![]() Medicament Delivery Device
专利摘要:
The present invention is directed to a locking mechanism for a medicament delivery device. The locking mechanism comprises a housing having a longitudinal axis; a locking 5 member rotationally and slidably fixed to the housing and having a flexible lever configured to be in a non-activated position and an activated position; a pinion connected to the locking member and having an axis of rotation offset and parallel to the longitudinal axis; a rotatable secondary dose member exerting a biasing force on the lever in the non activated position and releasing the biasing force in the activated position; and a lead screw 10 biased to slide in a distal direction and having an annular ledge that engages the lever in the non-activated position preventing axial movement of the lead screw. The lead screw slides distally when the lever becomes disengaged from the ledge in the activated position when rotation of the pinion rotates the secondary dose member moving the lever from the non-activated to the activated position. 公开号:AU2013206532A1 申请号:U2013206532 申请日:2013-06-25 公开日:2013-07-11 发明作者:Antonio Bendek;Lucio Giambattista 申请人:SHL Group AB; IPC主号:A61M5-315
专利说明:
MEDICAMENT DELIVERY DEVICE TECHNICAL AREA The present invention relates to a locking mechanism for a medicament delivery 5 device, in particular a locking mechanism for a medicament delivery device comprising a dose setting function, although the scope of the invention is not necessarily limited thereto. BACKGROUND Medicament delivery devices such as injectors are sometimes provided with 10 functions where a specific dose can be set by the user, which dose may be varied within a range. Quite often this dose setting function is performed by turning a knob or wheel at the distal end of the device whereby it is moved in the distal direction. When performing a subsequent injection, the knob is pushed linearly in the proximal direction. One such 15 injector is disclosed in the document US 6,221,053 in which the distal dose knob of the injector is threaded out of a rod barrel tube as a dose is set. Thus the distance the knob is moved in the distal direction is directly related to the dose quantity to be delivered. One drawback with that type of solution is that if larger doses are to be delivered the dose knob has to be moved quite a long distance in the distal direction, which means 20 that it might be difficult for a user to push the dose knob in the proximal direction during injection. SUMMARY OF THE INVENTION In one broad form, the invention provides a locking mechanism for a medicament 25 delivery device, comprising: a housing having a longitudinal axis; a locking member rotationally and slidably fixed to the housing and having a flexible lever configured to be in a non-activated position and an activated position; a pinion connected to the locking member and having an axis of rotation offset and parallel to the longitudinal axis; a rotatable secondary dose member exerting a biasing force on the lever in the non-activated 30 position and releasing the biasing force in the activated position; and a lead screw biased to slide in a distal direction and having an annular ledge that engages the lever in the non activated position preventing axial movement of the lead screw; wherein the lead screw slides distally when the lever becomes disengaged from the ledge in the activated position 1 when rotation of the pinion rotates the secondary dose member moving the lever from the non-activated to the activated position. In an embodiment of a medicament delivery device having a dose setting function, the medicament delivery device comprises a housing having opposite distal and proximal 5 ends; a medicament container holder releasably connected to said housing; a medicament container arranged inside said medicament container holder; a threaded plunger rod arranged to pass through a first inner wall of the housing and arranged to act on a stopper in the medicament container; a lead screw member coaxially connected to the threaded plunger rod by co-acting first slidably-and-rotatably-locked means; wherein said device 10 further comprises a nut coaxially connected to the threaded plunger rod by a treaded engagement between them, connected to the lead screw member by co-acting non-slidable and-rotatable means, and connected to the housing by co-acting second slidably-and rotatably-locked means; a primary dose member coaxially rotatable on the lead screw member when the device is in a non-activated state and connected to the lead screw 15 member by co-acting third slidably-and-rotatably-locked means when the device is in an activated state; a locking member fixedly connected to the housing and releasably connected to the lead screw member by co-acting locking means; a first spring force means arranged between the first inner wall of the housing and the nut, wherein the first spring force means is in a pre-tensioned state when said locking means are engaged and the 20 device is in the non-activated state; a secondary dose member rotatably connected to said primary dose member via a pinion gear; dose setting means connected to the primary dose member by co-acting fourth slidably-and-rotatably-locked means, such that when the device is to be set from the non-activated state to the activated state, the dose setting means are manually manipulated in a pre-determined direction, whereby the locking means are 25 released and the lead screw member is distally moved a pre-determined distance by the first spring force means independent of the size of a dose to be set. In this embodiment, the locking means may comprise a proximally pointing and radial flexible lever arranged on the locking member, an annular ledge on the circumferential surface of the lead screw member, and the circumferential inner surface of 30 the secondary dose member; such that when the first spring force means is in a pre tensioned state, the circumferential inner surface of the secondary dose member forces the flexible lever radial inwardly in contact with the ledge; and when the dose setting means are manually manipulated, the secondary dose member is rotated to a position wherein the 2 flexible lever is radial outwardly flexed into a longitudinal groove on the inner circumferential surface of the secondary dose member. The locking member may comprise on its distal circumferential surface a distally pointing stop member, and wherein the secondary dose member comprises on its proximal 5 circumferential surface a first and a second proximally pointing stop members arranged to interact with the stop member of the locking member. The non-slidable-and-rotatable means may comprise ratchet arms and radial inwardly directed arms on the nut, grooves on the outer circumference of wheels on the proximal end of the lead screw member, and an annular groove between the wheels, 10 wherein the ratchet arms cooperate with the grooves for giving an audible signal when the lead screw member is rotated; and wherein the radial inwardly directed arms cooperate with the annular groove such that the lead screw member and the nut are slidably locked and rotatable in relation to each other. The first slidably-and-rotatably-locked means may comprise radial inwardly 15 directed ledges on the inner surface of the proximal end of the lead screw member, and longitudinally extending grooves on the plunger rod, wherein the grooves cooperate with the radial inwardly directed ledges such that the lead screw member and the plunger rod are rotationally locked and slidable in relation to each other. The second slidably-and-rotatably-locked means may comprise grooves on the 20 outer circumferential side surface of the nut, and longitudinal ribs on the inner surface of the housing, wherein the grooves cooperate with the longitudinal ribs such that the nut and the housing are rotationally locked and slidable in relation to each other. The third slidably-and-rotatably-locked means may comprise splines on the outer circumferential surface of the lead screw member, and corresponding splines arranged on 25 the inner circumferential surface of the primary dose member, wherein the splines cooperate with corresponding splines such that the lead screw member and the primary dose member are rotationally locked and slidable in relation to each other. The dose setting means may comprise a clutch plate provided with a first annular ratchet, a dose setting knob provided with a second annular ratchet, and a second spring 30 force means arranged between a second inner wall of the housing and a proximal surface of the clutch plate, such that clutch plate is distally urged and the first and the second ratchet are abutting each other, and which dose setting knob protrudes through the distal end of the housing. 3 The fourth slidably-and-rotatably-locked means may comprise longitudinally extending grooves on the outer circumferential surface of the primary dose member, and radial inwardly directed protrusions on the inner surface of the clutch plate, wherein the longitudinally extending grooves cooperate with radial inwardly directed protrusions such 5 that the primary dose member and the clutch plate are rotationally locked and slidable in relation to each other. The plunger rod may be arranged to be proximally moved a distance corresponding to a set dose to be delivered by manually manipulating the dose setting knob when the device is in the activated state. 10 There is also disclosed herein, a dose setting mechanism for a medicament delivery device, comprising: a housing having a longitudinal axis; a locking member rotationally and slidably fixed to the housing; a pinion connected to the locking member and having an axis of rotation offset and parallel to the longitudinal axis; a primary dose member having a gear segment configured to engage the pinion; a secondary dose member having teeth 15 engaged with the pinion; a lead screw configured to slidably engage the primary dose member when the locking member is disengaged; a plunger rod rotationally fixed to the lead screw; a nut threadedly connected to the plunger rod and slidably locked to the lead screw; and a dose knob in clutched engagement with a clutch plate that is rotatably fixed to the primary dose member and to the lead screw when the locking member is disengaged. 20 Preferably, the dose setting mechanism further comprises indicia printed on the primary and secondary dose members. The dose setting mechanism advantageously has a non-activated configuration in which rotation of the dose knob causes rotation of the primary dose member, but not the lead screw, that rotates the pinion that rotates the secondary dose member until the indicia 25 reaches a predetermined setting. In this configuration, the locking member becomes disengaged when the indicia reaches the predetermined setting, causing the lead screw to move distally and to engage the primary dose member. The dose setting mechanism advantageously also has a non-activated configuration in which rotation of the dose knob causes rotation of the primary dose member, the lead 30 screw, the plunger rod, the pinion, and the secondary dose member. The dose setting mechanism may further comprise a pre-tensioned spring that exerts a force against the lead screw in the distal direction when the locking member is engaged. 4 There are a number of advantages with the medicament delivery device described above. Because the lead screw, e.g. the manually operating delivery means, protrudes outside the housing with the same length independent of the set dose quantity the manual dose delivery operation is the same independent of set dose, i.e. the lead screw member has 5 always the same position when a dose has been set. Compared to the state of the art medicament delivery devices, this solution is a great advantage for the user or patient who suffers of dexterity problems. Also when not in use, the lead screw member is inside the medicament delivery device and locked. The unlocking of the lead screw member is performed when said dose setting knob is turned to 10 an initial position, preferably a zero-dose position. These and other features and advantages will become apparent from the detailed description and from the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWINGS 15 In the detailed description reference will be made to the accompanying drawings in which Figs. la,b are a cross-sectional view of a medicament delivery device including a locking mechanism according to an embodiment of the present invention; Fig. 2 is an exploded view of the medicament delivery device of Figs. la,b; 20 Fig. 3 is a detailed view of a dose-setting mechanism; Fig. 4 is a further detailed view of the dose-setting mechanism; and Fig. 5 is yet a further detailed view of the dose-setting mechanism; and Figs. 6-7b are cross-sectional view of different functional positions. 25 DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION In the present application, when the term "distal part/end" is used, this refers to the part/end of the injection device, or the parts/ends of the members thereof, which under use of the injection device is located the furthest away from the medicament injection site of the patient. Correspondingly, when the term "proximal part/end" is used, this refers to the 30 part/end of the injection device, or the parts/ends of the members thereof, which under use of the injection device is located closest to the medicament injection site of the patient. The medicament delivery device 10 according to the drawings comprises a generally elongated housing 12 having opposite distal and proximal ends. The elongated housing being e.g. divided in a proximal 12a and a distal part 12b. The proximal end of the 5 housing is arranged with fastening means such as e.g. threads 14 on its inner surface, which fastening means cooperate with corresponding fastening means such as outwardly threads 16 on a distal end of a medicament container holder 18, providing a releasable connection. Inside the medicament container holder, a medicament container 20 can be 5 placed. The proximal end of the medicament container holder 18 is arranged with a threaded neck 22 for connection of a medicament delivery member such as an injection needle 24, a mouthpiece, a nozzle or the like, Fig 2. When received by a user, the medicament delivery device 10 is provided with a releasably attachable protective cap 26. At the distal end of the medicament container 10 holder a sleeve-shaped container support 28 is inserted for holding and supporting the medicament container 20 when inserted, Fig. 2. At the proximal end of the housing a first inner wall 30 is arranged, which wall is provided with a central passage 32, Fig. lb. The central passage is arranged with a distally directed tubular flange 34, Fig. la. A threaded plunger rod 36 extends in the longitudinal direction through the central passage 32 with a 15 proximal end adjacent a stopper 38 inside said medicament container 20, Fig. la. The proximal end of the plunger rod 36 is further arranged with a plunger rod tip 40, Fig. 2. The device further comprises a lead screw member 58 coaxially connected to the threaded plunger rod by co-acting first slidably-and-rotatably-locked means; and a nut 44 coaxially connected to the threaded plunger rod by a treaded engagement between them. 20 The nut also being connected to the lead screw member by co-acting non-slidable-and rotatable means, and to the housing by co-acting second slidably-and-rotatably-locked means. The first slidably-and-rotatably-locked means comprises radial inwardly directed ledges 57 on the inner surface of the proximal end of the lead screw member, and 25 longitudinally extending grooves 42 on the plunger rod, Fig. 2, wherein the grooves cooperate with the radial inwardly directed ledges 57 such that the lead screw member and the plunger rod are rotationally locked and slidable in relation to each other. The non-slidable-and-rotatable means comprises ratchet arms 50 and radial inwardly directed arms 51 on the nut 44, grooves 56 on the outer circumference of wheels 30 54 on the proximal end of the lead screw member, and an annular groove 53 between the wheels 54, wherein the ratchet arms 50 cooperate with the grooves 56 for giving an audible signal when the lead screw member is rotated; and wherein the radial inwardly directed arms 51 cooperate with the annular groove 53 such that the lead screw member and the nut are slidably locked and rotatable in relation to each other, Fig. 3. 6 The second slidably-and-rotatably-locked means comprises grooves 52 on the outer circumferential side surface of the nut 44, Fig. 3, and longitudinal ribs on the inner surface of the housing (not shown), wherein the grooves cooperate with the longitudinal ribs such that the nut and the housing are rotationally locked and slidable in relation to each other. 5 The nut 44 comprises a threaded central passage 46 which cooperates with the threads of the plunger rod, Fig. 2, thereby forming the threaded engagement between them. The device also comprises a primary dose member 66 coaxially rotatable on the lead screw member when the device is in a non-activated state and connected to the lead screw member by co-acting third slidably-and-rotatably-locked means when the device is 10 in an activated state. The third slidably-and-rotatably-locked means comprises splines 60 on the outer circumferential surface of the lead screw member; and corresponding splines 64 arranged on the inner circumferential surface of the primary dose member, wherein the splines 60 cooperate with corresponding splines 64 such that the lead screw member and the primary dose member are rotationally locked and slidable in relation to each other, 15 Figs. 2 and 3. The device further comprises: - a locking member 96 fixedly connected to the housing and releasably connected to the lead screw member by co-acting locking means; a first spring force means 48 arranged between the first inner wall 30 of the housing and the nut, wherein the first spring force means is in a pre-tensioned state when said locking 20 means are engaged and the device is in the non-activated state; and - a secondary dose member 90 rotatably connected to said primary dose member 66 via a pinion gear 94, Fig. 3. The device also comprises dose setting means connected to the primary dose member by co-acting fourth slidably-and-rotatably-locked means, such that when the 25 device is to be set from the non-activated state to the activated state, the dose setting means are manually manipulated in a pre-determined direction, whereby the locking means are released and the lead screw member is distally moved a pre-determined distance by the first spring force means independent of the size of a dose to be set. The dose setting means comprises a clutch plate 74 provided with a first annular 30 ratchet 76, a dose setting knob 84 provided with a second annular ratchet 82, and a second spring force means 78 arranged between a second annular inner wall 80 of the housing and a proximal surface of the clutch plate, such that clutch plate is distally urged and the first and the second ratchet are abutting each other, and which dose setting knob protrudes through the distal end of the housing, Figs. la and 4. The fourth slidably-and-rotatably 7 locked means comprises longitudinally extending grooves 70 on the outer circumferential surface of the primary dose member 66, and radial inwardly directed protrusions 72 on the inner surface of the clutch plate 74, wherein the longitudinally extending grooves 70 cooperate with radial inwardly directed protrusions 72 such that the primary dose member 5 and the clutch plate are rotationally locked and slidable in relation to each other, Figs. 2 and 3.The distal end of the lead screw member 58 protrudes through the dose setting knob 84, and is at its distal end arranged with a dose injection button 86, Figs. 2 and 7b. Outside the dose injection button 86 a spin ring 88 is rotatably arranged, Fig. 2. The locking means comprises: - a proximally pointing and radial flexible lever 102 10 arranged on the locking member, - an annular ledge 62 on the circumferential surface of the lead screw member, and - the circumferential inner surface of the secondary dose member, Fig. 2. The secondary dose member 90 is also arranged with teeth 92 arranged around its circumference, which teeth cooperate with teeth on the pinion gear 94, which is journalled in the housing as well as the locking member 96 via a locking lever bracket, Fig. 15 3. Further the primary dose member 66 is arranged with a gear segment 98, which also cooperate with the pinion gear 94, Fig. 3. A certain part of the lead screw member 58 is arranged with the splines 60 on its outer circumferential surface, Fig. 2; which splines have a lesser diameter than the proximal part of the lead screw member, thereby creating the annular ledge 62, Fig 2. The locking member 96 also comprises on its distal 20 circumferential surface a distally pointing stop member 95, and the secondary dose member 90 comprises on its proximal circumferential surface a first 91 and a second 93 proximally pointing stop member arranged to interact with the stop member of the locking member, Fig. 4. The proximal part of the primary dose member 66 and the secondary dose member 25 90 are arranged with a circumferential band containing numbers or indicia 68 which are used to indicate dose size through a dose window on the housing, as will be explained below, Fig. 3. The device is intended to function as follows. When delivered to the user, the device is in the non-activated state wherein a medicament container 20 has been inserted in 30 the medicament container holder 18 in the proximal end of the device, Fig. 1, the first spring force means is in a pre-tensioned state and said locking means are engaged, wherein the circumferential inner surface of the secondary dose member 90 forces the flexible lever 102 radial inwardly in contact with the ledge 62. 8 When the device is to be used the protective cap 26 is removed and the dose setting means are manually manipulated for setting the device from the non-activated state to the activated state by rotating the dose setting knob 84 counter clockwise until activating indicia as e.g. two zeros are visible through the window of the housing. The rotation of the 5 dose setting knob 84 causes the clutch plate 74 and thereby the primary dose member 66 to rotate due to the engagement between the co-acting fourth slidably-and-rotatably-locked means, and due to the connection between the first 76 and the second 82 ratchets. However, the lead screw member is not rotated since the third slidably-and-rotatably locked means 60, 64 are not in engagement, i.e. the splines 60 on the outer circumferential 10 surface of the lead screw member and the corresponding splines 64 arranged on the inner circumferential surface of the primary dose member 66 are not in engagement. The secondary dose member 90 also rotates due to the connection between the gear segment 98 of the primary dose member 66 and the teeth 92 of the secondary dose member 90 through the pinion gear 94. The rotation of the secondary dose member 90 is stopped when its 15 second proximally pointing stop member 93 abuts the distally pointing stop member 95. This causes a longitudinal groove on the inner circumferential surface (not shown) of the secondary stop member to be aligned with the flexible lever 102 whereby the flexible lever is radial outwardly flexed into the groove and thereby moved out of contact with the ledge 62 of the lead screw member 58. This causes the lead screw member 58 to move a pre 20 determined distance in the distal direction due to the force of the spring 48 acting on the nut 44, which in turn is attached to the lead screw member 58. The splines 60 on the outer circumferential surface of the lead screw member and the corresponding splines 64 arranged on the inner circumferential surface of the primary dose member are then engaged to each other. Because of the movement of the nut 44, the plunger rod 36 is also moved. 25 The distal end of the lead screw member 58 and its dose injection button 86 now protrude distally out of the housing said predetermined distance and independent of the size of the dose to be set. The device is now in the activated state and ready for setting a required dose of medicament, Figs. 7a and 7b. 30 When setting a dose, the plunger rod is arranged to be proximally moved a distance corresponding to a set dose to be delivered by manually manipulating the dose setting knob. The dose setting knob 84 is rotated in the clockwise direction which also rotates the primary dose member 66 clockwise indicating the dose that is being dialled. At the same time the primary dose member 66 rotates the lead screw member 58 clockwise due to the 9 engagement between the co-acting third slidably-and-rotatably-locked means 60, 64; and the lead screw rotates the plunger rod due to the engagement between the co-acting first slidably-and-rotatably-locked means, driving the plunger rod 36 through the nut 44 because of the threaded engagement between them, thereby moving the plunger rod 36 5 proximally. The secondary dose member 90 also rotates due to the connection between the gear segment 98 of the primary dose member 66 and the teeth 92 of the secondary dose member 90 through the pinion gear 94. The rotation of the secondary dose member 90 is stopped when its first proximally pointing stop member 91 abuts the distally pointing stop member 95, which indicates the maximum dose the device can deliver e.g. two indicia as 10 e.g. a seven and a zero are visible through the dose window. In any case, the set dose is visible through the dose window of the housing. At this point the device is ready for an injection. Moreover, if the user attempts to dial past the maximum dose the device can deliver or if the user attempts to dial pass the activating indicia, the connection between the first 15 annular ratchet 76 and the second annular ratchet will function as a clutch. When the dose is set, a medicament delivery member 24 is attached to the proximal end of the device, such as e.g. an injection needle. It is however to be understood that other types of medicament delivery members may be used in order to deliver a dose of medicament. The medicament delivery member is then placed at the delivery site and the 20 user presses the dose injection button 86 in the proximal direction the predetermined distance that the distal end of the lead screw member 58 and its dose injection button 86 protrudes distally out of the housing and which said predetermined distance is independent of the size of the dose to be delivered. This causes the lead screw member 58 to move in the proximal direction as well as the nut 44 and the plunger rod 36. This proximal 25 movement of the plunger rod 36 causes it to act on the stopper 38 of the medicament container 20 whereby a dose of medicament is expelled through the medicament delivery member 24. When the lead screw member 58 has reached a certain distance inside the housing, the flexible lever 102 of the locking member is again moved in contact with the ledge 62 of the lead screw member 58, Fig. 8. The medicament delivery member may now 30 be removed and discarded. When a subsequent dose is to be performed, the above described procedure is performed and can be repeated until the medicament container is emptied. 10 It is to be understood that the embodiment described above and shown in the drawings is to be regarded only as a non-limiting example of the invention and that it may be modified in many ways within the scope of the patent claims. The term "comprise" and variants of that term such as "comprises" or "comprising" 5 are used herein to denote the inclusion of a stated integer or integers but not to exclude any other integer or any other integers, unless in the context or usage an exclusive interpretation of the term is required. Reference to prior art disclosures in this specification is not an admission that the disclosures constitute common general knowledge in Australia or any other country. 11
权利要求:
Claims (8) [1] 1. A locking mechanism for a medicament delivery device, comprising: 5 a housing having a longitudinal axis; a locking member rotationally and slidably fixed to the housing and having a flexible lever configured to be in a non-activated position and an activated position; a pinion connected to the locking member and having an axis of rotation offset and parallel to the longitudinal axis; 10 a rotatable secondary dose member exerting a biasing force on the lever in the non activated position and releasing the biasing force in the activated position; and a lead screw biased to slide in a distal direction and having an annular ledge that engages the lever in the non-activated position preventing axial movement of the lead screw; 15 wherein the lead screw slides distally when the lever becomes disengaged from the ledge in the activated position when rotation of the pinion rotates the secondary dose member moving the lever from the non-activated to the activated position. [2] 2. The locking mechanism as claimed in claim 1, wherein the secondary dose 20 member has an inner circumferential surface adapted to engage and move the lever in a radial direction with respect to the locking member. [3] 3. The locking mechanism as claimed in claim 2, wherein in the non-activated position, the flexible lever is forced by the inner circumferential surface of the secondary 25 dose member inwardly into contact with the annular ledge of the lead screw. [4] 4. The locking mechanism according to any one of claims 2 and 3, wherein lever can be moved from the non-activated position to the activated position by rotating the secondary dose member to a position wherein the flexible lever is radially outwardly 30 flexed into a longitudinal groove on the inner circumferential surface of the secondary dose member. 12 [5] 5. The locking mechanism according to any one of the preceding claims, wherein the locking member further comprises a distally pointing stop member on its distal circumferential surface, and wherein the secondary dose member comprises on its proximal circumferential 5 surface first and second proximally pointing stop members arranged to interact with the stop member of the locking member. [6] 6. The locking mechanism according to any one of the preceding claims, wherein the lead screw has a pair of wheels on a proximal end thereof for 10 engagement with radial inwardly directed arms of a nut, the pair of wheels defining an annular groove therebetween, and wherein the radial inwardly directed arms cooperate with the annular groove such that the lead screw and the nut are configured to be slidably locked and rotatable in relation to each other. 15 [7] 7. The locking mechanism according to any one of the preceding claims, wherein the lead screw has radial inwardly directed ledges on an inner surface of its proximal end for engagement with longitudinally extending grooves on a plunger rod, and wherein the radial inwardly directed ledges are configured to cooperate with the 20 grooves of the plunger rod such that the lead screw and the plunger rod are capable of being rotationally locked and slidable in relation to each other. [8] 8. The locking mechanism according to any one of the preceding claims, wherein the lead screw has splines on an outer circumferential surface thereof for 25 engagement with corresponding splines arranged on an inner circumferential surface of a primary dose member, wherein the splines are configured to cooperate with corresponding splines such that the lead screw and the primary dose member are capable of being rotationally locked and slidable in relation to each other. 13
类似技术:
公开号 | 公开日 | 专利标题 US10272205B2|2019-04-30|Medicament delivery device DK2887981T3|2017-04-24|Drug delivery device US9005160B2|2015-04-14|Medicament delivery device AU2010254627B2|2012-08-02|Medicament delivery device EP2707063B1|2019-06-26|Medical delivery device with dose re-setting US9446201B2|2016-09-20|Medicament delivery device JP5668147B2|2015-02-12|Drug delivery device GB2530076A|2016-03-16|Injector pens US20180050159A1|2018-02-22|Medicament delivery device US10322244B2|2019-06-18|Medicament delivery device AU2013206532B2|2015-04-09|Medicament Delivery Device US9795744B2|2017-10-24|Medicament delivery device EP3170527A1|2017-05-24|Medicament delivery device US10322243B2|2019-06-18|Medicament delivery device EP3205364A1|2017-08-16|Dose setting mechanism TWI415643B|2013-11-21|Medicament delivery device
同族专利:
公开号 | 公开日 AU2013206532B2|2015-04-09|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US6221053B1|1998-02-20|2001-04-24|Becton, Dickinson And Company|Multi-featured medication delivery pen|EP3205364A1|2016-02-03|2017-08-16|SHL Group AB|Dose setting mechanism|
法律状态:
2015-08-06| FGA| Letters patent sealed or granted (standard patent)| 2019-08-29| PC| Assignment registered|Owner name: SHL MEDICAL AG Free format text: FORMER OWNER(S): SHL GROUP AB |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 SE0950958-9||2009-12-15|| AU2010337136A|AU2010337136B2|2009-12-15|2010-12-13|Medicament delivery device| AU2013206532A|AU2013206532B2|2009-12-15|2013-06-25|Medicament Delivery Device|AU2013206532A| AU2013206532B2|2009-12-15|2013-06-25|Medicament Delivery Device| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|