![]() Device comprising elastic members for rotating guidance of a moving component.
专利摘要:
The invention relates to a device (1) comprising a fixed element (13, 23), a movable element (12) and first (14) and second (24) elastic members connecting the fixed element (13, 23) and the movable member (12) and being arranged to guide the movable member (12) in rotation with respect to said fixed member (13, 23). Each of the first (14) and second (24) elastic members is arranged to exert on the movable member (12) a substantially constant elastic return moment over a predetermined range of angular positions of the movable member (12) relative to the fixed element (13, 23) of at least 10 °, the elastic return moments exerted by the first (14) and second (24) resilient members compensating at least partially throughout said predetermined range. The invention also relates to a method for producing such a device (1), a watch assembly comprising such a device and a watch component integral in rotation with the mobile element (12), as well as a timepiece such as a wristwatch or a pocket watch, including such a set. 公开号:CH714317A2 申请号:CH01359/17 申请日:2017-11-10 公开日:2019-05-15 发明作者:Le Bris Jean-Baptiste 申请人:Patek Philippe Sa Geneve; IPC主号:
专利说明:
où les s," sont les polynômes de Bernstein donnés par la fonction et où les Qi sont les points de contrôle Qo à Qn. Elle correspond à la représentation graphique dans un repère orthonormé de l’ensemble des points définis par les couples de coordonnées (x; y) définis respectivement par les fonctions x(t) et y(t), t e [0, 1], ci-dessous: dans lesquelles Qix et Qiy sont respectivement les coordonnées x et y des points de contrôle Q,. [0032] Les formules indiquées ci-dessus donnent les coordonnées d’une courbe de Bézier d’ordre m, c’est-à-dire une courbe de Bézier basée sur m points de contrôle. Pour des raisons pratiques, une telle courbe de Bézier peut être décomposée en une succession de courbes de Bézier d’ordre inférieur à m, auquel cas la forme géométrique de chacun des bras élastiques est une succession de courbes de Bézier. [0033] En utilisant ce principe, la demanderesse a conçu une unité particulière comprenant trois lames élastiques réparties uniformément autour du moyeu. Cette unité particulière correspond à l’unité 10 représentée dans les figures. Les dimensions de cette unité 10 sont les suivantes: Diamètre extérieur de la serge:12 mm Diamètre extérieur du moyeu:2 mm Diamètre intérieur de la serge:10 mm Hauteur: 0,12 mm Epaisseur des lames élastiques:80 μm Longueur curviligne de chaque lame: 4,91 mm [0034] Dans le cadre de cette conception, sept points de contrôle Qo, Qi, Q2, Q3, Q4, Q5, Û6 ont été utilisés. Les coordonnées de ces points de contrôle sont indiquées dans le tableau 1 ci-dessous. Tableau 1 : Coordonnées des points de contrôle Qo à Q6. [0035]________________________________________________________ Variables Coordonnées x [mm] Coordonnées y [mm] Qo 0,756625 0,653875 Qî 1,873251,619 Q2 2,8125 -0,59125 Q3 3,4375 0,4535 G4 3,75 1,032875 Qs 4,3750 Q6 50 [0036] Avec ces sept points de contrôle il aurait été possible de réaliser une courbe de Bézier d’ordre sept. Cependant, selon le principe indiqué ci-dessus, la courbe de Bézier a été décomposée en deux segments, un premier segment correspondant à une courbe de Bézier d’ordre 4 basée sur les points de contrôle Qo à Q3 et un second segment correspondant à une courbe de Bézier d’ordre 4 basée sur les points de contrôle Q3à Q6. [0037] En utilisant les coordonnées des points de contrôle Qo à C6 ci-dessus dans les fonctions x(t) et y(t) précitées, la demanderesse a obtenu les coordonnées des points définissant la forme géométrique d’une lame élastique de l’unité 10. Un certain nombre de ces couples de coordonnées sont donnés dans le tableau 2 ci-après. Tableau 2: Coordonnées de points de passage de la lame élastique optimisée [0038] x [mm] y [mm] 0,756625 0,653875 1,086132 0,854582 1,404044 0,903348 1,709407 0,838756 2,001267 0,699389 2,278672 0,523828 2,540668 0,350656 2,786302 0,218455 3,014621 0,165807 3,224671 0,231295 3,4155 0,4535 3,524275 0,58159 3,648736 0,628816 3,787142 0,611048 3,937748 0,544158 4,098813 0,444016 4,268592 0,326492 4,445344 0,207458 4,627324 0,102784 4,812791 0,028341 5 0 [0039] Le graphique de la fig. 4 fait apparaître la géométrie du diamètre externe du moyeu, du diamètre interne de la serge et d’une des lames élastiques de l’unité 10 que la demanderesse a conçue, la géométrie de ladite lame étant définie par une courbe passant par l’ensemble des coordonnées de points défini dans le tableau 2 ci-dessus. Ce graphique est réalisé dans un repère orthonormé. [0040] La fig. 5 représente les résultats d’une simulation de l’évolution du moment de rappel élastique de l’unité 10 isolée ainsi réalisée en fonction de la position angulaire θ10 de sa serge par rapport à son moyeu. [0041] La simulation effectuée considère l’unité 10 isolée réalisée en verre métallique mais tout matériau approprié peut être utilisé. Par exemple des matériaux tels que le silicium typiquement revêtu d’oxyde de silicium, le Nivaflex® 45/18 (alliage à base de cobalt, nickel et chrome); le plastique ou le CK101 (acier de construction non-allié) conviennent également et permettent l’obtention d’unités monolithiques dont le moment de rappel élastique est sensiblement constant sur les mêmes plages angulaires [θπίη, 0max]· [0042] La plage angulaire de fonctionnement permettant la délivrance d’un moment sensiblement constant étant une constante liée à la forme des lames élastiques. L’angle de fonctionnement O10max doit être inférieur à l’angle θ10ϋπ correspondant à la limite avant plastification ou rupture de l’unité 10. Cela permet de définir l’épaisseur maximale qu’il est possible de réaliser sur les lames. [0043] Il ressort de l’analyse des résultats présentés à la fig. 5 qu’une constance de 2,4% du moment de rappel élastique est obtenue pour un déplacement angulaire de la serge 13 de l’unité 10 étudiée par rapport à son moyeu 12 compris entre θπίη_2,4%, soit 13°, et 0max_2,4%, soit 31 °, soit sur une plage de fonctionnement de 18°. L’unité 10 ainsi réalisée possède donc une plage de fonctionnement à moment constant (pour une constance de 2,4%), qui lui est propre, de 18°. Si l’on accepte une constance de 9,1% du moment de rappel élastique alors l’unité 10 ainsi réalisée possède une plage de fonctionnement à moment constant qui lui est propre d’environ 23°, avec θιοπίη_9,ι% ~ 10,5° et 01Omax_9,i%« 33,5°. [0044] Le tableau 3 ci-dessous donne, à titre indicatif, les valeurs θιοπιη y%, hiomax y%et Δθ10 (plage de positions angulaires à moment sensiblement constant) associées à l’unité 10 réalisée par la demanderesse en fonction du pourcentage de constance y considéré ainsi que les valeurs de moments de force MiOmin et MiOmax associées. Tableau 3: [0045] Omin_y% 6max_y% Plage angulaire Mmin Mmax Pourcentage de constance y (%) Δθ(°) 13.5 30,5 17 1,310 1,3311,6 13 31 18 1,303 1,3352,4 12.5 31,5 19 1,294 1,3393,4 12 32 20 1,284 1,3434,5 10.5 33,5 23 1,242 1,3609,1 [0046] En augmentant le nombre de points de contrôle lors de la conception des lames élastiques, on devrait pouvoir augmenter la précision de la forme de ces lames élastiques et améliorer ainsi la constance du moment de rappel. [0047] Afin d’obtenir un dispositif 1 tel que représenté à la fig. 1: a) deux unités monolithiques 10, 20 identiques à l’unité 10 développée par la demanderesse ont été réalisées, le moyeu 12, 22 de chacune de ces unités 10, 20 comprenant des trous 11; b) ces unités 10, 20 ont été superposées, tête-bêche; c) les moyeux 12, 22 des unités 10, 20 ont ensuite été rendus solidaires l’un de l’autre par introduction de goupilles 4 dans leurs trous 11. Le dispositif intermédiaire ainsi obtenu est représenté à la fig. 6. La fig. 7a illustre schématiquement ce même dispositif. Dans cette figure, pour des raisons pratiques, la serge 23 de l’unité 20 est représentée plus grande que celle 13 de l’unité 10, le moyeu 22 de l’unité 20 est représenté plus grand que celui 12 de l’unité 10 et les lames élastiques 14, 24 ne sont pas représentées. Dans cette fig. 7a, des repères «0» alignés respectivement sur les serges 13, 23 et sur les moyeux 12, 22 des unités 10 et 20 servent d’index pour repérer l’état de repos de chacune des unités: θι0= 820 = 0°. La solidarisation des moyeux 12, 22 est représentée schématiquement par un segment 3a reliant les moyeux 12, 22. d) chacune des deux unités 10, 20 a ensuite été armée d’un même angle 6arm dans son sens de rotation privilégié, sens anti-horaire pour l’unité 10 (flèche A) et sens horaire pour l’unité 20 (flèche B). Dans l’exemple illustré, pour chacune des unités 10, 20: θπίη = 13°, 0max = 31° et 0arm = 22°. Pour faciliter l’armage, les moyeux 12, 22 ont été maintenus en position fixe lors de la rotation respectivement dans les sens anti-horaire et horaire des serges 13, 23 des unités 10, 20. e) une fois armées, les serges 13, 23 ont été rendues solidaires en rotation l’une de l’autre par insertion de goupilles 3 dans leurs ouvertures 15, 25. Les figures 1 et 7b illustrent le dispositif 1 ainsi obtenu. Dans la fig. 7b, la solidarisation des serges 13, 23 est représentée schématiquement par un segment 3b reliant les serges 13, 23. Dans cette position d’équilibre d’armage, chacune des unités 10, 20 exerce un moment de rappel élastique tendant à faire pivoter l’ensemble comprenant les serges 13, 23 par rapport à l’ensemble comprenant les moyeux 12, 22 de même valeur M20(22°) = -M10(22°) = 1,3 N.mm, les sens de ces moments de rappel élastiques étant opposés. [0048] Il apparaît clairement à l’homme du métier qu’un dispositif 1 selon le premier mode de réalisation de l’invention peut être obtenu par une succession d’étapes différente. [0049] Considérons le dispositif 1 tel que décrit ci-dessus dans lequel l’ensemble comprenant les serges 13, 23 est l’élément fixe. L’élément mobile correspond donc à l’ensemble comprenant les moyeux 12, 22. [0050] Soit a la position angulaire de l’élément mobile, à savoir l’ensemble comprenant les moyeux 12, 22, par rapport à l’élément fixe, a étant égal à zéro dans la position d’équilibre d’armage et augmentant lors de la rotation dans le sens horaire de l’élément mobile. [0051] La courbe C! de la fig. 8 correspond à la courbe M10(a) de l’unité 10 et la courbe C2 de la fig. 8 correspond à la courbe M20(a) de l’unité 20. Un moment de rappel positif correspond à un moment tendant à faire pivoter l’ensemble comprenant les moyeux 12, 22 dans le sens anti-horaire. [0052] La courbe C! correspond à la courbe Μ1ο(θιο) que l’on aurait pour l’unité 10 isolée et qui aurait subi, du fait de la phase d’armage, une translation de a = Oioarm= 22° vers la gauche. En effet, l’unité 10 est placée de sorte que l’augmentation de l’angle a, à partir de a = -(610arm) = -22°, correspond à une rotation de sa serge 13 relativement à son moyeu 12 dans son sens de rotation privilégié. En effet, lorsque la serge 13 est fixe et que le moyeu 12 pivote dans le sens horaire, la serge 13 se déplace dans le sens anti-horaire relativement au moyeu 12. Le moment de force M10 exercé par l’unité 10 tend à faire pivoter le moyeu 12, et donc l’élément mobile, dans le sens anti-horaire et est donc positif. [0053] La courbe C2 correspond à la symétrique de la courbe Μ20(θ20) que l’on aurait pour l’unité 20 isolée par rapport au centre du repère et qui aurait subi une translation de a = 02Oarm = 22° vers la droite. En effet, l’unité 20 est placée de sorte que la diminution de l’angle a, à partir de a = 02Oarm = 22°, correspond à une rotation de sa serge 23 relativement à son moyeu 22 rapport dans son sens de rotation privilégié. En effet, lorsque la serge 23 est fixe et que le moyeu 22 pivote dans le sens anti-horaire, la serge 23 se déplace dans le sens horaire relativement au moyeu 22. Le moment de force M20 exercé par l’unité 20 tend à faire pivoter le moyeu 22, et donc l’élément mobile, dans le sens horaire et est donc négatif. [0054] La courbe C3 de la fig. 8 illustre le moment de rappel M(a) s’exerçant sur l’élément mobile en fonction de sa position angulaire a. Cette courbe correspond à la somme des courbes C-ι et C2. [0055] Pour réaliser cette simulation, l’ensemble comprenant les serges 13, 23 du dispositif 1 a été immobilisé et le moment nécessaire pour maintenir l’ensemble comprenant les moyeux 12, 22 en position a été mesuré pour une plage de positions angulaires a. [0056] Comme cela est visible sur la fig. 8, tant que la position a est telle que l’armage de chacune des deux unités 10, 20 reste dans la plage de valeur [0min, 0max] qui lui est associée, en l’espèce, tant que l’armage de chacune des deux unités reste dans la plage de valeurs [13°, 31 °] qui lui est associée, les moments de rappel exercés par les deux unités 10, 20 sur l’élément mobile se compensent presque complètement. Ainsi, le moment de rappel résultant sur l’élément mobile est quasiment nul. Cela correspond à une plage de positions angulaire prédéterminée a de l’élément mobile par rapport à l’élément fixe allant de a = -9° à a = 9°, soit une plage angulaire prédéterminée de 18°. Ainsi, la plage de positions angulaires prédéterminée du dispositif 1 selon l’invention correspond à la plage de chevauchement des plages [0-iomin, 01OmaX] et [020min, 02OmaX]· [0057] Si l’on entraîne l’élément mobile en rotation au-delà de a = 9°, la courbe C3 monte ce qui signifie que le moment de rappel élastique M(a) global tend à faire pivoter l’ensemble comprenant les moyeux 12, 22 dans le sens anti-horaire. [0058] Dans le cas étudié, pour chaque unité 10, 20, 01Oarm, 02oarm est centré sur la plage [θπίη, 0max] associée à cette unité 10, 20. Ainsi, on obtient la plage de positions angulaire prédéterminée la plus étendue possible et un dispositif 1 de guidage «bidirectionnel à partir de sa position de repos», l’élément mobile pouvant, à partir de sa position de repos, être entraîné en rotation dans le sens horaire de 9° (jusqu’à a = 9°) et dans le sens anti-horaire de 9° (jusqu’à a = -9°) en subissant un moment de rappel élastique sensiblement nul. [0059] Pour comparaison, si l’on avait armé chacune des unités 10, 20 du dispositif précédemment décrit d’une même valeur 6arm = 15°, la plage angulaire prédéterminée de positions aurait été de 4°, et si l’on avait armé l’unité 10 du dispositif précédemment décrit d’une valeur 01Oarm = 13° et l’unité 20 du dispositif précédemment décrit d’une valeur 02Oarm = 31°, la plage angulaire prédéterminée de positions aurait été de 18° mais le dispositif de guidage aurait été «unidirectionnel à partir de sa position de repos», l’élément mobile pouvant, à partir de sa position de repos, être entraîné en rotation dans le sens horaire de 18° (jusqu’à a = 18°) en subissant un moment de rappel élastique sensiblement nul. [0060] Dans le dispositif 1 selon le premier mode de réalisation de l’invention, pour chaque unité 10, 20, 6arm est de préférence centré sur la plage de positions angulaires [0min, 0max] qui lui est associée. Il est donc de préférence égal à (0min + ((Omax-0mm)/2)), de sorte que [θπίη, 6arm] = [Oarm, Omax]· De cette façon, les unités 10, 20 exercent des moments de rappel M-io (θ-ιο), Μ20(θ20) se compensant presque totalement sur une plage de positions angulaires prédéterminée des serges 13, 23 par rapport aux moyeux 12, 22 s’étendant de θπίη à 0max et pour une rotation a de l’élément mobile aussi bien dans le sens horaire que dans le sens anti-horaire. [0061] Sur une plage angulaire prédéterminée de rotation de l’élément mobile par rapport à l’élément fixe, cette plage dépendant notamment des valeurs de pré-armage de chacune des unités 10, 20, les organes élastiques 14, 24 des unités 10, 20 exercent sur ledit élément mobile des moments de rappel élastique se compensant partiellement voire totalement. [0062] Des butées et protubérances peuvent être aménagées pour limiter la rotation de l’élément mobile à cette plage angulaire prédéterminée. [0063] La fig. 11 illustre une variante du dispositif représenté à la fig. 1 dans laquelle les moyeux 12, 22 des deux unités 10, 20 sont rendus solidaires en rotation l’un de l’autre par le biais d’un axe 9 comprenant des formations d’entraînement 9a non circulaires coopérant avec des trous 11 de formes correspondantes dans les moyeux 12, 22. Chacune des serges 13, 23 des unités 10, 20 possède une protubérance 17, 27 servant d’index pour l’armage des unités 10, 20. [0064] Un dispositif 1 selon le premier mode de réalisation de l’invention peut par exemple être utilisé pour guider en rotation un composant horloger tel qu’une ancre d’échappement, une bascule ou un levier dans un mécanisme horloger. L’axe 9 peut alors avantageusement porter le composant horloger à faire tourner. [0065] Une ancre d’échappement pourrait par exemple être guidée en rotation au sein d’un mécanisme horloger par un dispositif 1 tel que représenté à la fig. 11. Pour cela, l’ancre pourrait être chassée sur l’axe 9 de façon à être rendue solidaire en rotation des moyeux 12, 22. L’axe 9 serait alors l’axe de rotation de l’ancre. L’ancre d’échappement serait typiquement placée entre les deux unités 10, 20 dont les serges 13, 23 seraient respectivement solidaires d’un pont et de la platine du mécanisme horloger. [0066] Une ancre d’échappement guidée par un dispositif 1 utilisant deux unités 10, 20 identiques à l’unité 10 réalisée par la demanderesse avec une valeur d’armage initiale de chaque unité de 22° pourrait donc théoriquement pivoter sur un angle de 18° sans frottement et avec un moment de rappel négligeable, tout en gardant une raideur importante en dehors de son plan de pivotement. [0067] Un dispositif 1 selon le premier mode de réalisation de l’invention peut également être utilisé pour le guidage de tout composant que l’on cherche à guider en rotation sans frottement et avec un moment de rappel le plus faible possible. [0068] En variante, il est envisageable de réaliser un dispositif selon le premier mode de réalisation de l’invention comprenant des unités monolithiques différentes l’une de l’autre (typiquement dont la taille, le nombre, la forme et/ou la matière des lames élastiques est différente entre l’une et l’autre), chacune desdites unités étant agencée au sein du dispositif pour exercer un moment de rappel élastique sensiblement constant sur une plage prédéterminée de positions angulaires de sa serge par rapport à son moyeu, la valeur de ce moment sensiblement constant étant sensiblement la même pour les deux unités. En d’autres termes, les «plateaux» des courbes M(9) de chacune des unités correspondent à des valeurs de moment de rappel élastique sensiblement identiques. Dans cette variante, il est possible d’avoir des plages [6min, 6max] différentes d’une unité à l’autre. [0069] Un dispositif 2 selon un second mode de réalisation de l’invention diffère du dispositif 1 selon le premier mode de réalisation en ce que ses deux unités ne sont pas identiques et présentent des courbes M(9) dont les «plateaux» correspondent à des valeurs de moment de rappel élastique sensiblement différentes. Chacune des unités du dispositif 2 selon le second mode de réalisation de l’invention est apte à engendrer un moment de rappel sensiblement constant sur une plage de positions angulaires de sa serge par rapport à son moyeu qui lui est propre, ce moment de rappel s’exerçant dans un premier sens et étant sensiblement égal à une première valeur X pour une première des deux unités et s’exerçant dans un second sens opposé au premier et sensiblement égal à une seconde valeur Y, différente de X pour une seconde desdites unités. [0070] Un tel dispositif 2 permet un guidage en rotation sans frottement, engendrant un moment de rappel élastique sensiblement constant environ égal à IX—Yl. Un tel dispositif 2 peut être préféré au dispositif selon le premier mode de réalisation de l’invention, par exemple lorsque l’on cherche à obtenir un dispositif de guidage sans frottement et avec un moment de rappel faible mais non sensiblement nul, par exemple pour le guidage d’un levier ou d’une bascule. Ledit levier ou bascule est par exemple une bascule d’embrayage de chronographe, un marteau, en particulier un marteau de chronographe, ou un bloqueur, en particulier un bloqueur de chronographe. [0071] La fig. 9b illustre un tel dispositif 2. La fig. 9a illustre une étape de réalisation de ce dispositif, avant la phase d’armage. [0072] Le dispositif 2 représenté à la fig. 9b diffère du dispositif 1 représenté à la fig. 1 en ce que ses deux unités 10, 30 ne sont pas identiques. Une première 10 de ses unités 10, 30 monolithiques est identique à l’unité 10 utilisée dans le dispositif 1 et l’autre unité 30 diffère de la première unité 10 en ce que ses trois lames élastiques 34 ne font que 40um d’épaisseur (contre 80um pour l’unité 10). L’unité 30 comprenant trois lames élastiques 34 possède des propriétés similaires à celle de l’unité 10 comprenant trois lames élastiques 14, elle comprend en particulier les mêmes valeurs θπίη et 0max que l’unité 10. Cependant, ses propriétés diffèrent de celles de l’unité 10 en ce que la courbe M30(a) associée {cf. courbe C4 de la fig. 10) présente un «plateau» (moment de rappel sensiblement constant) pour une valeur de moment de rappel élastique en valeur absolue inférieure à celle de l’unité 10. [0073] Comme illustré aux fig. 9a et 9b, l’unité 30 du dispositif 2 peut, comme l’unité 20 du dispositif 1, comprendre des ouvertures 35 permettant la solidarisation en rotation des serges 13 et 33 des unités 10 et 30. [0074] Dans ce dispositif 2, l’unité 10 est légèrement armée de θ-ioarm = Oiomin = 13°, par rotation de sa serge 13 par rapport à son moyeu 12 dans le sens anti-horaire, pour que son comportement soit à la limite inférieure de la zone constante (au début du «plateau»); l’unité 30 est, quant à elle, fortement armée de 03Oarm = 03omax = 310 par rotation de sa serge 33 par rapport à son moyeu 32 dans le sens horaire, pour que son comportement soit à la limite supérieure de la zone constante (à la fin du «plateau»). [0075] Les sens de rotation privilégiés des unités 10, 30 du dispositif 2 sont représentés respectivement par les flèches A et C de la fig. 9b. [0076] Une butée 5 coopère avec une des lames élastiques 14, 34 ou avec une protubérance du moyeu 12, 32 et évite, dans le cas où l’élément mobile comprendrait les moyeux 12, 32, que cette unité 10 dont le moment de rappel associé est, en valeur absolue, le plus important, entraîne le moyeu 32 de l’unité 30 (dont le moment de rappel associé est moins important) dans le sens anti-horaire, ce qui reviendrait à l’armer au-delà de sa valeur O30max. [0077] Si le dispositif 2 était conçu pour que l’élément mobile comprenne les serges 13, 33 et non les moyeux 12, 32, la butée 5 serait agencée pour limiter la rotation des serges 13, 33. [0078] Ce dispositif 2 est asymétrique et se comporte comme un ressort à force constante lors de la rotation de ses moyeux 12, 32 dans le sens horaire. Les fig. 9a et 9b illustrent ce dispositif avant et après armage. [0079] Considérons le dispositif 2 tel que décrit ci-dessus dans lequel l’ensemble comprenant les serges 13, 33 est fixe. L’élément mobile correspond donc à l’ensemble comprenant les moyeux 12, 32. [0080] Soit a la position angulaire de l’élément mobile par rapport à l’élément fixe, a étant égal à zéro dans la position d’équilibre d’armage et augmentant lors de la rotation dans le sens horaire de l’élément mobile; [0081] La courbe C-ι de la fig. 10 correspond à la courbe M10(a) de l’unité 10 et la courbe C* de la fig. 10 correspond à la courbe M30(a) de l’unité 30. Un moment de rappel positif correspond à un moment tendant à faire pivoter l’ensemble comprenant les moyeux 12, 32 dans le sens anti-horaire. [0082] La courbe C! correspond à la courbe Μ1ο(θιο) que l’on aurait pour l’unité 10 isolée et qui aurait subi, du fait de la phase d’armage, une translation de a = 610arm =13° vers la gauche. En effet, l’unité 10 est placée de sorte que l’augmentation de l’angle a, à partir de a = -01Oarm = -13°, correspond à une rotation de sa serge 13 relativement à son moyeu 12 dans son sens de rotation privilégié. Le moment de force M10 exercé par l’unité 10 tend à faire pivoter le moyeu 12, et donc l’élément mobile, dans le sens anti-horaire et est donc positif. [0083] La courbe C4 correspond à la symétrique de la courbe M30(83o) que l’on aurait pour l’unité 30 isolée par rapport au centre du repère et qui aurait subi une translation de a = 03Oarm = 31° vers la droite. En effet, l’unité 30 est placée de sorte que la diminution de l’angle a, à partir de a = 03Oarm = 31 °, correspond à une rotation de sa serge 33 relativement à son moyeu 32 rapport dans son sens de rotation privilégié. Le moment de force M30 exercé par l’unité 30 tend à faire pivoter le moyeu 32, et donc l’élément mobile, dans le sens horaire et est donc négatif. [0084] La courbe C5de la fig. 10 illustre le moment de rappel M(a) s’exerçant sur l’élément mobile en fonction de sa position angulaire a. Cette courbe correspond à la somme des courbes C-ι et C4. [0085] Pour réaliser cette simulation, l’ensemble comprenant les serges 13, 33 du dispositif 2 a été immobilisé et le moment nécessaire pour maintenir l’ensemble comprenant les moyeux 12, 32 en position a été mesuré pour une plage de positions angulaires a. [0086] Dans le dispositif 2 selon le second mode de réalisation de l’invention représenté à la fig. 9b, il n’existe pas de position d’équilibre d’armage à proprement parler. A l’état de repos du dispositif 2, l’unité 10 est armée de 13°, l’unité 30 est armée de 310 et la rotation de l’élément mobile comprenant les moyeux 12, 32 n’est possible que dans le sens horaire. Le dispositif 2 est en appui contre la butée 5 qui empêche la rotation de l’élément mobile dans le sens anti-horaire. [0087] Comme cela est visible sur la fig. 10, tant que la position a est telle que l’armage de chacune des deux unités reste dans la plage de valeur [0min, 6max] qui lui est associée, en l’espèce, tant que l’armage de chacune des deux unités reste Description: [0001] The present invention relates to a device, typically a watchmaker, for guiding a rotating mobile component. [0002] In watchmaking, rotating moving components such as flip-flops or escape anchors are traditionally guided in rotation by physical axes which are either fixed or have pivots rotating in stones. Such physical axes have the disadvantage of generating friction and therefore a considerable loss of energy. In addition, a parasitic return moment is exerted on the axis. To overcome this drawback, flexible guiding devices have been developed, such as flexible guiding devices with crossed blades, separate or not. Such flexible pivoting define a purely virtual axis of rotation for the mobile component and therefore have the advantage of canceling friction. However, they have the disadvantage of generating a moment of recall which, in certain uses, is undesirable or too important, such a moment generating an overconsumption of energy. To reduce this moment of recall a possibility of making flexible guides with blades having very low stiffness is not suitable because blades of very low stiffness are generally thin and therefore fragile and difficult to manufacture. In addition, blades of very low stiffness lead to less precise guidance than guidance with thicker blades. In particular, such blades generate parasitic shifts out of the plane of rotation. In addition, such a method can not completely cancel the recall time. An object of the present invention is to provide a device for guiding a moving component in rotation that is accurate and that allows to cancel the friction while mitigating or even suppressing any moment of return. The invention proposes for this purpose a device comprising a fixed element, a movable element and first and second elastic members connecting the fixed element and the movable element and being arranged to guide the mobile element in rotation relative to said fixed element, characterized in that each of the first and second elastic members is arranged to exert on the movable element a substantially constant elastic return moment over a predetermined range of angular positions of the movable element relative to the fixed element by at least 10 °, the elastic return moments exerted by the first and second resilient members compensating at least partially throughout said predetermined range. The invention also proposes a method according to claim 16 for producing such a device, a watch assembly comprising such a device and a watch component integral in rotation with the movable element, as well as a timepiece. such as a wristwatch or a pocket watch, including such a set. Other features and advantages of the present invention will appear on reading the following detailed description with reference to the accompanying drawings, in which: FIG. 1 is a perspective view of a device according to a first embodiment of the invention; fig. 2 is a perspective view of an isolated unit of the device shown in FIG. 1; fig. 3 is a schematic graphical representation illustrating the shape of the evolution curve of the elastic return moment exerted in the isolated unit of FIG. 2; fig. 4 shows the coordinates of points defining a particular form of elastic blade for the isolated unit of FIG. 2; fig. 5 is a graphical representation of the elastic return moment exerted in the isolated unit shown in FIG. 2 comprising elastic blades of shape as shown in FIG. 4; fig. 6 is a perspective view of a step of producing the device shown in FIG. 1; figs. 7a and 7b are schematic representations describing successive steps of the realization of the dis positive represented in FIG. 1; fig. 8 is a graphical representation of the elastic return moment exerted in each of the units of the device of FIG. 1 and the moment of elastic return exerted on an assembly comprising hubs forming part of the two units of the device shown in FIG. 1 when rotating relative to an assembly comprising serges also part of said two units; figs. 9a and 9b show in perspective a device according to a second embodiment of the invention at different stages of its production; fig. 10 is a graphical representation of the elastic return moments exerted in each of the units of the device shown in FIG. 9b and the elastic return moment exerted on an assembly comprising hubs forming part of the two units of the device shown in FIG. 9b during its rotation with respect to an assembly comprising serges also forming part of said two units; fig. 11 is a perspective representation of a variant of a device according to the first embodiment of the invention; fig. 12 is a partial perspective view of a device according to a second embodiment of the invention integrated in a watch mechanism; fig. 13 is a top view of a variant of a unit that can be used in a device according to the first or second embodiment of the invention. FIG. 1 represents a device 1, typically a watchmaker, according to a first embodiment of the invention comprising a first 10 and a second superimposed monolithic unit. Each of these units 10, 20 comprises a hub 12, 22 and a serge 13, 23 connected by an elastic member, said elastic member comprising a plurality of resilient blades 14, 24 distributed, preferably uniformly, around the hub 12, 22, as illustrated. in fig. 1. In this example each unit 10, 20 comprises three resilient blades 14, 24. The serge 13, 23 of each unit 10, 20 of the device 1 is in the form of a closed circle and is guided in rotation around its center relative to its hub 12, 22 by the set of elastic blades 14, 24 The serge 13, 23 may also be interrupted and take the form of one or more arc (s) of a circle. The hubs 12, 22 of the two units 10, 20 of the device 1 are integral in rotation. In the example illustrated in FIG. 1, the hubs 12, 22 are made integral with each other by the insertion of pins 4 in holes 11 of the hubs 12, 22. The hubs 12, 22 of the two units 10, 20 can be made integral with each other. rotation of one another by any other suitable means, for example by the production of a monolithic structure or by means of an axis 9 comprising non-circular drive formations 9a cooperating with holes 11 of corresponding shapes in the hubs 12, 22 (see FIG 11), the axis 9 may, in a variant, be monolithic with the hubs 12, 22. The serges 13, 23 of the two units 10, 20 are also integral in rotation. In the example illustrated in FIG. 1, the serges 13, 23 of the device 1 are made integral in rotation with each other by the insertion of pins 3 in oblong openings 15, 25 of said serges 13, 23. The openings 15, 25 may not to be oblong, this form only for the purpose of compensating for the possible location defects of the openings 15, 25 in the parts during their manufacture. It is possible to have openings 15, 25 different shapes, typically round if the machining precision is perfect. The serges 13, 23 of the two units 10, 20 can be made integral in rotation with each other by any other suitable means. In particular, in the case where the solidarity in rotation of the hubs 12, 22 of the two units 10, 20 is not obtained by means of the realization of a monolithic structure, the rotation solidarity of the serges 13, 23 of the two units 10, 20 can be obtained through the production of a monolithic structure directly connecting the serges 13, 23 and vice versa. In the context of the first embodiment of the invention, the two units 10, 20 are identical (in particular the blades 14, 24 have the same shape). For the understanding of the invention, the behavior of each unit 10, 20 of the device 1, considered in isolation, that is to say free of any interaction with the other unit, is described below. Fig. 2 represents the isolated unit 10. The isolated unit 10 shown in FIG. 2 presents, because of the shape of its elastic blades 14, a preferred direction of rotation of its serge 13 relative to its hub 12, this sense being defined as that which, from its state of rest, the largest relative angular displacement of its serge 13 relative to its hub 12. The arrow A shown in FIG. 2, illustrates the preferred direction of rotation (counterclockwise) of the serge 13 of the unit 10 relative to its hub 12. Within the device 1 shown in FIG. 1, the units 10, 20 are placed head to tail, their preferred direction of rotation, represented respectively by the arrows A and B of FIG. 1, are therefore opposed. The isolated unit 10 may be armed by rotating its serge 13 relative to its hub 12 by an angle θ10 in its preferred direction of rotation (see arrow A), the angle θ10 = 0 ° corresponding to the rest position of the unit 10 isolated, that is to say, the position in which all its elastic blades 14 are at rest (exert no elastic moment of return). During such arming, the elastic blades 14 of this unit 10 are deformed to exert, in the armed unit 10, a return moment Μ10 (θι0) depending on the position θ10, tending to rotate the serge 13 relative to at the hub 12 in the opposite direction to the direction of arming, that is to say in the opposite direction to the preferred direction of rotation of the unit 10, thus tending to return to its state of rest. The moment of elastic return exerted by the unit 20 is designated M20. The angle θ, for each unit 10, 20 insulated, respectively θ10 and θ20, is an angle of movement of the serge 13, 23 relative to the hub 12, 22 in its preferred direction of rotation. When the serge 13, 23 of a unit 10, 20 is in the angular position in which the angle θ associated with this unit is equal to x °, it is said that the unit 10, 20 or all elastic blades 14, 24 of the unit 10, 20 is armed with x °. The set of elastic blades 14 of the unit 10 of the device 1 is designed, in particular by its shape, to exercise, in this unit 10, an elastic moment of return Μ-ιο (θιο) substantially constant on a angular position range [Oiomin, θ-iomax] of the serge 13 of said unit 10 relative to its hub 12 of at least 10 °, preferably at least 15 °, preferably at least 20 °, preferably at least 25 °. By "substantially constant moment" is meant a moment not varying by more than 10%, preferably 5%, more preferably 3%, typically 1.5%, it being understood that this percentage may be further decreased. More specifically, M10min and M10max respectively are the values of the minimum and maximum moments exerted in the unit 10 isolated over a given range of angular positions of its serge 13 relative to its hub 12, the moment exerted in this unit 10 is substantially constant since the inequation "(M10max-M10min) / ((M10max + M10min) / 2) <0,1 "is verified, more precisely, since the inequation" (M10max-M10min) / ((M10max + M10min) / 2) <y% ", with y = 10, preferably 5, more preferably 3, for example 1.5, is verified. FIG. 3 schematically illustrates the shape of the evolution curve Μ10 (θι0) of the momentum M10 of elastic return exerted by the set of elastic blades 14 in the unit 10 insulated according to the relative angular position θΊο of its serge 13 by relative to its hub 12, this relative angular position corresponding to the angle θΊ0 defined above. As can be seen in the curve Μ10 (θι0) of FIG. 3, the elastic return moment of the isolated unit 10 shown in FIG. 2 generally follows an evolution in three phases: for an angle θ10 between 0 and a first value O10min, the moment of elastic return increases rapidly with the angular displacement θ10, this phase corresponds to the winding phase; beyond this first value O10min, the unit 10 is in a stable phase. Indeed, between this first value O10min and a second value O10max, the elastic return moment is substantially constant with respect to the angular displacement θ10; beyond this second value 0-iOrnax, the moment of elastic return increases again until reaching a limiting value M10iimite, for an angular displacement θ10 = Θ-ιοιμθ- This value M -limite depends on the properties of the material in which unity is achieved and is achieved when the unit 10 undergoes the maximum stress that it can support. For a given monolithic unit, it is possible to define limit values of angles 0min_y% and 0max y% between which the elastic return moment is substantially constant, with a constancy of y%. For example, if one wants to obtain a constancy of the elastic return moment of 5%, one defines with the aid of the curve Μ (θ) associated with this unit, the values of the angles θπίη_5% and 0max 5% for that Inequency: "(Mmax-Mmin) / ((Mmax + Mmin) / 2) <0.05 "is verified; with Mmax the maximum elastic return moment of this unit over the range of angles [0min_5%, 0max5%] and Mmin the minimum elastic return moment of this unit over this same interval. Each unit therefore has, for a given percentage "y" constancy of the moment of elastic return, a range of angular positions [0min_y%, Omax y%] which is specific to it, in which it exerts a moment of force substantially constant. In the first embodiment of the invention, the two units 10, 20 being identical, [Oiomin y%, Ol0max_y%] = [02Omin_y%, 02Omax_y%] · [0024] As already indicated, the two units 10 , 20 are arranged head to tail so that their respective preferred rotational directions are opposite. Each of the units 10 and 20 is armed in its preferred direction of rotation and thus exerts an elastic return moment, respectively Μ1ο (θιο) and Μ2Ο (θ2ο), opposite to that exerted by the other of said units 10, 20. The device 1 is designed so that when it is at rest, that is to say when no external force is exerted on him, and especially when no external force tends to generate a rotation of his serges 13 , 23 with respect to its hubs 12, 22, each of its two units 10 and 20 is armed with a value of respectively 0iOarm and 02Oarm, with Qioarm included in the range [0-iomin, θ-iomax] and 02Oarm included in the range [02Omin, 02omaxl · It is said that each of the units 10, 20 is pre-armed, respectively 01Oarm and 02Oarm · In the first embodiment of the invention, the two identical units 10, 20 are typically pre-armed of the same value 0arm. The device 1 is then in a so-called "equilibrium arming" position in which the return moments M10 (Oarm), M2O (0arm) respectively exerted by the elastic members 14, 24 of the units 10, 20 compensate theoretically perfectly. : M10 (0arm) = - M2O (0arm). In use, the device 1 is intended to be fixed either by a portion integral in rotation with its serges 13, 23, or by a portion integral in rotation with its hubs 12, 22, to a fixed or movable support , such as a turntable, a bridge or a tourbillon cage of a watch mechanism, so that the serges 13, 23 or the hubs 12, 22 of the units 10, 20 are fixed with respect to said support during the use of the device 1. The other of these elements are in turn rotatable relative to said fixed elements. In the remainder of the description, the expression "mobile element" is used to designate that of the assembly comprising the hubs 12, 22 of the device 1 or of the assembly comprising the serges 13, 23 of the device which is mobile in rotation relative to said support during use of the device 1, the other being designated by the term "fixed element". Monolithic units having a curve M (9) of the type shown in FIG. 3 differ from conventional elastic structures. Their properties are based on a sinuous shape of their elastic blades which deform so as to generate a substantially constant elastic return moment (the curve M (6) has a plateau). Obtaining such elastic blades requires a specific and parameterized design. For example, they can be obtained by topological optimization by applying the teaching of the publication "Design of adjustable constant-force forceps for robot-assisted surgical manipulation", Chao-Chieh Lan et al., 2011 - IEEE International Conference on robotics and automation Shanghai International Conference Center May 9-13, China. The topological optimization referred to in the above article uses parametric polynomial curves such as Bezier curves to determine the geometric shape of the elastic blades. The Bezier curves are defined, together with a series of m = (n + 1) control points (Qo, Qi, ... Qn), by a set of points whose coordinates are given by sums of Bernstein polynomials weighted by the coordinates of said control points. The geometric shape of each of the elastic blades of the device is a Bezier curve whose control points have been optimized to take into account, in particular, the dimensions of the unit to be designed and the stress "(Mmax-Mmin). ) / ((Mmax + Mmin) / 2) <0.05 "sought. The inequation "(Mmax-Mmin) / ((Mmax + Mmin) / 2) <0.05 "corresponds to a constancy of the elastic return moment of 5% over an angular range [Omin_s%, 0maxs%] · More precisely, the geometrical shape of each of the elastic blades of the device is defined by the set of points where s, "are the Bernstein polynomials given by the function and where the Qi are the control points Qo to Qn. It corresponds to the graphical representation in an orthonormal coordinate system of the set of points defined by the pairs of coordinates (x; y) defined respectively by the functions x (t) and y (t), te [0, 1], ci -Dessous: where Qix and Qiy are respectively the x and y coordinates of the Q, control points. The formulas indicated above give the coordinates of a Bézier curve of order m, that is to say a Bézier curve based on m control points. For practical reasons, such a Bézier curve can be decomposed into a succession of Bézier curves of order less than m, in which case the geometric shape of each of the elastic arms is a succession of Bezier curves. Using this principle, the Applicant has designed a particular unit comprising three resilient blades evenly distributed around the hub. This particular unit corresponds to the unit 10 shown in the figures. The dimensions of this unit 10 are as follows: Outside diameter of the serge: 12 mm Outer diameter of the hub: 2 mm Internal diameter of the serge: 10 mm Height: 0.12 mm Thickness of the elastic blades: 80 μm Curvilinear Length of Each Blade: 4.91 mm [0034] As part of this design, seven control points Qo, Qi, Q2, Q3, Q4, Q5, and O6 were used. The coordinates of these control points are shown in Table 1 below. Table 1: Coordinates of control points Qo to Q6. [0035] ________________________________________________________ Variables Coordinates x [mm] Coordinates y [mm] Qo 0.756625 0.653875 Ql 1.873251.619 Q2 2.8125 -0.59125 Q3 3.4375 0.4535 G4 3.75 1.032875 Qs 4,3750 Q6 50 [0036] With these seven points of control it would have been possible to realize a Bezier curve of order seven. However, according to the principle indicated above, the Bézier curve has been decomposed into two segments. , a first segment corresponding to a fourth order Bézier curve based on check points Qo to Q3 and a second segment corresponding to a fourth order Bézier curve based on checkpoints Q3 to Q6. Using the coordinates of the control points Qo to C6 above in the aforementioned functions x (t) and y (t), the applicant obtained the coordinates of the points defining the geometric shape of an elastic blade of the 10. A number of these pairs of coordinates are given in Table 2 below. Table 2: Pass Point Coordinates of Optimized Elastic Blade [0038] x [mm] y [mm] 0.756625 0.653875 1.086132 0.854582 1.404044 0.903348 1.709407 0.838756 2, 001267 0.699389 2.278672 0.523828 2.540668 0.350656 2.786302 0.218455 3.014621 0.165807 3.224671 0.231295 3.4155 0.4535 3.524275 0.58159 3.648736 0 , 628816 3.787142 0.611048 3.937748 0.544158 4.098813 0.444016 4.268592 0.326492 4.445344 0.207458 4.627324 0.102784 4.812791 0.028341 5 0 [0039] graph of fig. 4 shows the geometry of the outer diameter of the hub, the inner diameter of the serge and one of the elastic blades of the unit 10 that the applicant has designed, the geometry of said blade being defined by a curve passing through the assembly. point coordinates defined in Table 2 above. This graph is made in an orthonormal frame. FIG. 5 represents the results of a simulation of the evolution of the elastic return moment of the isolated unit 10 thus produced as a function of the angular position θ10 of its serge with respect to its hub. The simulation carried out considers the unit 10 isolated made of metal glass but any suitable material can be used. For example, materials such as silicon typically coated with silicon oxide, Nivaflex® 45/18 (cobalt-based alloy, nickel and chromium); plastic or CK101 (unalloyed structural steel) are also suitable and allow to obtain monolithic units whose elastic return moment is substantially constant over the same angular ranges [θπίη, 0max] · [0042] The angular range operating mechanism for delivering a substantially constant moment being a constant related to the shape of the elastic blades. The operating angle O10max must be less than the angle θ10ϋπ corresponding to the limit before plastification or rupture of the unit 10. This makes it possible to define the maximum thickness that can be achieved on the blades. It appears from the analysis of the results presented in FIG. That a constancy of 2.4% of the elastic return moment is obtained for an angular displacement of the serge 13 of the unit 10 studied with respect to its hub 12 between θπίη_2,4%, ie 13 °, and 0max_2 , 4%, ie 31 °, or over an operating range of 18 °. The unit 10 thus produced thus has a range of operation at constant moment (for a constancy of 2.4%), which is unique to it, of 18 °. If we accept a constancy of 9.1% of the moment of elastic return then the unit 10 thus produced has a constant-time operating range of its own about 23 °, with θιοπίη_9, ι% ~ 10, 5 ° and 01Omax_9, i% "33.5 °. Table 3 below gives, as an indication, the values θιοπιη y%, hiomax y% and Δθ10 (range of angular positions at substantially constant moment) associated with the unit 10 performed by the applicant according to the percentage of constancy y considered as well as the values of moments of force MiOmin and MiOmax associated. Table 3: [0045] Omin_y% 6max_y% Angular range Mmin Mmax Percentage of constancy y (%) Δθ (°) 13.5 30.5 17 1.310 1.3311.6 13 31 18 1.303 1.3352.4 12.5 31.5 19 1.294 1.3393.4 12 32 20 1.284 1.3434.5 10.5 33.5 23 1.242 1.3609.1 [0046] By increasing the number of control points during the design of the elastic blades, it should be possible to increase the precision of the shape of these elements. elastic blades and thus improve the constancy of the moment of recall. In order to obtain a device 1 as shown in FIG. 1: a) two monolithic units 10, 20 identical to the unit 10 developed by the applicant have been made, the hub 12, 22 of each of these units 10, 20 including holes 11; b) these units 10, 20 have been superimposed, head to tail; c) the hubs 12, 22 of the units 10, 20 have then been secured to one another by the introduction of pins 4 in their holes 11. The intermediate device thus obtained is shown in FIG. 6. FIG. 7a schematically illustrates this same device. In this figure, for practical reasons, the serge 23 of the unit 20 is shown larger than that 13 of the unit 10, the hub 22 of the unit 20 is shown larger than that 12 of the unit 10 and the resilient blades 14, 24 are not shown. In this fig. 7a, marks "0" respectively aligned on the serges 13, 23 and on the hubs 12, 22 of the units 10 and 20 serve as index to identify the state of rest of each unit: θι0 = 820 = 0 °. The fastening of the hubs 12, 22 is schematically represented by a segment 3a connecting the hubs 12, 22. d) each of the two units 10, 20 was then armed with the same angle 6arm in its preferred direction of rotation, anti-rotation direction. time for unit 10 (arrow A) and clockwise for unit 20 (arrow B). In the illustrated example, for each of the units 10, 20: θπίη = 13 °, 0max = 31 ° and 0arm = 22 °. To facilitate the arming, the hubs 12, 22 have been held in a fixed position during the rotation respectively in the counterclockwise and hourwise directions of the serges 13, 23 of the units 10, 20. e) once armed, the serges 13 , 23 have been made integral in rotation from one another by insertion of pins 3 in their openings 15, 25. Figures 1 and 7b illustrate the device 1 thus obtained. In fig. 7b, the fastening of the serges 13, 23 is schematically represented by a segment 3b connecting the serges 13, 23. In this equilibrium arming position, each of the units 10, 20 exerts an elastic return moment tending to rotate the assembly comprising the serges 13, 23 with respect to the assembly comprising the hubs 12, 22 of the same value M20 (22 °) = -M10 (22 °) = 1.3 N.mm, the directions of these moments of recall elastics being opposed. It is clear to those skilled in the art that a device 1 according to the first embodiment of the invention can be obtained by a different sequence of steps. Consider the device 1 as described above wherein the assembly comprising the serges 13, 23 is the fixed element. The movable element therefore corresponds to the assembly comprising the hubs 12, 22. That is to say the angular position of the movable element, namely the assembly comprising the hubs 12, 22, with respect to the fixed element, a being equal to zero in the equilibrium arming position and increasing during the clockwise rotation of the movable element. The curve C! of fig. 8 corresponds to the curve M10 (a) of the unit 10 and the curve C2 of FIG. 8 corresponds to the curve M20 (a) of the unit 20. A positive return moment corresponds to a moment tending to rotate the assembly comprising the hubs 12, 22 in the counter-clockwise direction. The curve C! corresponds to the curve Μ1ο (θιο) that one would have for the isolated unit 10 and which would have suffered, because of the arming phase, a translation of a = Oioarm = 22 ° to the left. Indeed, the unit 10 is placed so that the increase of the angle a, from a = - (610arm) = -22 °, corresponds to a rotation of its serge 13 relative to its hub 12 in its preferred direction of rotation. Indeed, when the serge 13 is fixed and the hub 12 rotates in the clockwise direction, the serge 13 moves in the counterclockwise direction relative to the hub 12. The moment of force M10 exerted by the unit 10 tends to make pivoting the hub 12, and therefore the movable element, in the counterclockwise direction and is therefore positive. The curve C2 corresponds to the symmetrical curve Μ20 (θ20) that we would have for the unit 20 isolated from the center of the marker and which would have undergone a translation of a = 02Oarm = 22 ° to the right . Indeed, the unit 20 is placed so that the decrease of the angle a, from a = 02Oarm = 22 °, corresponds to a rotation of its serge 23 relative to its hub 22 ratio in its preferred direction of rotation . Indeed, when the serge 23 is fixed and the hub 22 pivots in the counterclockwise direction, the serge 23 moves clockwise relative to the hub 22. The moment of force M20 exerted by the unit 20 tends to make pivoting the hub 22, and therefore the movable element, clockwise and is therefore negative. The curve C3 of FIG. 8 illustrates the return moment M (a) acting on the movable element as a function of its angular position a. This curve corresponds to the sum of the curves C-ι and C2. To perform this simulation, the assembly comprising the serges 13, 23 of the device 1 has been immobilized and the time required to maintain the assembly comprising the hubs 12, 22 in position has been measured for a range of angular positions a . As can be seen in FIG. 8, as long as the position a is such that the arming of each of the two units 10, 20 remains in the value range [0min, 0max] associated with it, in this case, as long as the arming of each of the two two units remain in the range of values [13 °, 31 °] associated with it, the restoring moments exerted by the two units 10, 20 on the movable element compensate almost completely. Thus, the resulting return moment on the movable element is virtually zero. This corresponds to a predetermined angular position range a of the movable element with respect to the fixed element from a = -9 ° to a = 9 °, ie a predetermined angular range of 18 °. Thus, the predetermined angular position range of the device 1 according to the invention corresponds to the overlap range of the ranges [0-iomin, 01OmaX] and [020min, 02OmaX]. [0057] If the moving element is driven in rotation beyond a = 9 °, the curve C3 rises, which means that the overall elastic return moment M (a) tends to rotate the assembly comprising the hubs 12, 22 in the counter-clockwise direction. In the case studied, for each unit 10, 20, 01Oarm, 02oarm is centered on the range [θπίη, 0max] associated with this unit 10, 20. Thus, the largest possible range of predetermined angular positions is obtained. and a "bidirectional" guiding device 1 from its rest position, the movable element being able, from its rest position, to be rotated clockwise by 9 ° (up to a = 9 °) ) and counterclockwise of 9 ° (up to a = -9 °) undergoing a moment of elastic return substantially zero. For comparison, if we had armed each of the units 10, 20 of the previously described device with the same value 6arm = 15 °, the predetermined angular range of positions would have been 4 °, and if we had armed the unit 10 of the previously described device with a value 01Oarm = 13 ° and the unit 20 of the previously described device with a value 02Oarm = 31 °, the predetermined angular range of positions would have been 18 ° but the device of the guide would have been "unidirectional from its resting position", the movable element being able, from its rest position, to be rotated in the clockwise direction by 18 ° (up to a = 18 °) while undergoing a moment of elastic return substantially zero. In the device 1 according to the first embodiment of the invention, for each unit 10, 20, 6arm is preferably centered on the range of angular positions [0min, 0max] associated therewith. It is therefore preferably equal to (0min + ((Omax-0mm) / 2)), so that [θπίη, 6arm] = [Oarm, Omax] · In this way, the units 10, 20 exert recall moments M-io (θ-ιο), Μ20 (θ20) compensating almost completely over a range of predetermined angular positions of the serges 13, 23 with respect to the hubs 12, 22 extending from θπίη to 0max and for a rotation a of movable element both clockwise and counterclockwise. Over a predetermined angular range of rotation of the movable element relative to the fixed element, this range depending in particular pre-arming values of each of the units 10, 20, the elastic members 14, 24 of the units 10 , 20 exert on said movable element resilient return moments compensating partially or completely. Stops and protuberances may be arranged to limit the rotation of the movable member to this predetermined angular range. FIG. 11 illustrates a variant of the device shown in FIG. 1 in which the hubs 12, 22 of the two units 10, 20 are made integral in rotation with each other by means of an axis 9 comprising non-circular drive formations 9a cooperating with holes 11 of shapes corresponding in the hubs 12, 22. Each of the serges 13, 23 of the units 10, 20 has a protuberance 17, 27 serving as an index for the arming of the units 10, 20. A device 1 according to the first embodiment of the invention may for example be used to rotate a watch component such as an escapement anchor, a lever or a lever in a watch mechanism. The axis 9 can then advantageously wear the watch component to rotate. An escape anchor could for example be guided in rotation within a watch mechanism by a device 1 as shown in FIG. 11. For this, the anchor could be driven on the axis 9 so as to be secured in rotation of the hubs 12, 22. The axis 9 would then be the axis of rotation of the anchor. The escape anchor would typically be placed between the two units 10, 20 whose serges 13, 23 are respectively integral with a bridge and the plate of the watch mechanism. An escape anchor guided by a device 1 using two units 10, 20 identical to the unit 10 made by the Applicant with an initial winding value of each unit of 22 ° could theoretically pivot on an angle of 18 ° without friction and with a negligible return moment, while maintaining a significant stiffness outside its pivot plane. A device 1 according to the first embodiment of the invention can also be used for guiding any component that is to guide in rotation without friction and with a minimum possible return moment. Alternatively, it is conceivable to make a device according to the first embodiment of the invention comprising monolithic units different from each other (typically whose size, number, shape and / or material of the elastic blades is different between one and the other), each of said units being arranged within the device to exert a substantially constant elastic return moment over a predetermined range of angular positions of its serge with respect to its hub, the value of this substantially constant moment being substantially the same for both units. In other words, the "trays" of the M (9) curves of each of the units correspond to substantially identical values of elastic return moment. In this variant, it is possible to have different ranges [6min, 6max] from one unit to another. A device 2 according to a second embodiment of the invention differs from the device 1 according to the first embodiment in that its two units are not identical and have curves M (9) whose "plates" correspond to at values of substantially different elastic moment of return. Each of the units of the device 2 according to the second embodiment of the invention is able to generate a substantially constant return moment over a range of angular positions of its serge relative to its hub which is its own, this moment of recall. exerting in a first direction and being substantially equal to a first value X for a first of the two units and being in a second direction opposite the first and substantially equal to a second value Y, different from X for a second of said units. Such a device 2 allows guidance in rotation without friction, generating a substantially constant elastic return moment approximately equal to IX-Yl. Such a device 2 may be preferred to the device according to the first embodiment of the invention, for example when one seeks to obtain a guiding device without friction and with a low return moment but not substantially zero, for example for guiding a lever or a rocker. Said lever or rocker is for example a chronograph clutch rocker, a hammer, in particular a chronograph hammer, or a blocker, in particular a chronograph stopper. FIG. 9b illustrates such a device 2. FIG. 9a illustrates a step of producing this device, before the arming phase. The device 2 shown in FIG. 9b differs from the device 1 shown in FIG. 1 in that its two units 10, 30 are not identical. A first 10 of its units 10, 30 monolithic is identical to the unit 10 used in the device 1 and the other unit 30 differs from the first unit 10 in that its three elastic blades 34 are only 40um thick ( against 80um for unit 10). The unit 30 comprising three elastic blades 34 has properties similar to that of the unit 10 comprising three elastic blades 14, it comprises in particular the same values θπίη and 0max as the unit 10. However, its properties differ from those of the unit 10 in that the associated curve M30 (a) (cf. curve C4 of FIG. 10) has a "plateau" (substantially constant return moment) for a value of elastic return moment in absolute value lower than that of the unit 10. As illustrated in FIGS. 9a and 9b, the unit 30 of the device 2 may, like the unit 20 of the device 1, comprise openings 35 for the rotation fastening of the serges 13 and 33 of the units 10 and 30. In this device 2, the unit 10 is slightly armed with θ-ioarm = Oiomin = 13 °, by rotation of its serge 13 relative to its hub 12 in the counterclockwise direction, so that its behavior is at the lower limit of the constant zone (at the beginning of the "plateau"); the unit 30 is, for its part, strongly armed with 03Oarm = 03omax = 310 by rotating its serge 33 with respect to its hub 32 in the clockwise direction, so that its behavior is at the upper limit of the constant zone (at the end of the "plateau"). The preferred rotational directions of the units 10, 30 of the device 2 are represented respectively by the arrows A and C of FIG. 9b. A stop 5 cooperates with one of the resilient blades 14, 34 or with a protuberance of the hub 12, 32 and avoids, in the case where the movable element comprises the hubs 12, 32, that this unit 10 whose moment of associated reminder is, in absolute value, the most important, causes the hub 32 of the unit 30 (whose associated return moment is less important) in the counter-clockwise direction, which would amount to arming it beyond its value O30max. If the device 2 was designed so that the movable element comprises the serges 13, 33 and not the hubs 12, 32, the stop 5 would be arranged to limit the rotation of the serges 13, 33. This device 2 is asymmetrical and behaves like a constant force spring during the rotation of its hubs 12, 32 in the clockwise direction. Figs. 9a and 9b illustrate this device before and after arming. Consider the device 2 as described above wherein the set comprising the serges 13, 33 is fixed. The movable element therefore corresponds to the assembly comprising the hubs 12, 32. [0080] That is to say the angular position of the movable element relative to the fixed element, a being equal to zero in the equilibrium arming position and increasing during the rotation in the clockwise direction of the movable element ; Curve C-ι of FIG. 10 corresponds to the curve M10 (a) of the unit 10 and the curve C * of FIG. 10 corresponds to the curve M30 (a) of the unit 30. A positive return moment corresponds to a moment tending to rotate the assembly comprising the hubs 12, 32 in the counterclockwise direction. The curve C! corresponds to the curve Μ1ο (θιο) that one would have for the isolated unit 10 and which would have undergone, because of the arming phase, a translation of a = 610arm = 13 ° to the left. Indeed, the unit 10 is placed so that the increase of the angle a, from a = -01Oarm = -13 °, corresponds to a rotation of its serge 13 relative to its hub 12 in its direction of privileged rotation. The moment of force M10 exerted by the unit 10 tends to rotate the hub 12, and therefore the movable element, in the counterclockwise direction and is therefore positive. The curve C4 corresponds to the symmetrical curve M30 (83o) that one would have for the isolated unit 30 with respect to the center of the marker and which would have undergone a translation of a = 03Oarm = 31 ° to the right . Indeed, the unit 30 is placed so that the decrease of the angle a, from a = 03Oarm = 31 °, corresponds to a rotation of its serge 33 relative to its hub 32 ratio in its preferred direction of rotation . The momentum M30 exerted by the unit 30 tends to rotate the hub 32, and therefore the movable member, clockwise and is therefore negative. The curve C5 of FIG. 10 illustrates the return moment M (a) acting on the movable element as a function of its angular position a. This curve corresponds to the sum of the curves C-ι and C4. To perform this simulation, the assembly comprising the serges 13, 33 of the device 2 was immobilized and the time required to maintain the assembly comprising the hubs 12, 32 in position was measured for a range of angular positions a . In the device 2 according to the second embodiment of the invention shown in FIG. 9b, there is no arming equilibrium position per se. In the state of rest of the device 2, the unit 10 is armed with 13 °, the unit 30 is armed with 310 and the rotation of the movable element comprising the hubs 12, 32 is only possible in the direction schedule. The device 2 is in abutment against the stop 5 which prevents the rotation of the movable element in the counter-clockwise direction. As can be seen in FIG. 10, as long as the position a is such that the arming of each of the two units remains in the value range [0min, 6max] associated with it, in this case, as long as the armoring of each of the two units remains
权利要求:
Claims (20) [1] 1. Device (1; 2) comprising a fixed element (13, 23, 33), a movable element (12, 22, 32) and first (14) and second (24; 34) elastic members connecting the fixed element (13, 23, 33) and the movable member (12, 22, 32) and being arranged to guide the movable member (12, 22, 32) in rotation with respect to said fixed member (13, 23, 33), characterized in that each of the first (14) and second (24; 34) resilient members is arranged to exert on the movable member (12, 22, 32) a substantially constant resilient return moment over a predetermined range of angular positions of the movable element (12, 22, 32) relative to the fixed element (13, 23, 33) by at least 10 °, the elastic return moments exerted by the first (14) and second (24; ) resilient members compensating for at least partially throughout said predetermined range. [2] 2. Device (1; 2) according to claim 1, characterized in that said predetermined range of angular positions is at least 15 °, preferably at least 20 °, preferably at least 25 °. [3] 3. Device (1; 2) according to claim 1 or 2, characterized in that it comprises a first monolithic unit (10) comprising a first part of the fixed element, said first elastic member (14) and a first part the movable member, said first elastic member (14) connecting said first portions, and a second monolithic unit (20; 30) comprising a second portion of the fixed member, said second elastic member (24; 34) and a second part of the movable member, said second elastic member (24; 34) connecting said second portions. [4] 4. Device (1; 2) according to claim 3, characterized in that the two units (10, 20, 30) are monolithic with each other. [5] 5. Device (1; 2) according to claim 3 or 4, characterized in that the first and second parts of the fixed element each comprise a hub (12, 22, 32) and in that the first and second parts of the movable element each comprise a serge (13, 23, 33); or in that the first and second parts of the fixed element each comprise a serge (13, 23, 33) and in that the first and second parts of the movable element each comprise a hub (12, 22, 32). . [6] 6. Device (1; 2) according to claim 5, characterized in that the serges (13, 23, 33) are in the form of a closed circle or one or more arc (s) of a circle. [7] 7. Device (1; 2) according to one of the preceding claims, characterized in that each of said first and second resilient members comprises a plurality of resilient blades (14, 24, 34). [8] 8. Device (1; 2) according to claim 7, characterized in that said elastic blades (14, 24, 34) are uniformly distributed around the hub (12, 22, 32) of the monolithic unit (10, 20). , 30) to which they belong. [9] 9. Device (1; 2) according to one of claims 7 and 8, characterized in that each of the resilient blades (14, 24, 34) of each of said units (10, 20, 30) is of sinuous shape. [10] 10. Device (1; 2) according to one of claims 7 to 9, characterized in that the geometric shape of each elastic blade (14, 24,34) of each of said units (10,20, 30) is a curve of Bézier or a succession of Bézier curves. [11] 11. Device (1; 2) according to one of claims 5 to 10, characterized in that each of the units (10, 20, 30) has a preferred direction of rotation of its serge (13, 23, 33) relative at its hub (12, 22, 32) and is able to exert a substantially constant elastic return moment over a range of angular positions [6min, 6max] of its serge (13, 23, 33) relative to its hub (12 , 22, 32), 9 being increasing in the preferred direction of rotation of the unit (10, 20, 30) considered, in that the preferred directions of rotation of each of the units (10, 20, 30) are opposed and in that, in the state of rest of the device (1; 2), each of said units (10, 20, 30) is armed with an angle 0arm, this angle 6arm being, for each unit (10, 20, 30) ) between 0min and 0max 0max of said unit (10, 20, 30), 0min, 6arm and / or 6max may be the same or different from one unit to another. [12] 12. Device (1; 2) according to claim 11, characterized in that for each of said units (10, 20, 30), 0arm = θΓηίη + ((0max - 9min) / 2). [13] 13. Device (1) according to one of the preceding claims, characterized in that the elastic return moments exerted by the first (14) and second (24) elastic members compensate almost completely throughout said predetermined range. [14] 14. Device (1) according to claim 13, characterized in that the first (14) and second (24) elastic members are identical. [15] 15. Device (1; 2) according to one of the preceding claims, characterized in that it is a watch device. [16] 16. A method of producing a device (1; 2) according to one of claims 5 to 15, characterized in that it comprises the following successive steps: a. Making a set of two monolithic units (10, 20, 30) including (i) hubs (12, 22, 32) of said two units (10, 20, 30) or ii) (serges (13, 23, 33) said two units (10, 20, 30) are integral in rotation with each other, b) arming each of said two units (10, 20, 30), and securing in rotation those of the hubs (12). , 22, 32) or serges (13, 23, 33) which are not at the end of step a. [17] 17. A method of producing a device according to claim 16, characterized in that step (a) (i) is performed by introducing pins (4) into holes (11, 21, 31) of the hubs (12). , 22, 32) or by fixing said hubs (12, 22, 32) to a support and in that step a (ii) is performed by inserting pins (3) in openings (15, 25) of the serges (13, 23, 33) or by fixing said serges (13, 23, 33) to a support. [18] 18. Watchmaking assembly comprising a device (1; 2) according to one of claims 1 to 15 and a watch component integral in rotation with the movable element. [19] 19. Watchmaking assembly according to claim 18, characterized in that the watch component is an escapement anchor, a lever or a rocker, said lever or rocker being for example a clutch rocker, a hammer, in particular a hammer. chronograph, or a blocker, particularly a chronograph stopper. [20] 20. Timepiece, such as a wristwatch, comprising a watch assembly according to one of claims 18 or 19.
类似技术:
公开号 | 公开日 | 专利标题 EP3545364B1|2020-10-28|Flexibly guided rotary resonator maintained by a free escapement with pallets CH710795A2|2016-08-31|Silicon hairspring. EP3182213B1|2018-09-12|Mechanism for adjusting an average speed in a clock movement and clock movement WO2019092666A1|2019-05-16|Device for rotationally guiding a movable component EP3382470A1|2018-10-03|Timepiece oscillator with a flexible pivot EP3598242A1|2020-01-22|Cam timepiece mechanism EP3037893B1|2018-02-28|Micromechanical or clock component with flexible guidance CH713787A2|2018-11-15|Watchmaker device with positioning member EP3580618B1|2022-01-26|Timepiece driving organ EP3399373A1|2018-11-07|Clock device with positioning member EP3598243A1|2020-01-22|Timepiece mechanism with jumper member EP3379342A1|2018-09-26|Device comprising a quick-adjustment spring engaging with a mobile of a timepiece CH708429A1|2015-02-27|Spiral for a regulating member of a mechanical watch, a regulating member provided with such a hairspring, and method of making such a hairspring. EP3182214A1|2017-06-21|Mechanical oscillator for timepiece, adjustment mechanism comprising said mechanical oscillator, and clock movement EP3534222A1|2019-09-04|Method for producing a thermally compensated oscillator EP3707564A1|2020-09-16|Timepiece assembly comprising a timepiece component and a device for translationally guiding a movable element EP3792700A1|2021-03-17|Timepiece oscillator with flexible pivot EP3644129A1|2020-04-29|Flexible guide member EP3598241A1|2020-01-22|Clock mechanism having a constant-force device EP3223085B1|2019-05-08|Device comprising a quick-adjustment spring for a clock movement CH703414A2|2012-01-13|Balance spring for forming sprung balance resonator of mechanical watch, has hair springs whose curves correspond to specific relation so as to reduce displacements of center of mass of balance spring during contraction and expansion EP3936946A1|2022-01-12|Timepiece oscillator with flexible pivot EP3907563A1|2021-11-10|Timepiece mechanism comprising a pivot member CH714704A2|2019-09-13|Angular return spring for thermo-compensated oscillator CH714705A2|2019-09-13|Angular return spring for thermo-compensated oscillator.
同族专利:
公开号 | 公开日 EP3707565B1|2021-11-03| EP3707565A1|2020-09-16| EP3483666A1|2019-05-15| WO2019092666A1|2019-05-16|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US2606447A|1949-11-01|1952-08-12|Curtiss Wright Corp|Antifriction bearing| EP2104006B1|2008-03-20|2010-07-14|Nivarox-FAR S.A.|Single-body double spiral and method for manufacturing same| EP2105807B1|2008-03-28|2015-12-02|Montres Breguet SA|Monobloc elevated curve spiral and method for manufacturing same| CH710979A2|2015-04-16|2016-10-31|Montres Breguet Sa|Spiral of micro-machinable material with correction of isochronism.|EP3663869B1|2018-12-06|2021-06-16|Montres Breguet S.A.|Timepiece chiming mechanism with suspended hammer| EP3907563A4|2020-05-07|2021-11-10|Patek Philippe Sa Geneve|Timepiece mechanism comprising a pivot member|
法律状态:
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 EP17200969.8A|EP3483666A1|2017-11-10|2017-11-10|Device for guiding the rotation of a mobile component| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|