专利摘要:
A well drilling tubulars bin system comprises a well drilling tubulars bin 2 and control means. The bin comprises a frame structure2, and an elevator mechanism4, for holding multiple layers of a plurality of well drilling tubulars6. The elevator mechanism comprises a liftable support structure20, and a left 22 and right 22hydraulic cylinder. The support structure is liftable from a lower position to an upper position. The support structure is raised and lowered in a level manner, or with a tilt angle. The elevator mechanism comprises a first left lift arm 34 and a first right lift arm38. The first left and right lift arms are at a first end rotatably connected to the support structure, and at a second end opposite from the first end rotatably connected to the frame structure. The left and right hydraulic cylinders are connected to the respective lift arms for rotating the respective lift arm.
公开号:AU2013210157A1
申请号:U2013210157
申请日:2013-01-18
公开日:2014-08-07
发明作者:Arthur Alexander DE MUL;Joop Roodenburg;Diederick Bernardus Wijning
申请人:Itrec BV;
IPC主号:E21B19-15
专利说明:
WO 2013/109148 PCT/NL2013/050028 WELL DRILLING TUBULARS BIN SYSTEM, AND METHOD FOR USE OF SYSTEM The invention relates to a well drilling tubulars bin system. Such a well drilling tubulars bin system is used for the transport and storage of drilling tubulars, such as drill pipe, casing, and other drill tubing, which are used for drilling wells, such as oil wells, natural gas wells, water wells, and geothermal wells. 5 US-3,093,251 discloses a power operated pipe bin. The pipe bin is used for the storage, transportation, and manipulation of elongate metal stock, particularly pipe sections used in oil well drilling operations. The pipe bin comprises a base unit, made of I-beams, H beams, and tubular members, as well as three main uprights and two corner posts on each 10 side. The main uprights are provided with slots in their upper ends to accommodate I-beams which may be laid in place for rolling pipe across the top of an idle bin to and from a rig platform walkway. A top siderail is made up at each side of the bin with tubular sections welded to and joining the main columns, and the corner posts. An elevator mechanism of the pipe bin comprises two support cross members, cables, sheaves, and a hydraulic 15 system. The sheaves are carried on the outer pairs of the main uprights. The two support cross members of US-3,093,251 are suspended from the cable ends below the respective pairs of sheaves. The cables run from the cross members, over the sheaves, to the plungers of a pair of hydraulic cylinders detachably mounted atop the corner posts at the right end of the bin and aligned with the respective siderails. The 20 hydraulic system further comprises a sensing equalizer including a shunted system of two needle choke valves. The hydraulic equalizer guarantees a level condition of a stock being manipulated in the bin, and may also be employed to deliberately tilt the support cross members to assist in rolling the pipe either into or out of the bin. During loading of the bin of US-3,093,251, the support cross members are raised by 25 the hydraulic system until their upper flanges are level with the tops of the main columns, or slightly below this level. The pipe sections are then rolled onto the support cross members until the bottom layer is complete. With the bottom layer in place, cross rails of metal or wood may be laid in place across the pipe as spacers to provide a rolling surface for the second layer of pipe. The hydraulic system is actuated to bring the top surface of the cross 30 rails level with the bin columns. The second layer of pipe is then rolled into place on the rails, and the process of laying rails and lowering is repeated until the bin is loaded.
WO 2013/109148 - 2 - PCT/NL2013/050028 For unloading of the bin of US-3,093,251 the process is reversed. Dispensing from the bin is effected by actuating the hydraulic cylinder in a sense to eject the plunger. The resultant pull of the cables on support cross members raises the entire contents of the bin until the uppermost layer of pipe is positioned for rolling across the tops of the bin columns. 5 With the uppermost row of pipe removed, the loose cross rails are removed and the contents again raised to bring the next layer of pipe into position for removal. Assuming the first bin emptied the I-beams are placed in the slots in the upper ends of the main uprights to render the empty bin a rolling platform for dispensing from the second or succeeding bins. 10 Well drilling tubular bins are commonly employed in harsh conditions, e.g. in desert like regions (or in general in environments with much sand, gravel, dust, etc.), at extreme high or low temperatures or other adverse weather conditions, etc. Also high demands are placed on the reliability and operating safety of such bins. It has been found that existing 15 drilling tubular bin designs are not satisfactory in view of these demands. For example cables and sheaves are prone to significant wear in the envisaged operating environment of these bins, which may cause failure at an undesirable rate and may even form a safety risk as a worn cable may snap. 20 It is an object of the invention to solve the disadvantage of the prior art, or at least provide an alternative. In particular, it is an object to provide a well drilling tubulars bin system which is more reliable that of the prior art whilst allowing for safe operation. The invention achieves this object by providing a well drilling tubulars bin system as 25 defined by claim 1, and a method as defined by claim 15. Advantageous embodiments are defined in the dependent claims. A well drilling tubulars bin system of the invention comprises a well drilling tubulars bin and control means. The well drilling tubulars bin comprises a frame structure and an 30 elevator mechanism for holding and lifting multiple layers of well drilling tubulars, each layer comprising multiple tubulars side by side. The frame structure comprises a bottom frame, a left side frame fixed to the bottom frame, and a right side frame fixed to the bottom frame, the left side frame and the right side frame being of the same height. Preferably the frame structure is provided with ISO 35 standard container corner fittings, most preferably as in a 40 ft (12.19 m) ISO container, to allow for efficient handling and transportation of the bin, either loaded or empty. Preferably WO 2013/109148 - 3- PCT/NL2013/050028 the bin has a width of 8 feet (2.44 m). In a possible design with open ends the bin may be loaded with tubulars having a length greater than 40 ft. In another design the ends of the bin are closed. The elevator mechanism comprises a liftable support structure, a left hydraulic 5 cylinder, and a right hydraulic cylinder. The liftable support structure defines a support plane for supporting the well drilling tubulars, which support structure is liftable - whilst supporting the well drilling tubulars - from a lower position wherein the support plane is below half the height of the side frames to an upper position wherein the support plane is at least equal to a top part of one of the side frames. 10 The control means are arranged and embodied for actuating the left and right hydraulic cylinder such that the liftable support structure is raised and lowered in a level manner, and for actuating the left and right hydraulic cylinder such that the liftable support structure obtains a tilt angle with respect to a horizontal plane towards one of the left and the right side frame. 15 The elevator mechanism further comprises a first left lift arm and a first right lift arm, that are rotatable in a vertical plane, preferably each lift arm moving close along the inside of the respective side frame of the bin. The first left lift arm at a first end is rotatably connected to the liftable support structure with a first left support structure pivot, and at a second end opposite from the first 20 end is rotatably connected to the frame structure with a first left frame structure pivot. The first right lift arm is at a first end rotatably connected to the liftable support structure with a first right support structure pivot, and is at a second end opposite from the first end rotatably connected to the frame structure with a first right frame structure pivot, such that rotating the first left lift arm and the first right lift arm results in lifting, lowering, or tilting of the liftable 25 support structure. The left hydraulic cylinder is connected to the first left lift arm for rotating the first left lift arm. The right hydraulic cylinder is connected to the first right lift arm for rotating the right lift arm. By activating the hydraulic cylinders, the respective lift arms are rotated and either lift or lower the respective side of the liftable support structure. Lift arms are more robust than 30 cables and the damage which results from failure of a lift arm is less than that of a snapping cable. Surprisingly, lift arms which are actuated by individual hydraulic cylinders are still capable of tilting the liftable support structure by rotating the lift arms to a different angle. It is noted that CA-1.170.220 discloses a container for heavy elongated cylindrical articles. The container has an elongated base for supporting the articles, side walls on 35 opposite sides of the base for retaining the articles thereon, and a lifting assembly adjacent each end of the base. Each lifting assembly has two two-arm levers pivotally connected to WO 2013/109148 - 4- PCT/NL2013/050028 the base at the junction of the two arms for pivotal movement in a vertical plane about an axis extending transversely to the base. The levers have a first arm positionable in the plane of the base below pipes stored in the container. Each first arm has a free end remote from the arm junction. A transversely extending pipe lifting member extends between the 5 respective free ends of the first arms, across the base below the pipes. Each lever also has a second arm extending upwardly from the arm junction. A transverse member connects the free ends of the second arms. A power operated device is connected between each second arm and a part of the container for pivoting the second arms downwardly towards the base with consequent pivotal movement of the first arms upwardly from the base to cause the 10 transverse pipe lifting member to lift the portions of the pipes at the relevant end of the container to a height higher than that of the side walls. The transversely extending pipe lifting member and the transverse member ensure that the levers rotate simultaneously, so that the transversely extending pipe lifting member remains level. Thus, the pipes are manually rolled from the container. This is in contrast with the current invention, wherein the 15 liftable support structure obtains a tilt angle with respect to a horizontal plane towards either the left or the right side frame, so that the pipes roll out of the bin due to the gravity. In particular, the first left support structure pivot and the first right support structure pivot each allows rotation around at least two different axes of rotation. This is a compact solution to provide not only for the lift arms to rotate with respect to the support structure, 20 but also allows the support structure to tilt with respect to the lift arms. In an alternative, there are separate pivots with each one rotational axis. In an embodiment, the first left support structure pivot and the first right support structure pivot each allows translational movement between the support structure and the respective first end of the first left lift arm, respectively first right lift arm. In this way, the 25 rotating movement of the first left lift arm is converted into a vertical linear movement of the support structure. In an embodiment, the first left frame structure pivot and the first right frame structure pivot define each one rotational axis which is fixed with respect to the frame structure and to the respective lift arm. 30 In an embodiment, the elevator mechanism further comprises a first left actuator arm which is fixedly connected to the first left lift arm for joint rotation of the first left actuator arm and the first left lift arm around the first left frame structure pivot, and the left hydraulic cylinder is connected to the first lift arm via the first actuator arm at an end of the first actuator arm which is distal with respect to the first left frame structure pivot. Having a 35 separate actuator arm allows to optimise the position and orientation of the hydraulic cylinder independent of that of the lift arm.
WO 2013/109148 - 5- PCT/NL2013/050028 Preferably, the first left actuator arm and the left hydraulic cylinder are provided in the left side frame. This results in a compact structure, wherein as much of the available height and width of the well drilling tubulars bin is available for storing well drilling tubulars. In an embodiment, the elevator mechanism further comprises a second left lift arm, a 5 second left actuator arm, and a second left frame structure pivot, wherein the second left actuator arm is fixedly connected to the second left lift arm for joint rotation around the second left frame structure pivot for lifting the liftable support structure, and the left hydraulic cylinder extends from the first end of the first left actuator arm to a first end of the second left actuator arm. Having second left lift and actuator arms allows for a stable 10 support, as well as lifting and lowering, of the support structure. Preferably, the elevator mechanism further comprises a left stabilising rod which extends from the first left actuator arm to the second left actuator arm. The left stabilising rod is rotatably connected to the first left actuator arm at a point on the first left actuator arm located at a distance d from the first left frame structure pivot away from the first end of the 15 first left actuator arm, and the left stabilising rod is rotatably connected to the second left actuator arm at a point on the second left actuator arm located at the same distance d from the second frame structure pivot towards the first end of the second left actuator arm. The stabilising rod is a simple solution to ensure equal rotation of the first and second left lift arms. 20 In an embodiment, the liftable support structure comprises a left longitudinal beam, a right longitudinal beam, and at least two cross beams, which at least cross beams extend between, and are connected to, the left and right longitudinal beams. The left longitudinal beam is provided with the first left support structure pivot, and the right longitudinal beam is provided with the first right support structure pivot. 25 In an embodiment, the liftable support structure comprises at least two struts which are held in one of the left and right side frame, and are movable from a retracted position wherein the at least two struts do not extend above the respective side frame to at least one raised position, wherein the at least two struts extend partly above the respective side frame. These struts prevent well drilling tubulars from rolling out of the well drilling tubulars 30 bin at the wrong side of the bin, when the bin is being loaded with well drilling tubulars, or when the liftable support structure is being lifted and/or tilted. In an embodiment, the well drilling tubulars bin system comprises at least two well drilling tubulars bins, and at least two slide bars which are at their respective ends connectable to the at least two well drilling tubulars bins for providing a roll structure for well 35 drilling tubulars from one well drilling tubulars bin to another well drilling tubulars bin. By WO 2013/109148 - 6 - PCT/NL2013/050028 coupling at least two well drilling tubulars bins with slide bars the storage capacity of the system can be increased in a flexible manner. Preferably, the slide bars are connectable to a top portion of the struts. This is efficient, as the struts may perform multiple functions. By raising or lowering the struts, the 5 angle of the attached slide bar can be changed to a preferred value. The control means preferably include one or more hydraulic pumps, preferably electrically operable but possibly manually operated. Said one or more pumps may be arranged on the bin itself, but preferably are detached from the bin to be arranged at a remote location, e.g. as part of a hydraulic unit associated with a drilling rig. A connection 10 between the one or more remote pumps and the hydraulic cylinders on the bin preferably is established by hydraulic hoses provided with quick-connectors that include an automatic valve that opens upon establishing the connection and closes upon disconnection. In an embodiment, at least part of the control means are located at a position remote from the well drilling tubulars bin, e.g. the pump being in a hydraulic unit of the drilling rig. 15 In an embodiment control of the operation of the bin is performed from a remote control cabin, e.g. the drilling rig control cabin wherein also controls for the drilling process are present. This enables controlling the loading and/or unloading of the well drilling tubulars bin from a safe location, as the well drilling tubulars are quite heavy and a collision between these and an operating person should be avoided. 20 Preferably, the control means are electronically connected to the control unit of a pipe loader. This enables automated control of the well drilling tubulars bin system. In an embodiment, the well drilling tubulars bin system comprises at least one weight sensor for determining the total weight of the well drilling tubulars in the well drilling tubulars bin. This enables controlling the total weight in the well drilling tubulars bin during loading, to 25 avoid overloading. The frame structure is embodied, as is preferred, with dimensions so as to allow transportation thereof as a 40 ft ISO container, with ISO corner fittings on the corners of the bottom frame 8. The system may e.g. be used in combination with a modular drilling rig system, e.g. 30 as disclosed in US-7,255,180. The invention will be illustrated by an exemplary embodiment, which is shown in the figures, in which: fig. 1 shows a cross section through an example of a well drilling tubulars bin 35 according to the invention; WO 2013/109148 - 7- PCT/NL2013/050028 fig. 2 shows a longitudinal view of the well drilling tubulars bin of fig. 1 with a liftable support structure in a lower position; fig. 3 shows the view of fig. 2, with the liftable support structure in an intermediate position; 5 fig. 4 shows the view of fig. 2, with the liftable support structure in an upper position; fig. 5 shows a cross section of a system well drilling tubulars bin system according to the invention with three well drilling tubulars bins; fig. 6 shows the system of fig. 5 with one well drilling tubulars bin being empty; fig. 7 shows a detail VII of fig. 1; and 10 fig. 8 shows an example of a liftable support structure. A well drilling tubulars bin system comprises a well drilling tubulars bin, which is denoted in its entirety with reference number 1, and control means (not shown). The well drilling tubulars bin 1 comprises a frame structure 2, and an elevator mechanism 4, for 15 holding and lifting multiple layers of well drilling tubulars 6, each layer comprising a plurality of well drilling tubulars 6. The well drilling tubulars 6 may be any elongated tubular material used for well drilling, such as drill pipe, casing, and tubing. Typical well drilling tubulars for this embodiment may have diameters ranging from 8.9 centimetre to 14 centimetre (3.5" to 20 5.5"). The frame structure 2 comprises a bottom frame 8, a left side frame 10 fixed to the bottom frame 8, and a right side frame 12 fixed to the bottom frame 8. The left side frame 10 and the right side frame 12 are of the same height. Each side frame is made of longitudinal top steel beams 14, vertical steel beams 16, and diagonal steel beams 18, 25 which are welded together, and to the steel bottom frame 8. The frame structure is embodied, as is preferred, with dimensions so as to allow transportation thereof as a 40 ft ISO container, with ISO corner fittings on the corners of the bottom frame 8. Additionally, as is preferred, ISO corner fittings are present on the top corners of the side frames, e.g. allowing for stacked transportation of two bins on top of one 30 another. The elevator mechanism 4 comprises a liftable support structure 20, a left hydraulic cylinder 22, and a right hydraulic cylinder 24, wherein the liftable support structure 20 defines a support plane 26 for supporting the well drilling tubulars 6. The support structure 20 is liftable from a lower position 28 wherein the support 35 plane is below half the height of the side frames (fig. 2), to an upper position 30 wherein the support plane is at least equal to, and in this embodiment at least 25 centimetre above, WO 2013/109148 - 8 - PCT/NL2013/050028 preferably 40 centimetre above a top part of one of the side frames (fig. 3). The support structure 20 is also liftable to positions between the lower position 28 and the upper position, such as an intermediate position 31 (fig. 3). The control means include at least one hydraulic pump, which may be a hydraulic 5 pump in a hydraulic system of a drilling rig (not shown). The elevator mechanism 4 has a hydraulic connection (not shown), e.g. a quick connector, for connecting the elevator mechanism to the hydraulic system. The control means may further include one or more valves, for example remote operated valves (not shown). The control means are arranged for actuating the left 22 and right 24 hydraulic 10 cylinder such that the liftable support structure 20 is raised and lowered in a level manner. The control means can also actuate the left and right hydraulic cylinder differently, such that the liftable support structure obtains a tilt angle with respect to a horizontal plane towards one of the left and the right side frame. The control means may include an electronic control unit which is located at a control cabin from where a pipe feeding operation is controlled. A 15 pipe loader 32 (fig. 5) may also be controlled from the control cabin, and preferably the electronic control unit is electronically connected, in the case integrated with, the control unit of the pipe loader 32, which may be further integrated with the control unit of a complete drilling rig. The elevator mechanism 4 further comprises a first 34 and a second 36 left lift arm, 20 as well as a first 38 and a second 40 right lift arm. The first left lift arm 34 is at a first end 42 rotatably connected to the liftable support structure 4 with a first left support structure pivot 44. The first left lift arm 34 is at a second end 46 opposite from the first end 42 rotatably connected to the frame structure 4 with a first left support structure pivot 48. The second left lift arm 36 is at a first end 50 rotatably connected to the liftable support structure 4 with a 25 second left support structure pivot 52. The second left lift arm 36 is at a second end 54 opposite from the first end 50 rotatably connected to the frame structure 4 with a second left frame structure pivot 56. The first 44 and second 52 left support structure pivot are each made of a pivot pin 56, with a reverse conical pivot pin head 58 attached to the respective left lift arm 34, 36, 30 and an elongated pin hole 60 in the liftable support structure 20. This arrangement allows rotation around three different axes of rotation, as well as a translational movement between the liftable support structure 20 and first 34 and second 36 left lift arm. The first and second left frame structure pivot 48, 56 each define one rotational axis which is fixed with respect to the frame structure 2 and to the respective lift arm 34, 36. 35 The elevator mechanism 4 further comprises a first and second left actuator arm 62, 64 which are fixedly connected to the first left lift arm 34, respectively the second left lift arm WO 2013/109148 - 9- PCT/NL2013/050028 36, for joint rotation of the first left actuator arm 62 and the first left lift arm 34 around the first left frame structure pivot 48, and for joint rotation of the second left actuator arm 64 and the second left lift arm 36 around the second left frame structure pivot 56. The left hydraulic cylinder 22 is connected to the first lift arm 34 via the first actuator 5 arm 62 at an end 66 of the first actuator arm 62 which is distal with respect to the first left frame structure pivot 48. The left hydraulic cylinder 22 is also connected to the second lift arm 36 via the second actuator arm 64 at an end 68 of the first actuator arm 64 which is distal with respect to the second left frame structure pivot 56. Accordingly, the left hydraulic cylinder 22 actuates both left lift arms 34, 36 via the respective first actuator arms 62, 64. 10 The first left actuator arm 62 and the left hydraulic cylinder 22 are provided in the left side frame 10. The first and the second left frame structure pivot 48, 56, as well as the left lifting arms 34, 36, extend under the support plane 26. The elevator mechanism 4 further comprises a left stabilising rod 70 which extends from the first left actuator arm 62 to the second left actuator arm 64. The left stabilising rod 15 70 is rotatably connected to the first left actuator arm 62 at a point 72 on the first left actuator arm 62 located at a distance d from the first left frame structure pivot 48 away from the first end 66 of the first left actuator arm 62, and the left stabilising rod 70 is rotatably connected to the second left actuator arm 64 at a point 74 on the second left actuator arm 64 located at the same distance d from the second frame structure pivot 56 towards the first 20 end 68 of the second left actuator arm 64. The elevator mechanism 4 comprises at the right side of the well drilling tubulars bin 1 arms and pivots in a similar, identical, or mirrored fashion compared to those on the left side as described above. Some of these elements, such as the first right lift arm 38, the right hydraulic cylinder 24 a first right actuator arm 76, a first right support structure pivot 78, 25 and a first right frame structure pivot 80 are visible in the cross sections of figs. 1, 5, and 6. These arms and pivots on the right side cooperate in the same manner as on the left side for lifting and lowering the right side of the liftable support structure 20. Insofar the liftable support structure 20 is lifted or lowered at both sides to the same level, the liftable support structure 20 remains level, i.e. parallel to a horizontal plane. If the left hydraulic actuator 22 30 rotates the left support structure pivot 44 to a lower level than the hydraulic actuator 24 rotates the right support structure pivot 78, then the liftable support structure 20 tilts sideways to the left side of the well drilling tubulars bin 1, and vice versa. The liftable support structure 20 comprises a left longitudinal beam 82, a right longitudinal beam 84, and at least two cross beams 86, 88, which at least two cross beams 35 86, 88 extend between, and are welded to, the left and right longitudinal beams 82, 84 (fig. 8). The liftable support structure 20 further comprises brackets 90 which enlarge the width WO 2013/109148 - 10 - PCT/NL2013/050028 of the support plane 26. The left longitudinal beam 82 is provided with the first left support structure pivot 44, and the second left support structure pivot 52. The right longitudinal beam 84 is provided with the first right support structure pivot 78, and the second right support structure pivot (not visible). 5 Two struts 92 are held in each of the left 10 and right 12 side frame, and are movable from a retracted position wherein the at least two struts do not extend above the respective side frame (see fig. 2) to at least one raised position, wherein the at least two struts 92 extend partly above the respective side frame (figs. 3-6). The well drilling tubulars bin system comprises weight sensors (not shown) for 10 determining the total weight of the well drilling tubulars in the well drilling tubulars bin. The weight sensors are in this case provided at the support structure pivots 44, 52, 78. The well drilling tubulars bin system of figs. 5 and 6 comprises three well drilling tubulars bins 1, and four slide bars 94 which are at their respective ends connectable to a top portion of the struts 92 of the well drilling tubulars bins 1 for providing a roll structure for 15 well drilling tubulars 6 from one well drilling tubulars bin 1 to another well drilling tubulars bin 1. The slide bars 94 are preferably tilted by raising one of the respective struts 92 for each slide bar 94, as shown in fig. 6. One of the well drilling tubulars bins 1 is connected via a transfer table 96 to the pipe loader 32. One end of the transfer table 96 remote from the pipe loader 32 is positioned on the struts 92 of the respective well drilling tubulars bin 1. 20
权利要求:
Claims (15)
[1] 1. Well drilling tubulars bin system, comprising a well drilling tubulars bin and control means, the well drilling tubulars bin comprising a frame structure (2) and an elevator mechanism (4) for holding and lifting multiple layers of well drilling tubulars (6), wherein the frame structure (2) comprises a bottom frame (8), a left side frame (10) 5 fixed to the bottom frame (8), and a right side frame (12) fixed to the bottom frame (8), the left side frame (10) and the right side frame (12) being of the same height, wherein the elevator mechanism (4) comprises a liftable support structure (20), a left hydraulic cylinder (22), and a right hydraulic cylinder (24), wherein the liftable support structure (20) defines a support plane for supporting the layers of well drilling tubulars, 10 which support structure is liftable from a lower position wherein the support plane is below half the height of the side frames to an upper position wherein the support plane is at a height at least equal to a top part of one of the side frames, and wherein the control means are adapted to actuate the left and right hydraulic cylinder (22, 24) such that the liftable support structure (20) is raised and lowered in a level manner, 15 and for actuating the left and right hydraulic cylinder such that the liftable support structure (20) obtains a tilt angle with respect to a horizontal plane towards one of the left and the right side frame (12), characterised in that the elevator mechanism (4) further comprises a first left lift arm (34) and a first right lift arm (38), said lift arms being rotatable in a vertical plane, preferably in a plane adjacent 20 the inside of the respective left and right side frame (12), wherein the left hydraulic cylinder (22) is connected to the first left lift arm (34) for rotating the first left lift arm (34), and the right hydraulic cylinder (24) is connected to the first right lift arm (38) for rotating the first right lift arm (38), and wherein the first left lift arm (34) at a first end is rotatably connected to the liftable 25 support structure (20) with a first left support structure pivot (44), and at a second end opposite from the first end is rotatably connected to the frame structure (2) with a first left frame structure pivot (48), and the first right lift arm (38) at a first end is rotatably connected to the liftable support structure (20) with a first right support structure pivot (78), and at a second end opposite from the first end is rotatably connected to the frame structure (2) with 30 a first right frame structure pivot (80), such that actuation of the hydraulic cylinders causes rotation of the first left lift arm (34) and the first right lift arm (38) in order to lift, lower, or tilt the liftable support structure (20). WO 2013/109148 - 12 - PCT/NL2013/050028
[2] 2. Well drilling tubulars bin system according to claim 1, wherein the first left support structure pivot (44) and the first right support structure pivot (78) each allow rotation about at least two different axis of rotation. 5
[3] 3. Well drilling tubulars bin system according to any one of the preceding claims, wherein the first left support structure pivot (44) and the first right support structure pivot (78) each allow translational movement between the support structure and the respective first end of the first left lift arm (34), respectively first right lift arm (38). 10
[4] 4. Well drilling tubulars bin system according to any one of the preceding claims, wherein the first left frame structure pivot (48) and the first right frame structure pivot (80) define each one rotational axis which is fixed with respect to the frame structure (2) and to the respective lift arm (34, 38). 15
[5] 5. Well drilling tubulars bin system according to any one of the preceding claims, wherein the elevator mechanism (4) further comprises a first left actuator arm (62) which is fixedly connected to the first left lift arm (34) for joint rotation of the first left actuator arm (62) and the first left lift arm (34) around the first left frame structure pivot (48), and the left hydraulic cylinder (22) is connected to the first left lift arm (34) via the first left actuator arm 20 (62) at an end of the first left actuator arm (62) which is distal with respect to the first left frame structure pivot (48).
[6] 6. Well drilling tubulars bin system according to claim 5, wherein the first left actuator arm (62) and the left hydraulic cylinder (22) are provided in the left side frame (10). 25
[7] 7. Well drilling tubulars bin system according to any one of the preceding claims, wherein the elevator mechanism (4) further comprises a second left lift arm (36), a second left actuator arm (64), and a second left frame structure pivot (56), wherein the second left actuator arm (64) is fixedly connected to the second left lift arm (36) for joint rotation around 30 the second left frame structure pivot (56) for lifting the liftable support structure (20), and the left hydraulic cylinder (22) extends from the first end of the first left actuator arm (62) to a first end of the second left actuator arm (64).
[8] 8. Well drilling tubulars bin system according to claim 7, wherein the elevator 35 mechanism (4) further comprises a left stabilising rod (70) which extends from the first left actuator arm (62) to the second left actuator arm (64), and the left stabilising rod (70) is WO 2013/109148 - 13 - PCT/NL2013/050028 rotatably connected to the first left actuator arm (62) at a point on the first left actuator arm (62) located at a distance d from the first left frame structure pivot (48) away from the first end of the first left actuator arm (62), and the left stabilising rod (70) is rotatably connected to the second left actuator arm (64) at a point on the second left actuator arm (64) located 5 at the same distance d from the second frame structure pivot towards the first end of the second left actuator arm (64).
[9] 9. Well drilling tubulars bin system according to any one of the preceding claims, wherein the liftable support structure (20) comprises a left longitudinal beam (82), a right 10 longitudinal beam (84), and at least two cross beams (86, 88), which at least cross beams extend between, and are connected to, the left and right longitudinal beams (82, 84), and the left longitudinal beam (82) is provided with the first left support structure pivot (44), and the right longitudinal beam (84) is provided with the first right support structure pivot (78). 15
[10] 10. Well drilling tubulars bin system according to any one of the preceding claims, further comprising at least two movable struts (92) which are held in one of the left and right side frame (10, 12), and which are movable from a retracted position wherein the at least two struts (92) do not extend above the respective side frame to at least one raised 20 position, wherein the at least two struts (92) extend partly above the respective side frame.
[11] 11. Well drilling tubulars bin system comprising at least two well drilling tubulars bins (1) according to any one of the preceding claims, and at least two slide bars (94) which are at their respective ends connectable to the at least two well drilling tubulars bins (1) for 25 providing a roll structure for well drilling tubulars from one well drilling tubulars bin to another well drilling tubulars bin.
[12] 12. Well drilling tubulars bin system according to claims 10 and 11, wherein the slide bars (94) are connectable to a top portion of the struts (92). 30
[13] 13. Well drilling tubulars bin system according to any one of the preceding claims, wherein at least part of the control means are located at a position remote from the well drilling tubulars bin (1), e.g. in a hydraulic pump unit, e.g. the hydraulic pump unit being controllable from a remote drilling operations control cabin, and wherein the control means 35 preferably are electronically connected to the control unit of a drilling rig pipe loader, e.g. to synchronize operation of the tubulars bin system with the pipe loader. WO 2013/109148 - 14 - PCT/NL2013/050028
[14] 14. Well drilling tubulars bin system according to any one of the preceding claims, further comprising at least one weight sensor for determining the total weight of the well drilling tubulars in the well drilling tubulars bin (1). 5
[15] 15. Method for transporting and storing of well drilling tubulars, wherein use is made of a system according to one or more of the preceding claims.
类似技术:
公开号 | 公开日 | 专利标题
AU2013210157B2|2017-08-17|Well drilling tubulars bin system, and method for use of system
EP1916379B1|2010-05-12|Horizontal pipes handling system
EP1246998B1|2006-04-19|Horizontal pipe handling device
US9476265B2|2016-10-25|Trolley apparatus
US8052368B2|2011-11-08|Catwalk for a drilling rig
US7473065B2|2009-01-06|Oilfield pipe-handling apparatus
CA2864939C|2016-07-26|Apparatus for delivering drill pipe to a drill rig
US7240742B2|2007-07-10|Pipe handling system with a movable magazine
US20030196791A1|2003-10-23|Tubular handling apparatus and method
CA2510137C|2011-05-17|Oilfield pipe-handling apparatus
US7600584B2|2009-10-13|Pipe handling system with a movable magazine
US20060124356A1|2006-06-15|Apparatus and method for handling wellbore tubulars
US20160305201A1|2016-10-20|Catwalk system and method
US20150030415A1|2015-01-29|Hydraulic Pipe Handling Apparatus
同族专利:
公开号 | 公开日
US9353582B2|2016-05-31|
WO2013109148A3|2014-05-08|
US20140353038A1|2014-12-04|
CA2861227A1|2013-07-25|
AU2013210157B2|2017-08-17|
NL2008134C2|2013-07-22|
WO2013109148A2|2013-07-25|
EP2805007A2|2014-11-26|
CN104066922B|2017-06-06|
CN104066922A|2014-09-24|
CA2861227C|2020-03-10|
EP2805007B1|2020-05-06|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US3093251A|1960-02-25|1963-06-11|Emil A Bender|Power operated pipe bin|
US3254776A|1964-04-10|1966-06-07|Socony Mobil Oil Co Inc|Pipe handling and storage apparatus|
US3365085A|1965-10-04|1968-01-23|Wilson Mfg Co|Pipe hauling and dispensing apparatus|
US4051956A|1976-07-26|1977-10-04|Teague J T|Horizontal pipe handling apparatus|
SU1113505A1|1981-01-14|1984-09-15|Специальное Конструкторское Бюро Сейсмической Техники|Arrangement for receiving,accumulating and delivering drill pipes or rods in lowering and hoisting operations|
CA1170220A|1982-05-06|1984-07-03|Brian C. Will|Containers for heavy elongated cylindrical articles|
US4522548A|1982-09-28|1985-06-11|Standard Manufacturing Co., Inc.|Aerial weapons handling trailer|
CA1247590A|1987-07-20|1988-12-28|Alvin L. Davidson|Oil well drilling rig assembly and apparatus therefor|
JP3570761B2|1995-01-12|2004-09-29|ケミカルグラウト株式会社|Drilling machine with rod attachment / detachment device|
CA2199653A1|1997-03-11|1998-09-11|G & P Enterprises, Ltd.|Sucker rod cradle apparatus|
RU2137897C1|1998-04-21|1999-09-20|Воронин Юрий Иванович|Device for receiving, storing, and delivery of pipes and rods during round-trip operations|
US6164883A|1998-08-18|2000-12-26|White Consolidated Industries, Inc.|Returnable packaging system for elongated members|
DE19843167C2|1998-09-21|2002-10-31|Bauer Maschinen Gmbh|Magazine and handling device for drill pipe parts|
US20030196791A1|2002-02-25|2003-10-23|N-I Energy Development, Inc.|Tubular handling apparatus and method|
US7134829B2|2004-03-09|2006-11-14|Absolute Electronic Solutions, Inc.|Cargo trailer|
US7255180B2|2004-05-03|2007-08-14|Drillmar, Inc.|Modular drill system requiring limited field assembly and limited equipment support|
CN101449024B|2006-04-11|2013-06-19|朗耶商标有限公司|Drill rod handler|
US8113762B2|2006-10-25|2012-02-14|National Oilwell Varco, L.P.|Horizontal pipe storage and handling system|
CN201071690Y|2007-05-15|2008-06-11|宝鸡石油机械有限责任公司|Drilling rig gate ramp pneumatic drilling rod rest bench|
US20090263221A1|2008-04-16|2009-10-22|Paul Oldershaw|Apparatus For Loading/Unloading Drill Pipe|
US20100150685A1|2008-12-17|2010-06-17|Sawyer Charlie W|System and method for handling and storing pipe|NL2014988B1|2015-06-18|2017-01-23|Itrec Bv|A drilling rig with a top drive sytem operable in a drilling mode and a tripping mode.|
CN105151621A|2015-09-15|2015-12-16|陈海花|Building pipe storage rack|
KR101774930B1|2016-08-05|2017-09-05|주식회사 성한 디앤티|Drilling machine equipped with a supply means it can load leveling|
GB2570848A|2016-11-17|2019-08-07|Itrec Bv|Tender assisted drilling system comprising a high-line system, method for transferring tubulars using such a system and method of installing such a system|
NL2018663B1|2017-04-06|2018-10-17|Itrec Bv|A drilling rig with a top drive system operable in a wellbore drilling mode, tripping mode and bypassing mode|
CN107654200B|2017-10-27|2019-04-16|宝鸡石油机械有限责任公司|A kind of automatic pipe slacking block of hydraulic-driven lever lifting type|
US10724310B2|2018-06-08|2020-07-28|Glider Products LLC|Integrated pipe handling system for well completion and production|
法律状态:
2017-12-14| FGA| Letters patent sealed or granted (standard patent)|
优先权:
申请号 | 申请日 | 专利标题
NL2008134A|NL2008134C2|2012-01-18|2012-01-18|Well drilling tubulars bin system, and method for use of system.|
NL2008134||2012-01-18||
PCT/NL2013/050028|WO2013109148A2|2012-01-18|2013-01-18|Well drilling tubulars bin system, and method for use of system|
[返回顶部]