-pantothenyl alcohol + plant extract 16 0.41 20 0.08 22 D-pantothenyl alcohol + plant extract 17 0.41 20 0.08 23 D-pantothenyl alcohol + plant extract 18 0.41 20 0.07 Comparative cosmetic 4 (Control) - - - - Table 12 Skin-whitening Cosmetic Skin-whitening Ingredient ΔL* Value No. of Days Taken for ΔL* Value = 0.4 ΔL* Value for No D-pantothenyl Alcohol 5 D-pantothenyl alcohol 0.41 21 - 24 D-pantothenyl alcohol + plant extract 19 0.42 20 0.09 25 D-pantothenyl alcohol + plant extract 20 0.42 20 0.07 26 D-pantothenyl alcohol + plant extract 21 0.42 20 0.08 27 D-pantothenyl alcohol + plant extract 22 0.42 20 0.08 28 D-pantothenyl alcohol + plant extract 23 0.42 20 0.09 29 D-pantothenyl alcohol + plant extract 24 0.42 20 0.07 Comparative cosmetic 4 (Control) - - - - Table 13 Skin-whitening Cosmetic Skin-whitening Ingredient ΔL* Value No. of Days Taken for ΔL* Value = 0.4 ΔL* Value for No D-pantothenyl Alcohol 5 D-pantothenyl alcohol 0.40 21 - 30 D-pantothenyl alcohol + plant extract 25 0.41 20 0.08 31 D-pantothenyl alcohol + plant extract 26 0.41 20 0.09 32 D-pantothenyl alcohol + plant extract 27 0.41 20 0.07 33 D-pantothenyl alcohol + plant extract 28 0.41 20 0.08 34 D-pantothenyl alcohol + plant extract 29 0.41 20 0.09 35 D-pantothenyl alcohol + plant extract 30 0.41 20 0.07 Comparative cosmetic 4 (Control) - - - - Table 14 Skin-whitening Cosmetic Skin-whitening Ingredient ΔL* Value No. of Days Taken for ΔL* Value = 0.4 ΔL* Value for No D-pantothenyl Alcohol 5 D-pantothenyl alcohol 0.40 21 - 36 D-pantothenyl alcohol + plant extract 31 0.41 20 0.08 37 D-pantothenyl alcohol + plant extract 32 0.41 20 0.10 38 D-pantothenyl alcohol + plant extract 33 0.41 20 0.09 39 D-pantothenyl alcohol + plant extract 34 0.41 20 0.08 40 D-pantothenyl alcohol + plant extract 35 0.41 20 0.08 41 D-pantothenyl alcohol + plant extract 36 0.40 21 0.10 Comparative cosmetic 4 (Control) - - - - Table 15 Skin-whitening Cosmetic Skin-whitening Ingredient ΔL* Value No. of Days Taken for ΔL* Value = 0.4 ΔL* Value for No D-pantothenyl Alcohol 5 D-pantothenyl alcohol 0.40 21 - 42 D-pantothenyl alcohol + plant extract 37 0.40 21 0.09 43 D-pantothenyl alcohol + plant extract 38 0.40 21 0.07 44 D-pantothenyl alcohol + plant extract 39 0.40 21 0.08 45 D-pantothenyl alcohol + plant extract 40 0.40 21 0.09 46 D-pantothenyl alcohol + plant extract 41 0.40 21 0.08 47 D-pantothenyl alcohol + plant extract 42 0.40 21 0.08 Comparative cosmetic 4 (Control) - - - - Table 16 Skin-whitening Cosmetic Skin-whitening Ingredient ΔL* Value No. of Days Taken for ΔL* Value = 0.4 ΔL* Value for No D-pantothenyl Alcohol 5 D-pantothenyl alcohol 0.40 21 - 48 D-pantothenyl alcohol + plant extract 43 0.40 21 0.10 49 D-pantothenyl alcohol + plant extract 44 0.40 21 0.08 50 D-pantothenyl alcohol + plant extract 45 0.40 21 0.05 51 D-pantothenyl alcohol + plant extract 46 0.40 21 0.10 52 D-pantothenyl alcohol + plant extract 47 0.40 21 0.10 53 D-pantothenyl alcohol + plant extract 48 0.40 21 0.06 Comparative cosmetic 4 (Control) - - - - Table 17 Skin-whitening Cosmetic Skin-whitening Ingredient ΔL* Value No. of Days Taken for ΔL* Value = 0.4 ΔL* Value for No D-pantothenyl Alcohol 5 D-pantothenyl alcohol 0.40 21 - 54 D-pantothenyl alcohol + plant extract 49 0.40 21 0.05 55 D-pantothenyl alcohol + plant extract 50 0.40 21 0.10 56 D-pantothenyl alcohol + 4-n-butyl resorcinol 0.43 18 0.35 57 D-pantothenyl alcohol + ursolic acid phosphate ester 0.43 19 0.20 58 D-pantothenyl alcohol + 2-hydroxy-2'-hydroxy-5,5'-diprop yl-1,1'-biphenyl 0.38 21 0.29 59 D-pantothenyl alcohol + disodium adenosine monophosphate 0.38 21 0.33 Comparati ve cosmetic 4 (Control) - - - - Table 18 Skin-whitening Cosmetic Skin-whitening Ingredient ΔL* Value No. of Days Taken for ΔL* Value = 0.4 ΔL* Value for No D-pantothenyl Alcohol 5 D-pantothenyl alcohol 0.41 21 - 60 D-pantothenyl alcohol + Compound 1 0.44 18 0.35 61 D-pantothenyl alcohol + Compound 2 0.46 17 0.38 62 D-pantothenyl alcohol + Compound 13 0.44 18 0.35 63 D-pantothenyl alcohol + Compound 30 0.45 18 0.35 64 D-pantothenyl alcohol + Compound 31 0.43 18 0.34 65 D-pantothenyl alcohol + Compound 33 0.44 18 0.34 Comparative cosmetic 4 (Control) - - - - Table 19 Skin-whitening Cosmetic Skin-whitening Ingredient ΔL* Value No. of Days Taken for ΔL* Value = 0.4 ΔL* Value for No D-pantothenyl Alcohol 5 D-pantothenyl alcohol 0.40 21 - 66 D-pantothenyl alcohol + Compound 45 0.43 18 0.34 67 D-pantothenyl alcohol + Compound 47 0.46 17 0.38 68 D-pantothenyl alcohol + Compound 49 0.44 18 0.34 Comparative cosmetic 4 (Control) - - - - [0100] From the results in Tables 9 to 19, it can be appreciated that a skin-whitening effect is obtained more quickly by applying to the skin a combination of D-pantothenyl alcohol and a specific plant extract or a specific existing skin-whitening compound. This is considered to be because D-pantothenyl alcohol has a skin-whitening action based on the two action mechanisms of inhibiting melanogenesis and promoting melanin discharge as well. [0101] The present invention can also be described or defined in accordance with the following clauses:1. A melanogenesis inhibitor comprising D-pantothenyl alcohol. 2. A skin-whitening cosmetic comprising the melanogenesis inhibitor according to clause 1 and one or more selected from the following skin-whitening agents (A) to (G): (A) one or more plant extracts having a melanogenesis inhibitory action selected from the group consisting of Uncaria gambir extract, Isodon japonicus extract, Echinacea angustifolia leaf extract, Lithospermum erythrorhizon root extract, Carthamus tinctorius flower extract, Persea gratissima fruit extract, Abelmoschus esclentus fruit extract, Actinidia chinensis fruit extract, Alpinia speciosa leaf extract, Saponaria officinalis extract, Caprifoliaceae extract, green tea extract, Benincasa cerifera seed exract, Allium sativum extract, Citrus aurantifolia fruit juice extract, natto extract, Citrus aurantium dulsis fruit extract, Valeriana officinalis extract, Cucumis sativus extract, Prunus armeniaca extract, Gardenia florida extract, Citrus grandis fruit extract, Arctium lappa root extract, black tea extract, Equisetum arvense extract, Malva sylvestris extract, Jujube extract, Solanum lycopersicum extract, Daucus carota sativa extract, Hoelen extract, Lilium candidum bulb extract, Litchi chinensis extract, Lactuca scariola sativa leaf extract, Citrus medica limonum fruit extract, and royal jelly extract; (B) a 4-alkyl resorcinol; (C) a compound represented by the following general formula (1) ; (D) a compound represented by the following general formula (2) ; (E) a compound represented by the following general formula (3) ; (F) an ursolic acid phosphate ester; and (G) a salt of the (B), (C), (D), (E), or (F); [wherein A1, A2, and A3 independently represent a phenyl which optionally contains a substituent, the substituent is selected from hydroxyl, C1-C4 alkyl, and C1-C4 alkyloxy, X is a nitrogen atom or oxygen atom, and -X-R1 is represented by the following general formula (4), (5), or (6)]; [wherein R'1 represents an aromatic group which is unsubstituted or contains a substituent, the substituent is a C1-C4 linear or branched alkyl group, C1-C4 linear or branched alkoxy group, halogen atom, or C1-C4 halogenated alkyl group, the aromatic group is a phenyl group, naphthyl group, or biphenyl group, R'2 represents a hydrogen atom, C1-C4 linear or branched alkyl group, or C1-C3 linear or branched alkyl acyl group, and R'3 represents a hydrogen atom or C1-C4 linear or branched alkyl group] ; [wherein R"1 represents -SH, -SO3H, -S-S-X1, -S-X2, -SO-X3, or -SO2-X4, in which X1 to X4 are independently a hydrogen atom or C1-C8 aliphatic hydrocarbon group, R"2 represents a C5-C12 aromatic group which optionally is unsubstituted or contains a substituent, the aromatic group is preferably a phenyl group, n represents an integer of 1 or 2, and the substituent is a C1-C4 alkyl group, C1-C4 alkoxy group, or phenyl group]; [wherein X1 is a nitrogen atom, R2 and R3 are bound to each other to form, together with X1, a C2-C8 heterocyclic ring or hydrocarbon ring which optionally has a substituent, the substituent is selected from a C1-C4 alkyl, C1-C4 alkyloxy, hydroxyl, amino, and oxo, and the carbon number of the heterocyclic ring is 3 to 5]; [wherein X2 is a nitrogen atom or oxygen atom, n is an integer of 1 to 5, n is preferably an integer of 1 to 3, Y is a hydroxyl group or amino group, R4 exists when X2 is a nitrogen atom, and represents a hydrogen atom, and R4 does not exist when X2 is an oxygen atom]; -X3-Hp (6)[wherein X3 is an oxygen atom or nitrogen atom, and p is the number corresponding to X3]. 3. The method according to clause 2, wherein the plant extract is one or more selected from Uncaria gambir extract, Isodon japonicus extract, Echinacea angustifolia leaf extract, Lithospermum erythrorhizon root extract, and Carthamus tinctorius flower extract. 4. The method according to clause 2, wherein the compound represented by the general formula (1) comprises one or more selected from the following compounds 1 to 29: 5. The method according to clause 2, wherein the compound represented by the general formula (2) comprises one or more selected from the following compounds 30 to 44: 6. The method according to clause 2, wherein the compound represented by the general formula (3) comprises one or more selected from the following compounds 45 to 52: 7. A skin-whitening method, comprising the steps of whitening skin by contacting the melanogenesis inhibitor according to clause 1 with the skin; and whitening the skin by contacting one or more selected from the following skin-whitening agents (A) to (G) with the skin: (A) one or more plant extracts having a melanogenesis inhibitory action selected from the group consisting of Uncaria gambir extract, Isodon japonicus extract, Echinacea angustifolia leaf extract, Lithospermum erythrorhizon root extract, Carthamus tinctorius flower extract, Persea gratissima fruit extract, Abelmoschus esclentus fruit extract, Actinidia chinensis fruit extract, Alpinia speciosa leaf extract, Saponaria officinalis extract, Caprifoliaceae extract, green tea extract, Benincasa cerifera seed exract, Allium sativum extract, Citrus aurantifolia fruit juice extract, natto extract, Citrus aurantium dulsis fruit extract, Valeriana officinalis extract, Cucumis sativus extract, Prunus armeniaca extract, Gardenia florida extract, Citrus grandis fruit extract, Arctium lappa root extract, black tea extract, Equisetum arvense extract, Malva sylvestris extract, Jujube extract, Solanum lycopersicum extract, Daucus carota sativa extract, Hoelen extract, Lilium candidum bulb extract, Litchi chinensis extract, Lactuca scariola sativa leaf extract, Citrus medica limonum fruit extract, and royal jelly extract; (B) a 4-alkyl resorcinol; (C) a compound represented by the following general formula (1) ; (D) a compound represented by the following general formula (2) ; (E) a compound represented by the following general formula (3) ; (F) an ursolic acid phosphate ester; and (G) a salt of the (B), (C), (D), (E), or (F); [wherein A1, A2, and A3 independently represent a phenyl which optionally contains a substituent, the substituent is selected from hydroxyl, C1-C4 alkyl, and C1-C4 alkyloxy, X is a nitrogen atom or oxygen atom, and -X-R1 is represented by the following general formula (4), (5), or (6)]; [wherein R'1 represents an aromatic group which is unsubstituted or contains a substituent, the substituent is a C1-C4 linear or branched alkyl group, C1-C4 linear or branched alkoxy group, halogen atom, or C1-C4 halogenated alkyl group, the aromatic group is a phenyl group, naphthyl group, or biphenyl group, R'2 represents a hydrogen atom, C1-C4 linear or branched alkyl group, or C1-C3 linear or branched alkyl acyl group, and R'3 represents a hydrogen atom or C1-C4 linear or branched alkyl group] ; [wherein R"1 represents -SH, -SO3H, -S-S-X1, -S-X2, -SO-X3, or -SO2-X4, in which X1 to X4 are independently a hydrogen atom or C1-C8 aliphatic hydrocarbon group, R"2 represents a C5-C12 aromatic group which optionally is unsubstituted or contains a substituent, the aromatic group is preferably a phenyl group, n represents an integer of 1 or 2, and the substituent is a C1-C4 alkyl group, C1-C4 alkoxy group, or phenyl group]; [wherein X1 is a nitrogen atom, R2 and R3 are bound to each other to form, together with X1, a C2-C8 heterocyclic ring or hydrocarbon ring which optionally has a substituent, the substituent is selected from a C1-C4 alkyl, C1-C4 alkyloxy, hydroxyl, amino, and oxo, and the carbon number of the heterocyclic ring is 3 to 5]; [wherein X2 is a nitrogen atom or oxygen atom, n is an integer of 1 to 5, n is preferably an integer of 1 to 3, Y is a hydroxyl group or amino group, R4 exists when X2 is a nitrogen atom, and represents a hydrogen atom, and R4 does not exist when X2 is an oxygen atom]; -X3-Hp (6)[wherein X3 is an oxygen atom or nitrogen atom, and p is the number corresponding to X3].
权利要求:
Claims (4) [0001] Use of a cosmetic composition comprising D-pantothenyl alcohol and a 4-alkyl resorcinol and/or a salt thereof in skin-whitening. [0002] The use according to claim 1, wherein the 4-alkyl resorcinol is a 4-n-butyl resorcinol. [0003] A cosmetic, skin-whitening method, comprising the steps of whitening skin by contacting a composition with the skin, wherein the composition comprises D-pantothenyl alcohol and a 4-alkyl resorcinol and/or a salt thereof. [0004] The method according to claim 3, wherein the 4-alkyl resorcinol is a 4-n-butyl resorcinol.
类似技术:
公开号 | 公开日 | 专利标题 US20190008747A1|2019-01-10|External dermal composition for anti-ageing and method for producing the same JP6446408B2|2018-12-26|Oral, injection, external skin preparation and cosmetic method for preventing or improving wrinkles CN1761450B|2010-05-05|Skin preparation for external use characterized by containing sugar derivative of a,a-trehalose KR100829846B1|2008-05-16|Composition for retarding skin aging CN104080438B|2016-12-21|Skin-lightening cosmetic WO2017094916A1|2017-06-08|GLYCEROL PRODUCTION PROMOTER DERIVED FROM Staphylococcus Epidermidis, ANTIMICROBIAL PEPTIDE PRODUCTION PROMOTER DERIVED FROM SKIN EPIDERMAL KERATINOCYTES, AND UTILIZATION THEREOF IN EXTERNAL PREPARATION FOR SKIN PROTECTION US20060147397A1|2006-07-06|Composition for preparation for external use on skin and method of using the same US20040029829A1|2004-02-12|External skin preparations and process for producing the same CN104414869A|2015-03-18|Skin and/or hair whitening mixture JP2006117612A|2006-05-11|Active oxygen eliminating agent JP4091825B2|2008-05-28|Skin preparation KR101389233B1|2014-04-24|Skin external preparation containing triterpenic acid JP5020475B2|2012-09-05|Fibroblast activator and skin external preparation containing the same KR100997441B1|2010-11-30|Method for preparing high purity ginsenoside rd using lactobacillus casei and cosmetic composition for anti-wrinkle comprising the high purity ginsenoside rd US20040166069A1|2004-08-26|Boosting Tyrosinase Inhibiting Activity of Skin Whitening and Sunscreen Compositions JP2006124355A|2006-05-18|Phagocytosis inhibitor KR20140148166A|2014-12-31|Cosmetic composition comprising the extract of Aronia melanocarpa and producing method thereof JP3687747B2|2005-08-24|Topical skin preparation JP4734093B2|2011-07-27|Cosmetics JP2006290749A|2006-10-26|Melanogenesis inhibitor WO2006126675A1|2006-11-30|Agent for external application to the skin KR102076480B1|2020-02-13|Positively Charged Sugar Emulsifier Based Skin Permeability Delivery System JP5053519B2|2012-10-17|Plant trypsin inhibitor CN103998441B|2016-02-17|The purification process of oligomeric proanthocyanidins, the inflation method of the polymerization degree and Hyaluronidase inhibitor and collagenase inhibitors JP4091824B2|2008-05-28|Skin preparation
同族专利:
公开号 | 公开日 RU2016143096A|2018-05-10| JPWO2015152384A1|2017-04-13| MX2019012096A|2019-11-21| KR102128312B1|2020-06-30| RU2016143096A3|2018-05-10| CA3007176A1|2015-10-08| KR20160127823A|2016-11-04| CN112402279A|2021-02-26| IL248114D0|2016-11-30| AU2015242763A1|2016-10-20| US20170119638A1|2017-05-04| WO2015152384A1|2015-10-08| EP3536306A3|2019-12-18| KR102096479B1|2020-04-02| CN106132390A|2016-11-16| RU2667652C2|2018-09-21| CA3064416A1|2015-10-08| TW201620493A|2016-06-16| KR20190009435A|2019-01-28| AU2015242763B2|2017-08-03| EP3536306A2|2019-09-11| CA2944553A1|2015-10-08| UA115737C2|2017-12-11| SG11201608225PA|2016-11-29| MX2016012907A|2017-01-11| EP3127533A1|2017-02-08| JP6743336B2|2020-08-19| EP3127533A4|2018-03-14| CA3007176C|2020-03-31| SG10201808646UA|2018-11-29| CA2944553C|2020-05-12| US10568822B2|2020-02-25| CN112402285A|2021-02-26| BR112016022667B1|2020-09-29|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
2020-08-14| PUAI| Public reference made under article 153(3) epc to a published international application that has entered the european phase|Free format text: ORIGINAL CODE: 0009012 | 2020-08-14| STAA| Information on the status of an ep patent application or granted ep patent|Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED | 2020-09-16| AC| Divisional application: reference to earlier application|Ref document number: 3127533 Country of ref document: EP Kind code of ref document: P | 2020-09-16| AK| Designated contracting states|Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR | 2021-01-15| REG| Reference to a national code|Ref country code: HK Ref legal event code: DE Ref document number: 40026797 Country of ref document: HK | 2021-03-19| STAA| Information on the status of an ep patent application or granted ep patent|Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE | 2021-04-21| RBV| Designated contracting states (corrected)|Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR | 2021-04-21| 17P| Request for examination filed|Effective date: 20210311 | 2021-08-13| STAA| Information on the status of an ep patent application or granted ep patent|Free format text: STATUS: EXAMINATION IS IN PROGRESS | 2021-09-15| 17Q| First examination report despatched|Effective date: 20210812 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|