![]() Intravascular arterial to venous anastomosis and tissue welding catheter
专利摘要:
A catheter-based device tracks over a guidewire which has been placed from a first blood vessel into a second blood vessel. The distal tip of the catheter is advanced into the second vessel while a proximal member remains in the first vessel. Matching blunt tapered surfaces on each of the distal tip and the proximal member are clamped together, with adjacent walls of each vessel between them, after which a known, controlled pressure is applied between the two surfaces. Heat energy is then applied to the blunt surfaces for approximately 1-30 seconds to weld the wal ls of the two vessels together. After coaptation of the vessel walls, the heat is increased to then cut through the vessel walls to create a fistula of the desired size. 公开号:AU2013216809A1 申请号:U2013216809 申请日:2013-02-08 公开日:2014-08-21 发明作者:David Trottingwolf Aldridge;Jeffrey E. Hull;Brad M. Kellerman;Gene Reu;Mark A. Ritchart;David K. Wrolstad 申请人:Baja Res LLC;Caymus Medical Inc; IPC主号:A61M29-04
专利说明:
WO 2013/120021 PCT/US2013/025441 INTRAVASCULAR ARTERIAL TO VENOUS ANASTOMOSIS AND TISSUE WELDING CATHETER Background of the Invention In the body, various fluids are transported through conduits throughout the organism to perform various essential functions. Blood vessels, arteries, veins, and capillaries carry blood throughout the body, carrying nutrients and waste products 5 to different organs and tissues for processing. Bile ducts carry bile from the liver to the duodenum. Ureters carry urine from the kidneys to the bladder. The intestines carry nutrients and waste products from the mouth to the anus. In medical practice, there is often a need to connect conduits to one another or to a replacement conduit to treat disease or dysfunction of the existing conduits. 10 The connection created between conduits is called an anastomosis. In blood vessels, anastomoses are made between veins and arteries, arteries and arteries, or veins and veins. The purpose of these connections is to create either a high flow connection, or fistula, between an artery and a vein, or to carry blood around an obstruction in a replacement conduit, or bypass. The conduit for a bypass 15 is a vein, artery, or prosthetic graft. An anastomosis is created during surgery by bringing two vessels or a conduit into direct contact, and to create a leak-free blood flow path between them. The vessels are joined together with suture or clips, in an open surgical procedure. The anastomosis can be end-to-end, end-to-side, or side-to-side. In blood vessels, 20 the anastomosis is elliptical in shape and is most commonly sewn by hand with a continuous suture. Other methods for anastomosis creation have been used including carbon dioxide laser, and a number of methods using various connecting prosthesis, clips, and stents. Such procedures are time consuming, clinician 1 WO 2013/120021 PCT/US2013/025441 dependent (open to surgical error), and often result in strictures, or clotting of the vein or artery. An arterio-venous fistula (AVF) is created by connecting an artery to a vein. This type of connection is used for hemodialysis, to increase exercise tolerance, to 5 keep an artery or vein open, or to provide reliable access for chemotherapy. An alternative is to connect a prosthetic graft from an artery to a vein for the same purpose of creating a high flow connection between artery and vein. This is called an arterio-venous graft, and requires two anastomoses. One is between artery and graft, and the second is between graft and vein. 10 A bypass is similar to an arteriovenous graft. To bypass an obstruction, two anastomoses and a conduit are required. A proximal anastomosis is created from a blood vessel to a conduit. The conduit extends around the obstruction, and a second distal anastomosis is created between the conduit and vessel beyond the obstruction. As noted above, in current medical practice, it is desirable to connect arteries 15 to veins to create a fistula for the purpose of hemodialysis. The process of hemodialysis requires the removal of blood from the body at a rapid rate, passing the blood through a dialysis machine, and returning the blood to the body. The access to the blood circulation is achieved with catheters placed in large veins, prosthetic grafts attached to an artery and a vein, or a fistula where an artery is attached directly 20 to the vein. Fistulas for hemodialysis are required by patients with kidney failure. The fistula provides a high flow of blood that can be withdrawn from the body into a dialysis machine to remove waste products and then returned to the body. The blood is withdrawn through a large access needle near the artery and returned to the fistula 25 through a second large return needle. These fistulas are typically created in the forearm, upper arm, less frequently in the thigh, and in rare cases, elsewhere in the body. It is important that the fistula be able to achieve a flow rate of 500 ml per 2 WO 2013/120021 PCT/US2013/025441 minute or greater. Dialysis fistulas have to be close to the skin (< 6 mm), and large enough (> 4 mm) to access with a large needle. The fistula needs to be long enough (> 6 cm) to allow adequate separation of the access and return needle to prevent recirculation of dialysed and non-dialysed blood between the needles inserted in the 5 fistula. Fistulas are created in anesthetized patients by carefully dissecting an artery and vein from their surrounding tissue, and sewing the vessels together with fine suture or clips. The connection thus created is an anastomosis. It is highly desirable to be able to make the anastomosis quickly, reliably, with less dissection, and with 10 less pain. It is important that the anastomosis is the correct size, is smooth, and that the artery and vein are not twisted. Summary of the Invention The present disclosed invention eliminates the above described open 15 procedures, reduces operating time, and allows for a consistent and repeatable fistula creation. It is well known that heat energy, whether its source is Radio Frequency (RF), Direct Current (DC) resistance, or laser, will attach and weld tissue or vessels upon direct pressure and contact over the targeted weld area. This is often done with 20 jaw-type, compression heat delivery devices. It is also well known that radially expandable devices such as balloons, metal cages, and baskets are often coupled with energy in the form of RF or DC resistance, or in the case of balloons, heated saline, and used intraluminally to ablate tissue, stop bleeding, or create a stricture. The present invention uses catheter based devices that are advanced from one 25 vessel into an adjacent vessel (i.e. a vein into an artery), join the vessel walls by applying heat, and cut through the two walls, creating an anastomosis. 3 WO 2013/120021 PCT/US2013/025441 The inventive catheter-based devices track over a guidewire which has been placed from a first vessel, such as a vein, into a second vessel, such as an artery, or more broadly between any other two vascular structures. The distal tip of the catheter has a tapered shape which allows the catheter to advance and dilate easily 5 through the vessel walls. Proximal to the distal tip, the catheter has a significant reduction in diameter, and then a blunt, oval shaped tapered surface. As the catheter is further advanced, the blunt proximal surface comes into contact with the wall of the first vessel and encounters resistance, and cannot perforate through the wall into the second vessel. The distal tip, which has a matching blunt surface on its proximal 10 end, is then retracted, capturing the walls of the two vessels between the two blunt surfaces. A known, controlled pressure (approximately 100 mN/mm 2 - 400 mN/mm 2 ) is applied between the two surfaces. The pressure can be controlled either internally in the catheter or by the handle attached to the proximal end of the catheter. Heat energy is then applied to the blunt surfaces for approximately 1-30 15 seconds to weld the walls of the two vessels together. It is possible to apply heat energy to only one surface as well. Heat energy can be applied through several different methods, including, but not limited to, RF, DC resistance, inductance, or a. combination thereof. The heat energy is controlled at a known temperature ranging from between about 150-300 C. The heat may be applied by applying a steady 20 energy, pulsing energy, incrementing energy, decrementing energy, or a combination thereof. After coaptation of the vessel walls, the heat is increased to then cut through the vessel walls to create a fistula of the desired size. It should be noted that it is also possible to apply the same heat energy to both weld the vessel walls and to cut 25 through the vessel simultaneously, or to cut through the vessel then weld the vessels' walls together. Alternatively, the same heat energy could be used to weld the vessel walls, followed by a non-energized, mechanically created cut through the vessel 4 WO 2013/120021 PCT/US2013/025441 walls. More particularly, there is provided a device for creating an arteriovenous (AV) fistula, which comprises an elongate member, a distal member having a tapered distal end, which is connected to the elongate member and movable relative 5 to the elongate member, and a first heating member disposed on a blunt tapered face of one of the movable distal member and the elongate member. A second heating member is disposed on a blunt tapered face of the other one of the movable distal member and the elongate member. The heating members are adapted to cut through the tissue to create the fistula. The elongate member comprises an elongate outer 10 tube. A shaft connects the distal member to the elongate member, and is extendable and retractable to extend and retract the distal member relative to the elongate member. One of the shaft and the distal member are fabricated of a flexible material. Preferably, the blunt tapered face on the proximal elongate member 15 comprises a distal tapered face and the blunt tapered face on the distal member comprises a proximal tapered face, wherein the distal tapered face and the proximal tapered face are substantially aligned to one another.. The first heating member is disposed on the proximal tapered face and the second heating member is disposed on the distal tapered face. One of the first and second heating members is active, and 20 the other is passive, in some embodiments. The active heating member is energized, preferably by DC resistive energy. The passive heating member comprises a passive heat conductive surface. The active heating member preferably has an oval shape. In some embodiments, the distal member is tapered and flexible. It may be constructed to be rotatable relative to the elongate member. 25 Structure for retaining tissue is provided, and associated with one of the heating members. In illustrated embodiments, this structure may comprise a plurality of protruding elements disposed adjacent to a face of at least one of the 5 WO 2013/120021 PCT/US2013/025441 heating members. At least one of the elongate member and the distal member preferably comprises a cavity for receiving tissue retained by this structure, and this cavity is preferably disposed within and bounded by one of the heating members. Regarding the aligned proximal and distal tapered faces, a coating, which 5 may be PTFE, is preferably disposed thereon to minimize tissue adhesion. Additionally, in preparation for receiving this coating, each of the proximal and distal tapered faces are constructed to have a smooth surface finish of approximately 25-100 micro inches. A conductive material is preferably disposed above, below, or within at least 10 one of the heating members, for spreading heat generated by the heating member and creating a temperature gradient emanating outwardly from the heating member throughout the area of blunt tapered surface on which it is disposed. In another aspect of the invention, there is disclosed a method of creating an AV fistula between adjacent first and second vessels, which comprises a step of 15 inserting a guidewire from the first vessel into the second vessel, inserting a catheter comprising a proximal elongate member and a distal member over the guidewire, so that a tapered distal tip of the distal member comes into contact with a selected anastomosis site, and advancing the distal member into the second vessel, until a blunt tapered distal face of the elongate member contacts a tissue wall of the first 20 vessel, so that the elongate member remains in the first vessel, thereby enlarging an aperture between the two vessels. A further step involves moving the distal member and the elongate member together to clamp tissue surrounding the aperture between the blunt tapered distal face of the elongate member and a corresponding blunt tapered proximal face on the distal member, and applying energy to a heating 25 member on one of the distal member and the elongate member to cut and form the aperture, and to weld the edges thereof in order to create a desired fistula between the two vessels. 6 WO 2013/120021 PCT/US2013/025441 Preferably, during the applying energy step, a temperature of 150-300'C is maintained at the location where the aperture is being cut. The moving and clamping step further preferably comprises applying a known, controlled pressure between the blunt tapered distal face on the elongate member and a corresponding 5 blunt tapered proximal face on the distal member, wherein the known, controlled pressure is within a range of approximately 100 mN/mm 2 to 400 mN/mm 2 . The method may include a step of rotation the distal member during the advancing step, for a purpose of reducing frictional resistance to the distal member, and may also advantageously further comprise a step of retaining cut tissue using 10 structure associated with the heating member. This structure may include a cavity for receiving the tissue, as well as a plurality of protruding elements extending from at least one of the blunt tapered faces and surrounding the cavity. The invention, together with additional features and advantages thereof, may best be understood by reference to the following description taken in conjunction 15 with the accompanying illustrative drawings. Brief Description of the Drawings Fig. 1 is an isometric view of an embodiment of a catheter device constructed in accordance with the principles of the present invention; Fig. 2 is a view illustrating a method of access to a first blood vessel in a 20 patient's hand, using a device of the present invention, such as the device illustrated in Fig. 1; Fig. 3 is a schematic view illustrating the placement of a guidewire from the first blood vessel into a second adjacent blood vessel, in accordance with the present 7 WO 2013/120021 PCT/US2013/025441 invention; Fig. 4 is a view similar to Fig. 3, wherein the catheter is advanced over the guidewire into the first blood vessel (or vein) with the distal tip entering into the adjacent second vessel (or artery); 5 Fig. 5 is a view similar to Fig. 4, wherein the catheter distal tip has been fully extended into the second blood vessel; Fig. 6 is a view similar to Fig. 5, wherein the catheter distal tip has been retracted to create coaptation of the first and second blood vessels; Fig. 7 is a view similar to Fig. 6, wherein heat energy is applied to weld and 10 cut a communicating aperture in the coapted blood vessels; Fig. 8 is a view illustrating in an axial orientation the coapted, welded blood vessels and communicating aperture created by the device and methods of the present invention after the inventive device has been withdrawn from the procedural site; 15 Fig. 9 is a schematic view in an orthogonal orientation relative to Fig. 8, illustrating a detailed view of the welded blood vessels and elongate communicating aperture formed between the two adjacent vessels to create the fistula; Fig. 10 is a cross-sectional view of a handle portion of the embodiment shown in Fig. 1; 8 WO 2013/120021 PCT/US2013/025441 Fig. 11 is an isometric view similar to Fig. 1, illustrating an alternative embodiment of the invention; and Fig. 12 is an orthogonal view of the proximal active heat transfer element in the embodiment of Fig. 11. 5 Description of the Preferred Embodiment Referring now more particularly to the drawings, as illustrated in Fig. 1, a DC resistive heat catheter 510 is shown, which comprises an elongate outer tube 512 10 having an outer diameter that can range from 3F-12F. It may be manufactured from a variety of materials, either polymeric or metallic. It comprises a central lumen 514, into which a tubular structure 516, which defines its own lumen, disposed on a tip 518, may slidably engage. There are separate lumens that run down the elongated core of the outer tube 512 for wiring heating elements 520, 522 (proximal and distal 15 as shown in Fig. 1 and Fig. 11 respectively), disposed on aligned blunt tapered faces 512a and 518a, respectively, of the respective elongate outer tube 512 and distal tip 518, and to measure the temperature during the coaptation and cutting processes. In the operation of this configuration, the catheter may be powered using DC resistive energy to the active proximal heat transfer element 520 with the distal heat 20 transfer element 522 acting as a passive heat conductive surface to promote heat transfer through the coapted tissue interface from the active element 520 to the passive element 522. The system can also be used in an alternate configuration wherein element 522 provides the active heat transfer element and element 520 provides the passive heat conductive surface to promote heat transfer through the 25 coapted tissue. Both heating elements 520, 522 may be active, if desired. The heat transfer elements are fabricated with matching angles to increase the surface area of 9 WO 2013/120021 PCT/US2013/025441 coaptation and fistula size relative to the catheter diameter. These angles can be adjusted to achieve desired fistula sizing. The DC heat transfer elements are conductive on the front opposing faces to maximize energy density. The DC heat transfer elements 520, 522 are oval shaped and are adapted to cut an anastomosis 5 which is larger than the diameter of the shaft 516. There are protruding elements 524 adjacent to the face of proximal heat transfer element 520 to promote tissue retention during welding and cutting. The entire opposing surfaces 512a and 518a of the proximal and distal tip heat transfer elements 520 and 522, respectively, are constructed to have a smooth surface finish of approximately 25-100 micro inches 10 that is treated with a coating such as PTFE to minimize tissue adhesion during or after welding and cutting. As noted above, Figs. 11 and 12 are noted as being illustrative of an alternative embodiment. This is because, as shown in Fig. 12, it shows an alternative heating element 520 on the elongate outer tube 12. However, as 15 illustrated, the tip 518, with heating element 522 of each of the embodiments of Figs. 1 and 11 may be interchangeable or identical. The apparatus shown and described above in connection with Figs. 1, 10, 11, and 12 will now be further described in conjunction with an explanation of a particular method by which the system 510 may be used to create an AV fistula. This 20 method is illustrated more particularly in Figs. 2-9. To begin the inventive method of creating an AV fistula, the practitioner selects an appropriate procedural site having each of a first vessel 26 and a second vessel 28 in close proximity to one another. In currently preferred approaches, the first vessel 26 comprises a vein, and the second vessel 28 comprises an artery, but 25 the invention is not necessarily limited to this arrangement. As illustrated in Fig. 2, one presently preferred location is the hand 30 of a patient. Then, generally employing principles of the Seldinger technique, as shown in Fig. 2, the first vessel 10 WO 2013/120021 PCT/US2013/025441 26 is punctured by needle 32, which is inserted therein, for the purpose of introducing an access sheath into the site. Then, using suitable techniques, such as the technique described in Provisional U.S. Application Serial No. 61/354,903, filed on June 15, 2010 and U.S. App. Serial No. 13/161,182, filed on June 15, 2011, both 5 applications being herein expressly incorporated by reference, in their entirety, a guidewire 34 is inserted into the patient, from the first vessel 26 into the second vessel 28, as shown in Fig. 3. The guidewire 34 creates an access path for catheter 510. The catheter 510 is inserted into the patient by loading a proximal end of the guidewire into the lumen 10 516 of tip 518, which is fabricated to be flexible and tapered. Alternatively, tip 518 could be fabricated to be rigid and attached to a flexible shaft 516. The catheter 510 is advanced further into the patient, tracking over the guidewire 34, until the tapered dilating distal tip 518 comes into contact with the selected anastomosis site. The device 510 can be tracked over the guidewire with the distal tip extended (as shown 15 in Fig. 5) or retracted (as shown in Fig. 4). The distal tip is extended and further advanced into the second vessel 28 (Fig. 5) by advancing the central tubular structure 516 distally from outer tube 512, thereby dilating the opening in the vessel, so that the distal tip 518 is in the second vessel 28, and the outer tube 512 is in the first vessel 26, with its distal tapered surface 512a contacting the inner wall of the first 20 vessel 26. If resistance is felt, tip 518 can be rotated to reduce the friction. Alternatively, the entire system can be rotated to reduce friction. At this juncture, the opening formed in the wall of vessel 26 and 28 has recovered back to a smaller diameter and fits tightly around the shaft 516, as shown. As noted above, the distal tip 518 of the catheter device has a tapered shape, 25 tapering in the distal direction, which allows the catheter to advance and dilate easily through the vessel walls. Proximal to the tapered end of the distal tip 518, at approximately point 523 (Fig. 1) the catheter has a significant reduction in diameter, 11 WO 2013/120021 PCT/US2013/025441 because of the formation of the distal tapered end blunt face 518a, proximal to which is the blunt, oval shaped tapered surface 512a of the tube 512. As the catheter is further advanced, the blunt proximal surface 512a comes into contact with the wall of the first vessel 26 and encounters resistance, and cannot perforate through the wall 5 into the second vessel 28. After the distal tip 518 is advanced into the second vessel 28, as illustrated in Fig. 6, a slight tension, or alternatively a slight pressure, is applied to the distal DC resistive heat element 522 and associated tapered face 518a, to seat them against the vessel 28 wall and promote vessel apposition. The blunt shape of the proximal end 10 512a of the distal tip 518 prevents the distal tip from inadvertently retracting back through the vessel wall. The proximal end of the device 510, namely outer tube 512, is then advanced to close the spacing between the tube 512 and tip 518, until the walls of the first and second vessels 26 and 28 respectively, are captured between the facing blunt surfaces 512a and 518a, respectively, of each of the outer tube 512 and 15 distal tip 518. A known, controlled pressure (approximately 100 mN/mm 2 - 400 mN/mm 2 ) is applied between the two surfaces 512a, 518a. The pressure can be controlled either internally in the catheter or by a handle 42 attached to the proximal end of the catheter. At this juncture, with the vessels securely clamped (Fig. 7), heat energy is 20 applied to the blunt surfaces 512a, 518a for approximately 1-30 seconds to weld the walls of the two vessels together. As noted above, it is possible to apply heat energy to only one of the two surfaces as well, with the other surface acting as a passive heat conductor. Heat energy can be applied through several different methods, including, but not limited to, RF, DC resistance, inductance, or a combination thereof. The 25 heat energy is controlled at a known temperature ranging from between about 150 300'C. The heat may be applied by applying a steady energy, pulsing energy, incrementing energy, decrementing energy, or a combination thereof. As the heat 12 WO 2013/120021 PCT/US2013/025441 elements weld and cut the vessels, the heat elements will move closer to one another. When fully retracted, the system 510 is designed so that the two heat elements 520, 522 come into direct contact with one another to ensure a complete cut and capture of the vessel tissue to be removed. A variety of heat energy profiles may be used to 5 achieve the desired coaptation and cutting. For example, a rapidly stepped or ramped increase to achieve and maintain the aforementioned desired temperature setting of 150'C -300C may be applied to maximize welding prior to cutting. Energy may be modulated based upon the impedance of the tissue or temperature feedback. Different energy application durations, or cyclic pulses may be used to maximize 10 welding and cutting, while minimizing heat transfer to adjacent tissues. The distal end of outer tube 512, in the vicinity of heat element 520, is configured to have insulating properties to minimize heat transfer to adjacent tissues. The active heat element is an oval shape that cuts an anastomosis larger that the diameter of the shaft 516. Within the oval shape of the cutting elements, there is a cavity for capturing the 15 tissue that has been cut. The entire surface of the proximal and distal heat elements is configured to have a non-stick coating, such as PTFE, to limit tissue adhesion. After coaptation of the vessel walls, the heat is increased to then cut through the vessel walls to create a fistula of the desired size. It should be noted that it is also possible to apply the same heat energy to both weld the vessel walls and to cut 20 through the vessel simultaneously, or to cut through the vessel, then weld the vessel's walls together. Alternatively, the same heat energy may be used to weld the vessel walls, followed by a non-energized, mechanically created cut through the vessel walls. Regarding the tissue welding process, as noted above, more particularly, the 25 DC resistive energy, or other energy source, functions to fuse or weld the vessels together, creating an elongate aperture 36 (Fig. 8) through the opposing walls of each of the first and second vessels, as well as any intervening tissue. As formed, the 13 WO 2013/120021 PCT/US2013/025441 elongate aperture may typically resemble a slit. However, as pressurized flow 38 begins to occur through aperture 36, which creates a communicating aperture between the first and second blood vessels, the aperture widens in response to the pressure, taking the shape of an ellipse as it opens to form the desired fistula. The 5 effect is illustrated in Fig. 9. The edges 40 of the aperture are cauterized and welded. Fig. 9 illustrates the weld from the venous (first vessel) side. As shown, the cut area corresponds to the shape of the heater wire. It can be of multiple shapes, such as round, oval, a slit, or a combination as shown. The area adjacent to the cut has been welded due to the flat face of the catheter in the vein (first vessel) being larger than 10 the cutting wire element. The heat from the cutting wire element is also preferably spread over this area by a conductive material that can be above, below or within the element. This creates a temperature gradient, which is a particularly advantageous feature of the present invention. Fig. 10 is a cross-sectional view of the handle portion 42 of the embodiment 15 shown in Fig. 1. This is one possible approach for actuating the extension and retraction of the distal tip 518 relative to the elongate outer tube 512 as discussed above, though many other suitable configurations may be used alternatively. A trigger 44 is slidably disposed on the handle 42, slidable distally through a slot 46 in the direction of arrow 48, and then retractable in the reverse direction. A spring 50 20 within the handle controls pressure, and a locking mechanism functions to lock the trigger in the retracted state. 14
权利要求:
Claims (24) [1] 1. A device for creating an arteriovenous (AV) fistula, comprising: an elongate member; a distal member having a tapered distal end, connected to the elongate member and movable relative to the elongate member; 5 a first heating member disposed on a blunt tapered face of one of said movable distal member and said elongate member; and a second heating member disposed on a blunt tapered face of the other one of said movable distal member and said elongate member; wherein the heating members are adapted to cut through said tissue to create 10 the fistula. [2] 2. The device as recited in Claim 1, wherein said elongate member comprises an elongate outer tube. [3] 3. The device as recited in Claim 1, and further comprising a shaft for connecting the distal member to the elongate member, the shaft being extendable and retractable to extend and retract said distal member relative to the elongate member. [4] 4. The device as recited in Claim 3, wherein one of the shaft and the distal member are fabricated of a flexible material. [5] 5. The device as recited in Claim 1, wherein the blunt tapered face on the proximal elongate member comprises a distal tapered face and the blunt tapered face on the distal member comprises a proximal tapered face, and further wherein 15 WO 2013/120021 PCT/US2013/025441 said distal tapered face and said proximal tapered face are substantially aligned to 5 one another. [6] 6. The device as recited in Claim 5, wherein said first heating member is disposed on said proximal tapered face. [7] 7. The device as recited in Claim 6, wherein said second heating member is disposed on said distal tapered face. [8] 8. The device as recited in Claim 1, wherein one of said first and second heating members is active, and the other is passive. [9] 9. The device as recited in Claim 8, wherein the active heating member is energized by DC resistive energy. [10] 10. The device as recited in Claim 8, wherein the passive heating member comprises a passive heat conductive surface. [11] 11. The device as recited in Claim 8, wherein the active heating member has an oval shape. [12] 12. The device as recited in Claim 1, wherein said distal member is tapered and flexible. [13] 13. The device as recited in Claim 1, and further comprising structure for retaining tissue associated with one of said heating members. 16 WO 2013/120021 PCT/US2013/025441 [14] 14. The device as recited in Claim 13, wherein said structure comprises a plurality of protruding elements disposed adjacent to a face of said one of said heating members. [15] 15. The device as recited in Claim 13, wherein at least one of the elongate member and the distal member comprises a cavity for receiving tissue retained by said structure. [16] 16. The device as recited in Claim 15, wherein said cavity is disposed within one of said heating members. [17] 17. The device as recited in Claim 5, wherein a coating is disposed on each of said proximal and distal tapered faces to minimize tissue adhesion. [18] 18. The device as recited in Claim 17, wherein said coating comprises PTFE. [19] 19. The device as recited in Claim 5, wherein each of said proximal and distal tapered faces are constructed to have a smooth surface finish of approximately [20] 25-100 micro inches. 20. The device as recited in Claim 1, wherein the distal member is rotatable relative to the elongate member. 21. The device as recited in Claim 1, and further comprising a conductive material disposed above, below, or within at least one of said heating members, for spreading heat generated by the heating member and creating a temperature gradient 17 WO 2013/120021 PCT/US2013/025441 emanating outwardly from the heating member. 22. A method of creating an AV fistula between adjacent first and second vessels, comprising: inserting a guidewire from the first vessel into the second vessel; inserting a catheter comprising a proximal elongate member and a distal 5 member over the guidewire, so that a tapered distal tip of the distal member comes into contact with a selected anastomosis site; advancing the distal member into the second vessel, until a blunt tapered distal face of the elongate member contacts a tissue wall of the first vessel, so that the elongate member remains in the first vessel, thereby enlarging an aperture 10 between the two vessels; moving the distal member and the elongate member together to clamp tissue surrounding the aperture between the blunt tapered distal face of the elongate member and a corresponding blunt tapered proximal face on the distal member; and applying energy to a heating member on one on the distal member and the 15 elongate member to cut and form the aperture, and to weld the edges thereof in order to create a desired fistula between the two vessels. 23. The method as recited in Claim 22, and further comprising maintaining a temperature of 150-300'C at the location where the aperture is being cut, during the applying energy step. 24. The method as recited in Claim 23, wherein the applying energy step is sustained for about 1-30 seconds to weld the walls of the two vessels together. 25. The method as recited in Claim 22, wherein the moving and clamping 18 WO 2013/120021 PCT/US2013/025441 step further comprises applying a known, controlled pressure between the blunt tapered distal face on the elongate member and a corresponding blunt tapered proximal face on the distal member, wherein the known, controlled pressure is 5 within a range of approximately 100 mN/mm 2 to 400 mN/mm 2 , [21] 26. The method as recited in Claim 22, and further comprising a step of rotating the distal member during the advancing step, for a purpose of reducing frictional resistance to the distal member. [22] 27. The method as recited in Claim 22, and further comprising a step of retaining cut tissue using structure associated with the heating member. [23] 28. The method as recited in Claim 27, wherein said structure includes a cavity. [24] 29. The method as recited in Claim 28, wherein said structure further includes a plurality of protruding elements extending from at least one of the blunt tapered faces and surrounding the cavity. 19
类似技术:
公开号 | 公开日 | 专利标题 US11172976B2|2021-11-16|Intravascular arterial to venous anastomosis and tissue welding catheter US11083518B2|2021-08-10|Intravascular arterial to venous anastomosis and tissue welding catheter and methods US20200305951A1|2020-10-01|Intravascular arterial to venous anastomosis and tissue welding catheter US9649157B1|2017-05-16|Systems and methods for creating arteriovenous | fistulas CA3060869A1|2018-11-22|Single catheter electrode tissue cutting system for creating anastomoses
同族专利:
公开号 | 公开日 US20190247107A1|2019-08-15| CA2863248C|2020-07-21| JP6182545B2|2017-08-16| US11172976B2|2021-11-16| US20170128118A1|2017-05-11| EP2812063B1|2020-03-25| JP2015507971A|2015-03-16| EP2812063A4|2015-07-01| US10231771B2|2019-03-19| EP2812063A1|2014-12-17| US20220039854A1|2022-02-10| US20130281998A1|2013-10-24| CA2863248A1|2013-08-15| AU2013216809B2|2017-05-11| WO2013120021A1|2013-08-15| US9474562B2|2016-10-25|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US4772283A|1986-05-16|1988-09-20|White Thomas C|Corneal implant| CA2107459C|1991-04-05|1999-05-04|Steven A. Daniel|Instrument for cutting, coagulating and ablating tissue| US6837888B2|1995-06-07|2005-01-04|Arthrocare Corporation|Electrosurgical probe with movable return electrode and methods related thereto| US6770071B2|1995-06-07|2004-08-03|Arthrocare Corporation|Bladed electrosurgical probe| US5697882A|1992-01-07|1997-12-16|Arthrocare Corporation|System and method for electrosurgical cutting and ablation| US5290278A|1992-10-20|1994-03-01|Proclosure Inc.|Method and apparatus for applying thermal energy to luminal tissue| US5553624A|1993-02-11|1996-09-10|Symbiosis Corporation|Endoscopic biopsy forceps jaws and instruments incorporating same| US6068637A|1995-10-03|2000-05-30|Cedar Sinai Medical Center|Method and devices for performing vascular anastomosis| JPH11514269A|1995-10-13|1999-12-07|トランスバスキュラーインコーポレイテッド|Methods and apparatus for bypassing arterial occlusion and / or performing other transvascular approaches| CA2244080A1|1996-02-02|1997-08-07|Transvascular, Inc.|Methods and apparatus for blocking flow through blood vessels| US6709444B1|1996-02-02|2004-03-23|Transvascular, Inc.|Methods for bypassing total or near-total obstructions in arteries or other anatomical conduits| US6302875B1|1996-10-11|2001-10-16|Transvascular, Inc.|Catheters and related devices for forming passageways between blood vessels or other anatomical structures| US6379319B1|1996-10-11|2002-04-30|Transvascular, Inc.|Systems and methods for directing and snaring guidewires| US6375615B1|1995-10-13|2002-04-23|Transvascular, Inc.|Tissue penetrating catheters having integral imaging transducers and their methods of use| AU729466B2|1995-10-13|2001-02-01|Transvascular, Inc.|A device, system and method for interstitial transvascular intervention| US6283983B1|1995-10-13|2001-09-04|Transvascular, Inc.|Percutaneous in-situ coronary bypass method and apparatus| US6726677B1|1995-10-13|2004-04-27|Transvascular, Inc.|Stabilized tissue penetrating catheters| WO1997027897A1|1996-02-02|1997-08-07|Transvascular, Inc.|A device, system and method for interstitial transvascular intervention| US5830224A|1996-03-15|1998-11-03|Beth Israel Deaconess Medical Center|Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo| US6330884B1|1997-11-14|2001-12-18|Transvascular, Inc.|Deformable scaffolding multicellular stent| US6541028B1|1997-01-17|2003-04-01|Celadon Science, Llc|Methods for promoting healing of corneal resurfacing wounds| US6626901B1|1997-03-05|2003-09-30|The Trustees Of Columbia University In The City Of New York|Electrothermal instrument for sealing and joining or cutting tissue| US7083613B2|1997-03-05|2006-08-01|The Trustees Of Columbia University In The City Of New York|Ringed forceps| AU744343B2|1997-04-11|2002-02-21|Transvascular, Inc.|Methods and apparatus for transmyocardial direct coronary revascularization| US6071292A|1997-06-28|2000-06-06|Transvascular, Inc.|Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures| US6083223A|1997-08-28|2000-07-04|Baker; James A.|Methods and apparatus for welding blood vessels| US6024739A|1997-09-05|2000-02-15|Cordis Webster, Inc.|Method for detecting and revascularizing ischemic myocardial tissue| US6267761B1|1997-09-09|2001-07-31|Sherwood Services Ag|Apparatus and method for sealing and cutting tissue| US20070276363A1|1998-02-12|2007-11-29|Boris E. Paton|Instrument and method for the end-to-end reconnection of intestinal tissues| US6077260A|1998-02-19|2000-06-20|Target Therapeutics, Inc.|Assembly containing an electrolytically severable joint for endovascular embolic devices| US6561998B1|1998-04-07|2003-05-13|Transvascular, Inc.|Transluminal devices, systems and methods for enlarging interstitial penetration tracts| US6235027B1|1999-01-21|2001-05-22|Garrett D. Herzon|Thermal cautery surgical forceps| US20030171747A1|1999-01-25|2003-09-11|Olympus Optical Co., Ltd.|Medical treatment instrument| US7850703B2|1999-07-28|2010-12-14|Cardica, Inc.|System for performing anastomosis| US6391038B2|1999-07-28|2002-05-21|Cardica, Inc.|Anastomosis system and method for controlling a tissue site| US6464665B1|2000-07-05|2002-10-15|Richard R. Heuser|Catheter apparatus and method for arterializing a vein| US7223274B2|2002-01-23|2007-05-29|Cardica, Inc.|Method of performing anastomosis| US6699245B2|2001-02-05|2004-03-02|A-Med Systems, Inc.|Anastomosis system and related methods| US20030229344A1|2002-01-22|2003-12-11|Dycus Sean T.|Vessel sealer and divider and method of manufacturing same| US7083618B2|2001-04-06|2006-08-01|Sherwood Services Ag|Vessel sealer and divider| ES2348664T3|2001-04-06|2010-12-10|Covidien Ag|SHUTTER AND VESSEL DIVIDER DEVICE.| WO2003000139A1|2001-06-26|2003-01-03|Tyco Healthcare Group, Lp|Conduit harvesting instrument and mehtod| US6632227B2|2001-08-24|2003-10-14|Scimed Life Systems, Inc.|Endoscopic resection devices| US7311709B2|2001-10-22|2007-12-25|Surgrx, Inc.|Electrosurgical instrument and method of use| US7029482B1|2002-01-22|2006-04-18|Cardica, Inc.|Integrated anastomosis system| WO2003075778A1|2002-03-04|2003-09-18|The Cleveland Clinic Foundation|Method and apparatus for controlling ablation in refractive surgery| US7074220B2|2002-04-03|2006-07-11|Thomas J. Fogarty|Methods and systems for vein harvesting and fistula creation| AT504330T|2002-04-11|2011-04-15|Medtronic Vascular Inc|DEVICES FOR TRANSLUMINAL OR TRANSTHORACOAL INTERSTITIAL ELECTRODE PLACEMENT| US7351247B2|2002-09-04|2008-04-01|Bioconnect Systems, Inc.|Devices and methods for interconnecting body conduits| US7326202B2|2003-03-07|2008-02-05|Starion Instruments Corporation|Tubular resistance heater with electrically insulating high thermal conductivity core for use in a tissue welding device| US7628810B2|2003-05-28|2009-12-08|Acufocus, Inc.|Mask configured to maintain nutrient transport without producing visible diffraction patterns| WO2005074517A2|2004-01-30|2005-08-18|Nmt Medical, Inc.|Welding systems for closure of cardiac openings| US7780662B2|2004-03-02|2010-08-24|Covidien Ag|Vessel sealing system using capacitive RF dielectric heating| WO2005084556A1|2004-03-10|2005-09-15|Olympus Corporation|Treatment tool for surgery| US7955331B2|2004-03-12|2011-06-07|Ethicon Endo-Surgery, Inc.|Electrosurgical instrument and method of use| US7500972B2|2004-05-07|2009-03-10|Ethicon Endo-Surgery, Inc.|Device for alternately holding, or effecting relative longitudinal movement, of members of a medical instrument| WO2005122919A2|2004-06-14|2005-12-29|Rox Medical, Inc.|Devices, systems, and methods for arterio-venous fistula creation| US7824408B2|2004-08-05|2010-11-02|Tyco Healthcare Group, Lp|Methods and apparatus for coagulating and/or constricting hollow anatomical structures| US7828814B2|2004-08-27|2010-11-09|Rox Medical, Inc.|Device and method for establishing an artificial arterio-venous fistula| US20060111704A1|2004-11-22|2006-05-25|Rox Medical, Inc.|Devices, systems, and methods for energy assisted arterio-venous fistula creation| US8328797B2|2004-12-23|2012-12-11|C. R. Bard, Inc.|Blood vessel transecting and anastomosis| US7625372B2|2005-02-23|2009-12-01|Vnus Medical Technologies, Inc.|Methods and apparatus for coagulating and/or constricting hollow anatomical structures| US8197472B2|2005-03-25|2012-06-12|Maquet Cardiovascular, Llc|Tissue welding and cutting apparatus and method| US7422138B2|2006-02-01|2008-09-09|Ethicon Endo-Surgery, Inc.|Elliptical intraluminal surgical stapler for anastomosis| US9492220B2|2007-02-01|2016-11-15|Conmed Corporation|Apparatus and method for rapid reliable electrothermal tissue fusion| US20080234672A1|2007-03-20|2008-09-25|Tyco Healthcare Goup Lp|Non-stick surface coated electrodes and method for manufacturing same| US20090048589A1|2007-08-14|2009-02-19|Tomoyuki Takashino|Treatment device and treatment method for living tissue| EP2283784B1|2008-04-30|2016-06-22|Educational Foundation Jichi Medical University|Surgical system for natural orifice transluminal endoscopic surgery | US9968396B2|2008-05-27|2018-05-15|Maquet Cardiovascular Llc|Surgical instrument and method| US8267951B2|2008-06-12|2012-09-18|Ncontact Surgical, Inc.|Dissecting cannula and methods of use thereof| US20100298743A1|2009-05-20|2010-11-25|Ethicon Endo-Surgery, Inc.|Thermally-activated coupling arrangements and methods for attaching tools to ultrasonic surgical instruments| US20110011916A1|2009-07-16|2011-01-20|New York University|Anastomosis device| WO2011089717A1|2010-01-22|2011-07-28|オリンパスメディカルシステムズ株式会社|Treatment tool, treatment device, and treatment method| US8623044B2|2010-04-12|2014-01-07|Ethicon Endo-Surgery, Inc.|Cable actuated end-effector for a surgical instrument| US8834518B2|2010-04-12|2014-09-16|Ethicon Endo-Surgery, Inc.|Electrosurgical cutting and sealing instruments with cam-actuated jaws| US8709035B2|2010-04-12|2014-04-29|Ethicon Endo-Surgery, Inc.|Electrosurgical cutting and sealing instruments with jaws having a parallel closure motion| US9168084B2|2010-05-11|2015-10-27|Electromedical Associates, Llc|Brazed electrosurgical device| EP2582314B1|2010-06-15|2019-12-18|Avenu Medical, Inc.|Intravascular arterial to venous anastomosis and tissue welding catheter| US9445868B2|2010-06-15|2016-09-20|Avenu Medical, Inc.|Systems and methods for creating arteriovenous fistulas| BR112013011944A2|2010-11-16|2020-08-25|TVA Medical, Inc|devices and methods for forming a fistula| US9138230B1|2011-04-29|2015-09-22|Avenu Medical, Inc.|Systems and methods for creating arteriovenous fistulas| EP2773413B1|2011-11-04|2020-01-08|Avenu Medical, Inc.|Systems for percutaneous intravascular access and guidewire placement| EP2812063B1|2012-02-08|2020-03-25|Avenu Medical, Inc.|Intravascular arterial to venous anastomosis and tissue welding catheter| EP2919692A4|2012-11-14|2016-08-03|Avenu Medical Inc|Intravascular arterial to venous anastomosis and tissue welding catheter| US10772672B2|2014-03-06|2020-09-15|Avenu Medical, Inc.|Systems and methods for percutaneous access and formation of arteriovenous fistulas|US20130190676A1|2006-04-20|2013-07-25|Limflow Gmbh|Devices and methods for fluid flow through body passages| EP2812063B1|2012-02-08|2020-03-25|Avenu Medical, Inc.|Intravascular arterial to venous anastomosis and tissue welding catheter| EP2919692A4|2012-11-14|2016-08-03|Avenu Medical Inc|Intravascular arterial to venous anastomosis and tissue welding catheter| US10070866B1|2013-08-01|2018-09-11|Avenu Medical, Inc.|Percutaneous arterial to venous anastomosis clip application catheter system and methods| US10292708B1|2014-02-13|2019-05-21|Avenu Medical, Inc.|Externally supported anastomosis| US10772672B2|2014-03-06|2020-09-15|Avenu Medical, Inc.|Systems and methods for percutaneous access and formation of arteriovenous fistulas| WO2017035034A1|2015-08-21|2017-03-02|Avenu Medical, Inc.|Systems and methods for percutaneous access and formation of arteriovenous fistulas| WO2018089689A1|2016-11-11|2018-05-17|Avenu Medical, Inc.|Systems and methods for percutaneous intravascular access and guidewire placement| CN107296992B|2017-06-13|2019-09-13|中国人民解放军总医院第一附属医院|Blood vessel docking facilities and Vascular injury including the device give treatment to device| AU2019256795A1|2018-04-20|2020-11-12|Stent Tek Limited|Apparatus for orientation display and alignment in percutaneous devices| JP2021532917A|2018-08-03|2021-12-02|アベニュ メディカル インコーポレイテッド|Sticking of blood vessels for percutaneous fistula formation| WO2020076833A1|2018-10-09|2020-04-16|Limflow Gmbh|Devices and methods for catheter alignment|
法律状态:
2017-09-07| FGA| Letters patent sealed or granted (standard patent)|
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 US201261596670P| true| 2012-02-08|2012-02-08|| US61/596,670||2012-02-08|| PCT/US2013/025441|WO2013120021A1|2012-02-08|2013-02-08|Intravascular arterial to venous anastomosis and tissue welding catheter| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|