![]() Stain Removing Solution
专利摘要:
A solution having improved stain removing properties on hard surfaces, carpets and fabrics, that is easier to handle (stored or transported at lower temperatures and less corrosive) and that is environmentally friendly. The stain removing solution 5 includes the following components: a surfactant selected from the group consisting of alcohol ethoxylates, alkyl sulfates, alkyl ether sulfates, alpha olefin sulfonates, alkyl phosphates, alkyl amidopropyl betaines, alkyl betaines, amphoacetates, amphoproprionates, amphosulfonates, amine oxides, alkanolamides, sulfosuccinates, and sultaines, a hydrotrope, and a solvent. The surfactant is preferably an alcohol 10 ethoxylate. The hydrotrope is preferably lauramine oxide. The solvent is preferably a dibasic ester or a glycol ether. The solution may further comprise a diluent, a mild acid, and/or a preservative. A mild acid can be added to lower the pH of the solution. 公开号:AU2013205967A1 申请号:U2013205967 申请日:2013-05-21 公开日:2014-07-31 发明作者:Rosemary Gaudreault 申请人:Jelmar LLC; IPC主号:C11D3-20
专利说明:
TITLE OF THE INVENTION STAIN REMOVING SOLUTION BACKGROUND OF THE INVENTION Field of the Invention 5 The present invention relates in general to an improved solution for removing stains from hard surfaces, carpets and fabrics, that is easier to handle and store, and is also environmentally friendly. Background Art Stain removing solutions have been known and used in a variety of applications, 10 including removing stains from hard surfaces, such as wooden and concrete floors, painted walls, stone countertops, floor and bath tiles, as well as composite or laminated materials that are on various household and office surfaces. Stain removing solutions are also called spot removers when being used to remove stains from carpets, rugs, and other fabrics, such as clothing, furniture, upholstery, and drapery. As part of daily 5 household life, unwanted stains appear on such surfaces and materials, through food and drink spills, tracking of outdoor contaminants by dirty shoes and animals, bleed through or over-writing from pens, markers or crayons, accidents resulting in the spill of human or animal blood or bodily waste, or spills of paint or nail polish, whose coloring went beyond its intended use and resulted in a stained or soiled hard surface, carpet or o fabric. Typically, a small amount of a stain removing solution sprayed onto the surface may remove the stain, which is then wiped away using a cloth or paper towel. Stain removing solutions have traditionally contained a higher pH level, such as 9.0 and higher. While higher pH solutions have been effective at removing stains, their high pH levels pose problems for the cleaner, as well as for the surface that is being 25 cleaned. First of all, direct contact with a high pH solution can dry out or even burn the skin; protective gloves must be worn by the user. Furthermore, high pH solutions can also corrode hard surfaces and fabric while removing the stain. Depending on the severity of the stain and the type of surface or material being treated, a high amount of solution may be necessary to remove the stain. Prolonged exposure to a high pH 30 cleaning solution can often result in corrosion, discoloration, or otherwise damage to more delicate surfaces, and for these reasons, is not recommended for use at.all on delicate fabrics such as silks. For such applications, spot removing solutions are used. However, such solutions are not as effective at removing stains, and are often inconvenient for the user, who must purchase an additional stain removing solution for 5 this purpose. Stain removing solutions also are known to contain surfactants. However, many surfactants that are currently used in stain removing solutions solidify, or gel, at colder temperatures, causing the solution to separate, and the surfactant to fall to the bottom of the solution. If this should happen, such as during transport or storage of the solution 10 during winter months, the solution may no longer be effective as a stain remover. Even if the temperature later rises, the surfactant is unlikely to thoroughly mix inside the container, such that when the solution is dispensed, it may or may not contain an effective amount of the surfactant to remove the stain. Stain removing solutions are also known to contain solvents to dislodge the stain 15 from the surface or fabric. Many solvents that are currently used in stain removing solutions have a high vapor pressure. Solvents having a high. vapor pressure are known to be effective at dislodging a stain, especially at high pH levels, but not without considerable drawbacks. First, such solvents quickly flash off from the solution after they are applied, leaving the solution unable to penetrate a deep stain. Second, these 20 solvents often smear or "ring" part of the stain onto another portion of the surface or fabric, rather than remove it from the surface or fabric completely. Third, solvents with a high vapor pressure often emit an odor, that is unpleasant for the user. Finally, such solvents often emit high amounts of volatile organic compounds (VOCs) that are the subject of increasing regulation and public concern, which limit their use in household 25 products. It has also become important for stain removing solutions to be formulated in such a way as to have less impact on the environment. One way in which this is encouraged is through a program of the United States Environmental Protection Agency, known as the Design for the Environment Program ("DfE"). DfE certifies 30 "green" cleaning products through the Safer Product Labeling Program. Another is 2 through state regulatory bodies, such as the California Air Resources Board ("CARB"). Either through regulation, or through certification, these bodies set out standards for achieving environmentally friendly cleaning products. Among the standards, are the desire for a solution that is not as corrosive as prior art solutions, one having a more 5 neutral pH level. Further, the solution must minimize the emissions of VOCs, as well as the percentage of solvent that it may contain. Accordingly, it is desirable to provide an effective stain removing solution which is less corrosive than existing solutions for safer handling by the user, and to reduce the corrosive effects on the applied surfaces and fabrics. 10 It is further desirable to provide an effective stain removing solution, that may be transported and stored at cold temperatures, without concern of a key ingredient separating from the solution. It is yet further desirable to find a single stain removing solution which may be applied to hard surfaces and delicate fabrics alike, and which meets any and all 15 applicable environmental standards and regulations, with a specific combination of surfactants, solvents and hydrotropes - all of which act in a synergistic manner to improve their effectiveness in removing stains. 3 SUMMARY OF THE INVENTION The present invention is directed to a stain removing solution. In one preferred embodiment, the solution comprises a surfactant selected from the group consisting of alcohol ethoxylates, alkyl sulfates, alkyl ether sulfates, alpha olefin sulfonates, alkyl 5 phosphates, alkyl amidopropyl betaines, alkyl betaines, amphoacetates, amphoproprionates, amphosulfonates, amine oxides, alkanolamides, sulfosuccinates, and sultaines and a solvent selected from the group consisting of dibasic esters, towards effectively removing stains from hard surfaces, carpets and fabrics. In another preferred embodiment of the invention, the stain removing solution comprises a 10 surfactant again selected from the group consisting of alcohol ethoxylates, alkyl sulfates, alkyl ether sulfates, alpha olefin sulfonates, alkyl phosphates, alkyl amidopropyl betaines, alkyl betaines, amphoacetates, amphoproprionates, amphosulfonates, amine oxides, alkanolamides, sulfosuccinates, and sultaines, and a solvent selected from the group consisting of glycol ethers. In a preferred embodiment 15 of the invention, the surfactant is selected from the group consisting of alcohol ethoxylates. The surfactant may comprise about 3% to about 8% of the stain removing solution. In one preferred embodiment of the invention, the surfactant is a hydrotrope. In another preferred embodiment of the invention, the solution further comprises a hydrotrope. The hydrotrope may comprise about 1.5% to about 5% of the stain 20 removing solution. The hydrotrope may be selected from the group consisting of amine oxides. In a preferred embodiment of the invention, the hydrotrope is lauramine oxide. In another preferred embodiment of the invention, the solvent is dimethyl-2 methyl glutarate. In another preferred embodiment of the invention, the solvent is dipropylene glycol n-butyl ether. The solvent may comprise about 1.5% to about 6.5% 25 of the stain removing solution. In yet another preferred embodiment of the invention, the stain removing solution further comprises a diluent, in about 79% to about 94% of the solution. In another preferred embodiment of the invention, the stain removing solution further comprises a mild acid, added in a sufficient amount to lower the pH of the 30 solution to about 5.8 to about 7.5, preferably to about 6.3 to about 6.9. The mild acid is 4 preferably selected from the group consisting of gluconic acid and lactic acid. The mild acid preferably comprises about 0.01% to about 1% of the stain removing solution. In a further preferred embodiment of the invention, the stain removing solution further comprises at least one preservative. The preservative may be in about 0.001% 5 to about 0.021% of the stain removing solution. 5 DETAILED DESCRIPTION OF THE INVENTION While this invention is susceptible of embodiment in many different forms, there are described herewithin several specific embodiments, with the understanding that the present disclosure is to be considered as an exemplification of the principals of the 5 invention and is not intended to limit the invention to the embodiments so described. The present invention is directed to a stain removing solution which is particularly suited for removing food, ink, and paint stains from various hard surfaces found in homes, including wood floors, concrete, painted walls, tiles, and composite materials such as those used in kitchen or bathroom counters. The stain removing solution 1o described herein is also intended to remove these, and other stains from more delicate surfaces and materials, including carpeting, furniture, clothing, drapery, and other fabrics. The present invention includes a stain removing solution that is effective at removing stains, while protecting the surface or material from the deleterious effects of corrosion, discoloration and other damage, while safeguarding the environment. 15 The stain removing solution of the present invention comprises at least a surfactant selected from the group consisting of alcohol ethoxylates, alkyl sulfates, alkyl ether sulfates, alpha olefin sulfonates, alkyl phosphates, alkyl amidopropyl betaines, alkyl betaines, amphoacetates, amphoproprionates, amphosulfonates, amine oxides, alkanolamides, sulfosuccinates, and sultaines, and a solvent in the form of a dibasic 20 ester or a glycol ether. In a preferred embodiment of the invention, the stain removing solution also includes a hydrotrope compound. The solution may further comprise a diluent, a mild acid, and/or a preservative. The surfactant in the present stain removing solution performs the very important function of acting to physically separate a contaminating substance, from the surface or 25 material to which the contaminating substance is adhered. The hydrotrope aides in the solubility of the surfactant, such that a higher amount of surfactant may be placed in solution to improve the performance of the stain removing solution. After the stain is separated by the surfactant, the solvent functions to dislodge the stain from the surface or material matrix, such that the stain may then adhere to a paper towel or cloth. The 6 solvents can also dissolve those portions of the stain that act to adhere the stain to the material, such as oils and greases. In a preferred embodiment of the invention, the stain removing solution includes a surfactant, a hydrotrope, a solvent, a diluent, a mild acid and a preservative. 5 Surfactant As stated above, preferably the surfactant is selected from selected from the group consisting of alcohol ethoxylates, alkyl sulfates, alkyl ether sulfates, alpha olefin sulfonates, alkyl phosphates, alkyl amidopropyl betaines, alkyl betaines, 10 amphoacetates, amphoproprionates, amphosulfonates, amine oxides, alkanolamides, sulfosuccinates, and sultaines. The surfactant is preferably an alcohol ethoxylate. Alcohol Ethoxylates ("AEs") have the advantage that they are not affected by water hardness or pH changes, and in many cases it is an advantage that they are considered medium to low foaming agents. AEs are prepared commercially by the reaction of an 15 alcohol and ethylene oxide. An example of the chemical structure of an alcohol ethoxylate is shown below: CH 3 (CH2)x.y 0 (CH2CH20)n H x-y is the range of carbon units n is the average number of ethylene oxide units 20 Structurally, AEs can be abbreviated as CxyAEn where the subscript following the 'C' indicates the range of carbon chain units. AEs with a carbon unit range between C3 to C16, are most commonly used in household detergent products. Further AEs contain an ethylene oxide (E) chain attached to the alcohol. The degree of ethylene oxide 25 polymerization is indicated by the subscript 'n' which indicates the average number of ethylene oxide units. In household products, the ethylene oxide commonly ranges between 3 and 20 units, where units are ethylene oxide chains within the alcohol ethoxylate molecule. The fact that each product contains a mixture of molecules that covers a range of chain lengths (both in the alcohol and in the ethoxylate chain) has 7 importance to the health and safety evaluation of AEs. The functional characteristics of two related products may be different, but their biological effects should be comparable. The preferred AE surfactant of the present invention is Tomadol 900, comprising from about 3% to about 8% of the stain removing solution, most preferably in a 6.18% 5 concentration in the formulation. Tomadol is a trademark owned by Tomah Products, Inc., Milton, Wisconsin. Tomadol 900 is commercially available from Air Products & Chemicals, Inc., of Allentown, Pennsylvania. Tomadol 900, CAS No. 68439-46-3, comprises 60-100% C9-11 AEs, including C9-11AE4, C9-11AE6, and C9-11AE8. Other surfactant chemical groups that may be used in the present invention include: alkyl 10 sulfates, alkyl ether sulfates, alpha olefin sulfonates, alkyl phosphates, alkyl amidopropyl betaines, alkyl betaines, amphoacetates, amphoproprionates, amphosulfonates, amine oxides, alkanolamides, sulfosuccinates, and sultaines. Hydrotrope 15 A hydrotrope acts to improve the solubility of surfactants in aqueous solutions. Couplers, like solvents and more-soluble surfactant classes, can also be used to increase solubility. Hydrotropes are a special class of couplers requiring relatively low levels for solubilization of surfactants. A higher concentration of hydrotrope generally leads to higher cloud points, the point at which the surfactant concentration is large 2o enough such that some of the surfactant will solidify, and thus fall out of solution. Hydrotropes are known to be useful in formulations containing a surfactant. A wide range of molecular structures can lead to hydrotropic behavior. Usual hydrotropes present a weak amphiphilic character, with small hydrophilic and hydrophobic moieties. They can be, among others, aromatic salts (sodium xylene 25 sulfonate SXS), aromatic alcohols (pyrogallol) or short-chain soaps (sodium n pentanoate). Medium and short-chain alkylpolyglucosides (APG) have also been regarded as hydrotropes, as have been more unusual compounds such as long chain dicarboxylic acids. Short-chain amphiphiles derived from ethylene glycol (CiEj), propylene glycol (CiPj) or glycerol (CiGlyl) also present hydrotropic properties. These 30 compounds are sometimes called "solvo-surfactants" because they combine properties 8 of surfactants (molecular structure surface-active properties) and of solvents (volatility, dissolving power). Commercially available hydrotropes that may be used in association with the present invention include: b-alanine, n-(2-carboxyethyl)- and n-[3-(C12-15-alkyloxy) 5 propyl] derivatives, alkenyl dicarboxcylic acid anhydride, alkyl polysaccharide, alkyl glucosides, alkyl polyglycol ether ammonium methyl chloride, amine oxides (including cocamidopropylamine oxide, lauramine oxide, myristamine oxide, and soyamidopropylamine oxide), benzyl alcohol ethylate, d-glucopyranose alkyl glycosides, disodium cocoamphodipropionate, sulfonic acid based hydrotropes (including sodium 10 cumenesulfonic acid, xylenesulfonic acid, and toluenesulfonic acid), methyl-oxirane polymer, modified carboxcylic acid, modified carboxylate, organo phosphate amphoteric, modified phosphate ester, aromatic phosphate ester, natural fatty alcohol alkyl polyglucosides, potassium cocoate, sodium-n-lauryl-fB-iminodipropionate, sodium octane sulfonate, and salts thereof. 15 There are several factors that must be considered in arriving at an appropriate hydrotrope. The hydrotrope must be compatible with the solvent, to ensure that the compounds are mutually soluble, and their surface tension must be low to allow the surfactant to penetrate the stain. Other considerations include cost, and synergistic effects when used in combination with a particular surfactant. It should be noted that 20 there are some surfactants that also have the properties of a hydrotrope, and many of the hydrotropes listed above are also surfactants. Thus, a single chemical can be used as both the surfactant and the hydrotrope of the present invention. Such an arrangement often raises significant cost considerations. The preferred hydrotrope to be used in the current invention is an amine oxide; 25 more preferably, lauramine oxide ("LO"), which is also known as lauryldimethylamine oxide, dodecyldimethylamine oxide, or dimethyldodecylamine-N-oxide, comprising from about 1.5% to about 5% of the stain removing solution, most preferably 2.025% active in the formula. Lauramine oxide can be purchased under the trade name Mackamine LO from Rhodia Inc., located in Cranbury, New Jersey. Mackamine is a trademark 30 owned by the McIntyre Group, Ltd., of University Park, Illinois. Other alternative 9 sources of lauramine oxide are Macat AO -12 (from Mason Chemicals) and Ammonyx LO (from Stepan Chemical). The addition of lauramine oxide as the hydrotrope has been found to increase the solubility of the surfactant, as intended, and also to increase the stability of the solution at higher temperatures. The solution described herein, with 5 Tomadol as the surfactant and lauramine oxide as the hydrotrope, was found to be stable at temperatures as high as 50*C for three months. In addition to its properties as a hydrotrope, and as an example of the present invention, lauramine oxide has been found to generate an unexpected synergistic effect - when used in combination with Tomadol and the other ingredients of the stain 10 removing solution described herein, particularly the solvent. The addition of lauramine oxide as a hydrotrope was found to increase the stain removing performance to levels that were only known to be possible with more corrosive solutions that have a higher pH level. 15 Solvent Suitable solvents that may be used with the present invention include dibasic esters and glycol ethers. Of those solvents, the ones preferred for use in association with the present invention are low vapor pressure ("LVP") solvents, which also have a high flash point. LVP solvents are desirable for their solvent properties, while limiting 20 VOC emissions in the resulting stain removing solutions. While high vapor pressure solvents may be desirable because of their performance, their use in a stain removing solution may create a higher than desirable level of VOC emissions. A high flash point refers to the temperature at which the solvent may ignite. Highly flammable solvents, such as acetone, ignite at lower temperatures, and therefore have a low flash point. 25 Products that have a low flash point are not desirable for use or storage in the home. Other criteria that should be evaluated in choosing an appropriate solvent include solubility, stability in product, surface tension and cleaning ability. One preferred solvent of the present invention is Rhodiasolv IRIS, a dibasic ester having the chemical name dimethyl-2-methyl glutarate, comprising from about 1.5% to 30 about 6.5% of the stain removing solution, most preferably 4.75% active in the formula. 10 Rhodiasolv is a trademark owned by Rhodia Corporation, of Courbevoie, France. Rhodiasolv products are commercially available in the United States from Rhodia Inc., of Cranbury, New Jersey. It is believed that Rhodiasolv IRIS further acts in an unexpected, synergistic manner in combination with the Tomadol surfactant and 5 lauramine oxide hydrotrope, to quickly penetrate and remove stains. Through trial and error, it was discovered that the use of a dibasic ester solvent generated a more effective stain removing solution than traditional solvents. It is believed that the dibasic ester solvent is more effective at opening up the stain matrix, thus enabling the higher amount of surfactant present in the solution (because of the hydrotrope) to dislodge the 10 stain from the surface. Other dibasic esters that may be used in the present invention include Rhodiasolv RPDE, Rhodiasolv STRIP, and FlexiSolv DBE Esters. Flexisolv is a trademark of Invista Specialty Materials, of Wilmington, Delaware. Alternatively, a glycol ether may be used as the solvent. The preferred glycol ether that may be used as the solvent is dipropylene glycol n-butyl ether, sold under the 15 trade name Dowanol DPnB. Other Dowanol low vapor pressure solvents that may be used with the present invention include Dowanol TMP, Dowanol DPnP, Dowanol TPnB, Dowanol PPh, Dowanol EPh, and Dowanol DPMA. Other low vapor pressure glycol ethers that may be used include Carbitol, butyl Carbitol, Hexyl Carbitol, and butyl Carbitol acetate. Both Dowanol and Carbitol are trademarks of The Dow Chemical 20 Company, of Midland, Michigan. Remaining Ingredients Other components that may be added to the stain removing solution, include a diluent, a mild acid, and a preservative. 25 The diluent is preferably deionized water, added to achieve the desired concentrations of the active ingredients in the solution, as well as to reduce the vapor pressure. The diluent of the present invention comprises about 79% to about 94% of the stain removing solution, most preferably 87%. While the diluent is not an active component in removing stains, its addition to the stain removing solution is highly 30 desirable, because the active ingredients are typically available in a highly concentrated 11 form. Therefore, a diluent can reduce the concentrations of the active constituents to their desired amounts. The mild acid may be needed to adjust the pH, depending on the choice of solvent, and the desired stability properties of the invention. In the case of a dibasic 5 ester solvent, the pH should be adjusted to the desired level of about 5.8 to about 7.5, preferably about 6.3 to about 6.9, most preferably 6.6. A stain removing solution that contains only a surfactant selected from the group consisting of alcohol ethoxylates, alkyl sulfates, alkyl ether sulfates, alpha olefin sulfonates, alkyl phosphates, alkyl amidopropyl betaines, alkyl betaines, amphoacetates, amphoproprionates, 10 amphosulfonates, amine oxides, alkanolamides, sulfosuccinates, and sultaines, a hydrotrope, a solvent, a diluent, and a preservative has been found to have a pH of about 7.5 to about 11, though the level has been found to vary depending on the choice of surfactant. Such a high pH level has been found to be incompatible with the preferred dibasic ester solvent, whose preferred operating pH range is 4.5 to 7.5. In the 15 case of a glycol ether solvent, the pH does not need to be adjusted for the solvent to be effective in the stain removing solution. At pH levels below 5.8, it was found that the stain removing solution was too acidic, and unfavorably reacted with certain hard surfaces that are found in the home. At pH levels above 9.5, it was found that the stain removing solution was too corrosive on certain hard surfaces and fabrics, and was o difficult to handle. Accordingly, a mild acid may be added to the stain removing solution, in amounts necessary to reduce the pH to levels that are compatible with the other active ingredients, or to make the solution less corrosive and easier to handle, but not in amounts that would make the solution reactive with surfaces found in the home. An additional benefit of adding an acid, is an increased stability of the stain 25 removing solution. Adding acid has been found to stabilize the pH level of the solution, and to prevent the components of the solution from separating, or stratifying. Furthermore, adding acid has also been found to make the solution more stable over a wider range of temperatures. Therefore, even if the solution is at the desired pH level, the addition of an acid may nonetheless achieve these other benefits. 12 The preferred mild acid is gluconic acid, present in an amount of approximately 0.01% to about 1.0% active in the formula, most preferably about 0.07%. Another suitable mild acid is lactic acid. While stronger, inorganic acids may also be used with the present invention, there is a risk of making the stain removing solution too acidic 5 when adding strong acids. Furthermore, any alternative acid should preferably impart the same benefits of increased stability to the stain removing solution, as gluconic and lactic acid. Gluconic acid is available from PMP Fermentation, of Peoria, Illinois. Finally, a preservative may also be added, depending on the final pH of the product. A preservative works to prevent the growth of bacteria or fungi in the stain 10 removing solution, and is not believed to have any role in removing a stain. The preferred preservative is Kathon CG/ICP, which itself comprises two chemicals having the formulas 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one. Kathon is a trademark of The Dow Chemical Company, of Midland, Michigan. The preservative is present in an amount of approximately 0.001% to about 0.021%, most 15 preferably about 0.015%. The following example is given to illustrate the stain removing solution of the present invention, but is not intended to limit the invention to the example included herewith. The following example specifically illustrates an exemplary and preferred formulation of the stain removing solution according to the present invention. It is to be !o understood that the examples are presented by means of illustration only and that further use of formulations that fall within the scope of the present invention and the claims herewith may be readily produced by one skilled in the art with the present disclosure before them. 25 PREPARATION OF THE CLEANING SOLUTION FORMULATION An example formulation illustrating an embodiment of the inventive stain removing solution of the present invention is described in detail in Table I below and was formulated generally in accordance with the following protocol. 13 EXAMPLE STAIN REMOVING SOLUTION FORMULATION I A stain removing solution according to the first embodiment of the present invention was prepared, by introducing appropriate amounts of the indicated 5 constituents, so as to attain the desired relative weight percentages indicated in Table 1 hereinafter, by first charging deionized water into a tank equipped with a mixer. Lauramine oxide, in the form of Mackamine LO, was then added to the tank from below the surface of the liquid in the tank to minimize foaming, and mixed about 30 minutes until the solution was homogenous and clear. Tomadol 900 was then added in the 10 same manner, and mixed until the solution was clear. The solvent, Rhodiasolv IRIS, was added after the Mackamine LO and Tomadol 900, and then mixed until the solution was homogenous. The preservative was then added, and mixed in with the solution for fifteen minutes. Next, 50% of the expected amount of gluconic acid was added to the tank, and mixed for 30 minutes. The remaining gluconic acid was added in smaller 15 amounts, and then mixed for 30 minutes, after checking the pH of the solution to make sure the desired pH level is reached. Additional deionized water may be added in place of gluconic acid if the desired pH level is achieved, to avoid the solution from becoming too acidic. Inasmuch as various ones of the raw material components of the stain removing !0 solution are purchased in a form that is at least partially diluted with water, Table 1 provides the percentage of each component which is active in the raw material, the percentage of each particular component (active material and' any water in the raw material solution) in the formula and the percentage of each component in the active portion of the formula. 25 14 TABLE I Stain Removing Solution Formulation 1 5 Ingredient Name % Active in % in Formula % Active in Formula Raw Material Deionized Water 82.114 N/A Mackamine LO 30 6.750 2.025 (Rhodia) Tomadol 900 (Air 100 6.180 6.180 Products) Rhodiasolv IRIS 100 4.750 4.750 (Rhodia) Kathon CG/ICP (Dow) 21 0,070 0.015 Gluconic Acid (PMP 50 0.136 0.068 Fermentation) TESTING OF EXAMPLE CLEANING SOLUTION FORMULATION The stain removing solution of the present invention was evaluated for stain lo removing performance, in comparison to two commercially available reference solutions that are currently marketed as stain removers. Stain Removing Solution Formulation 1 (Solution Formulation 1) was subjected to testing by an independent laboratory to measure the formulation's ability to remove various stains, according to several standardized test methods, as detailed in Table 2. 15 15 TABLE 2 Comparison Testing of Stain Removing Solution Formulation I 5 Stain Method Solution Reference Reference Formulation Solution A Solution B 1 red nail enamel/ Mod. ASTM 0.74% 7.48% 6.72% white oak with two D4488-5 coats of gloss black Bic ink Latex CSPA 2.14% 0.82% 7.70% painted Masonite DCC-17 wallboard dark blue crayon/ CSPA 14.47% 10.86% 10.22% Latex painted DCC-17 Masonite wallboard black Sharpie Mod. ASTM 24.78% 94.88% 99.84% (permanent marker)/ D4488-5 white matte Formica red nail enamel/ CSPA 48.40% 33.09% 77.13% white matte Formica DCC-17 Valspar gloss black CSPA 95.66% 85.03% 94.49% paint/ concrete DCC-17 red Sharpie CSPA 97.38% 76.38% 97.72% (permanent marker)/ DCC-17 white vinyl tile red wine/ white wool CRI TM- 4.8/ 5.0 3.0/ 5.0 4.0/ 5.0 carpet 110 carpet spot cleaning red nail enamel/ silk CRI TM- 4.0/ 5.0 1.5/ 5.0 3.0/ 5.0 110 carpet spot cleaning As shown above, the Stain Removing Solution Formulation I was effective in removing the stains, often at levels either equivalent to, or even far surpassing, the 10 removals measured for the commercially available reference solutions. In particular, the stain removing solution unexpectedly proved to be much more effective in removing 16 stains from fabrics, including carpet and silk, than the reference solutions. In addition, Stain Removing Solution Formulation 1 has significant other benefits over the reference solutions, in that it may be stored or transported at lower temperatures without one of the active ingredients separating from the other components. Furthermore, the 5 reference solutions are not believed to meet all of the same environmental standards, and thus may not be available if consumers or regulatory bodies further limit such VOC emitting products. Finally, the Stain Removing Solution Formulation 1 of the present invention was found to be more effective in removing deep stains, and did not smear or "ring" any of the stains. 10 While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail, several preferred embodiments, with the understanding that the present disclosure should be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the embodiment so illustrated. 15 17
权利要求:
Claims (35) [1] 1. A stain removing solution comprising: - a surfactant selected from the group consisting of alcohol ethoxylates, alkyl sulfates, alkyl ether sulfates, alpha olefin sulfonates, alkyl phosphates, alkyl amidopropyl betaines, alkyl betaines, amphoacetates, amphoproprionates, 5 amphosulfonates, amine oxides, alkanolamides, sulfosuccinates, and sultaines; and - a solvent selected from the group consisting of dibasic esters. [2] 2. The stain removing solution of claim 1 wherein the solution further comprises at least one hydrotrope. [3] 3. The stain removing solution of claim 1 wherein the surfactant comprises about 3% to about 8% of the stain removing solution. [4] 4. The mold and mildew stain removing solution of claim 1 wherein the surfactant is a hydrotrope. [5] 5. The stain removing solution of claim I wherein the surfactant is selected from the group consisting of alcohol ethoxylates. [6] 6. The stain removing solution of claim 2 wherein the hydrotrope comprises about 1.5% to about 5% of the stain removing solution. [7] 7. The stain removing solution of claim 2 wherein the hydrotrope is selected from the group consisting of amine oxides. [8] 8. The stain removing solution of claim 2 wherein the hydrotrope is lauramine oxide. [9] 9. The stain removing solution of claim 1 wherein the solvent comprises about 1.5% to about 6.5% of the stain removing solution. 18 [10] 10. The stain removing solution of claim 1 wherein the solvent is dimethyl-2-methyl glutarate. [11] 11. The stain removing solution of claim 1 wherein the solution further comprises a diluent, in about 79% to about 94% of the stain removing solution. [12] 12. The stain removing solution of claim 1 wherein the solution further comprises a mild acid, added in a sufficient amount to lower the pH to about 5.8 to about 7.5. [13] 13. The stain removing solution of claim 11 wherein the mild acid is added in a sufficient amount to lower the pH to about 6.3 to about 6.9. [14] 14. The stain removing solution of claim 11 wherein the mild acid is selected from the group consisting of gluconic acid and lactic acid. [15] 15. The stain removing solution of claim 11 wherein the mild acid comprises about 0.01% to about 1 % of the stain removing solution. [16] 16. The stain removing solution of claim I wherein the solution further comprises a preservative. [17] 17. The stain removing solution of claim 16 wherein the preservative comprises about 0.001% to about 0.021% of the stain removing solution. [18] 18. A stain removing solution comprising: - a surfactant selected from the group consisting of alcohol ethoxylates, alkyl sulfates, alkyl ether sulfates, alpha olefin sulfonates, alkyl phosphates, alkyl amidopropyl betaines, alkyl betaines, amphoacetates, amphoproprionates, 5 amphosulfonates, amine oxides, alkanolamides, sulfosuccinates, and sultaines; and 19 - a solvent selected from the group consisting of glycol ethers; - wherein the pH of the stain removing solution is about 5.8 to about 9.5. [19] 19. The stain removing solution of claim 18 wherein the solution further comprises at least one hydrotrope. [20] 20. The stain removing solution of claim 18 wherein the surfactant comprises about 3% to about 8% of the stain removing solution. [21] 21. The mold and mildew stain removing solution of claim 18 wherein the surfactant is a hydrotrope. [22] 22. The stain removing solution of claim 18 wherein the surfactant is selected from the group consisting of alcohol ethoxylates. [23] 23. The stain removing solution of claim 18 wherein the hydrotrope comprises about 1.5% to about 5% of the stain removing solution. [24] 24. The stain removing solution of claim 18 wherein the hydrotrope is selected from the group consisting of amine oxides. [25] 25. The stain removing solution of claim 18 wherein the hydrotrope is lauramine oxide. [26] 26. The stain removing solution of claim 18 wherein the solvent comprises about 1.5% to about 6.5% of the stain removing solution. [27] 27. The stain removing solution of claim 18 wherein the solvent is dipropylene glycol n-butyl ether. 20 [28] 28. The stain removing solution of claim 18 wherein the solution further comprises a diluent, in about 79% to about 94% of the stain removing solution. [29] 29. The stain removing solution of claim 18 wherein the solution further comprises a mild acid, added in a sufficient amount to lower the pH to about 5.8 to about 8. [30] 30. The stain removing solution of claim 29 wherein the mild acid is selected from the group consisting of gluconic acid and lactic acid. [31] 31. The stain removing solution of claim 29 wherein the mild acid comprises about 0.01% to about 1% of the stain removing solution. [32] 32. The stain removing solution of claim 18 wherein the solution further comprises a preservative. [33] 33. The stain removing solution of claim 32 wherein the preservative comprises about 0.001% to about 0.021% of the stain removing solution. [34] 34. A stain removing solution consisting essentially of: a surfactant comprising an alcohol ethoxylate, in an amount of about 3% to about 8% of the stain removing solution; a hydrotrope comprising an amine oxide, in an amount of about 1.5% to about 5 5% of the stain removing solution; a solvent comprising a dibasic ester, in an amount of about 1.5% to about 6.5% of the stain removing solution; a diluent, in an amount of about 79% to about 94% of the stain removing solution; and 10 a mild acid, in an amount sufficient to lower the pH of the stain removing solution to about 6.3 to about 6.9. 21 [35] 35. The stain removing solution of claim 34 wherein the mild acid comprises gluconic acid. 22
类似技术:
公开号 | 公开日 | 专利标题 AU2017219104B2|2019-03-07|Mold and Mildew Stain Removing Solution US8394751B2|2013-03-12|Organic residue remover composition AU2019204092B2|2020-10-22|Stain removing solution US20150038389A1|2015-02-05|Aqueous cleaning compositions including an alkyl 3-hydroxybutyrate AU2011200071B2|2015-04-30|Hard surface cleaning composition for personal contact areas US6465411B2|2002-10-15|Pine oil cleaning composition GB2306499A|1997-05-07|Hard surface cleaning compositions US7592303B2|2009-09-22|Multi-purpose cleaning compositions and method US20210277330A1|2021-09-09|Neutral floor cleaner compositions WO2015134011A1|2015-09-11|Low-voc water-based cleaner for pen, ink, markers, paint US9683206B2|2017-06-20|Low-VOC water-based cleaner for pen, ink, markers, paint
同族专利:
公开号 | 公开日 US9873854B2|2018-01-23| CA2947800A1|2014-07-16| US10370619B2|2019-08-06| MX2013009792A|2014-07-16| US20180100122A1|2018-04-12| AU2017219102A1|2017-09-14| AU2017219102B2|2019-03-07| WO2014113052A1|2014-07-24| MX337734B|2016-03-16| AU2019204092A1|2019-07-11| AU2019204092B2|2020-10-22| US20140200173A1|2014-07-17| CA2816064C|2016-12-20| CA2816064A1|2014-07-16|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 GB1240469A|1967-08-08|1971-07-28|Atlas Preservative Company Ltd|Improvements in or relating to cleaning compositions| US3993575A|1975-05-27|1976-11-23|Fine Organics Inc.|Hard surface acid cleaner and brightener| US4294764B1|1979-12-26|1983-09-27||| US4690779A|1983-06-16|1987-09-01|The Clorox Company|Hard surface cleaning composition| US4689168A|1984-06-08|1987-08-25|The Drackett Company|Hard surface cleaning composition| US5139614A|1991-02-06|1992-08-18|American Cyanamid Company|Styrene/acrylic-type polymers for use as surface sizing agents| US5122568A|1991-02-06|1992-06-16|American Cyanamid Company|Styrene/acrylic type polymers for use as surface sizing agents| US5817615A|1992-02-07|1998-10-06|The Clorox Company|Reduced residue hard surface cleaner| US5384063A|1993-03-19|1995-01-24|The Procter & Gamble Company|Acidic liquid detergent compositions for bathrooms| AT187760T|1993-04-19|2000-01-15|Reckitt & Colman Inc|ALL-PURPOSE CLEANER COMPOSITION| US5362422A|1993-05-03|1994-11-08|The Procter & Gamble Company|Liquid hard surface detergent compositions containing amphoteric detergent surfactant and specific anionic surfactant| US5399280A|1993-07-22|1995-03-21|The Procter & Gamble Company|Acidic liquid detergent compositions for bathrooms| TW496895B|1993-10-14|2002-08-01|Kao Corp|A detergent composition for hard surface| US6277805B1|1993-11-22|2001-08-21|The Procter & Gamble Co.|Alkaline liquid hard-surface cleaning composition containing a quaternary ammonium disinfectant and selected dicarboxylate sequestrants| AU681774B2|1994-02-23|1997-09-04|Ecolab Inc.|Alkaline cleaners based on alcohol ethoxy carboxylates| US5468303A|1994-02-25|1995-11-21|Zt Corporation|Rust, corrosion, and scale remover| US5635462A|1994-07-08|1997-06-03|Gojo Industries, Inc.|Antimicrobial cleansing compositions| EP0733698B1|1994-08-10|2002-07-03|Kao Corporation|Detergent composition| EP0700917B1|1994-09-12|2002-05-08|Motorola, Inc.|Light emitting devices comprising organometallic complexes| US5691291A|1994-10-28|1997-11-25|The Procter & Gamble Company|Hard surface cleaning compositions comprising protonated amines and amine oxide surfactants| MX9703154A|1994-10-28|1998-02-28|Procter & Gamble|Hard surface cleaning compositions comprising protonated amines and amine oxide surfactants.| DE19504914C1|1995-02-15|1995-11-16|Goldwell Gmbh|Hair washing agent giving gloss and body, and easy combing| US5585341A|1995-02-27|1996-12-17|Buckeye International, Inc.|Cleaner/degreaser concentrate compositions| US6086634A|1995-06-05|2000-07-11|Custom Cleaner, Inc.|Dry-cleaning compositions containing polysulfonic acid| US6034181A|1995-08-25|2000-03-07|Cytec Technology Corp.|Paper or board treating composition of carboxylated surface size and polyacrylamide| US5902411A|1995-09-26|1999-05-11|Economics In Technology|Method for maintaining floors| US6048368A|1995-11-27|2000-04-11|The Proctor & Gamble Company|Cleaning method for textile fabrics| US5750483A|1995-12-06|1998-05-12|Basf Corporation|Non-phosphate machine dishwashing compositions containing polycarboxylate polymers and nonionic graft copolymers of vinyl acetate and polyalkylene oxide| US5990066A|1995-12-29|1999-11-23|The Procter & Gamble Company|Liquid hard surface cleaning compositions based on carboxylate-containing polymer and divalent counterion, and processes of using same| US5783537A|1996-03-05|1998-07-21|Kay Chemical Company|Enzymatic detergent composition and method for degrading and removing bacterial cellulose| US6740626B2|1996-04-02|2004-05-25|S.C. Johnson & Son, Inc.|Acidic cleaning formulation containing a surface modification agent and method of applying the same| US5929007A|1996-05-24|1999-07-27|Reckitt & Colman Inc.|Alkaline aqueous hard surface cleaning compositions| US5837664A|1996-07-16|1998-11-17|Black; Robert H.|Aqueous shower rinsing composition and a method for keeping showers clean| US6635562B2|1998-09-15|2003-10-21|Micron Technology, Inc.|Methods and solutions for cleaning polished aluminum-containing layers| KR100206716B1|1996-10-21|1999-07-01|윤종용|Nor type mask rom| CA2271292C|1996-11-13|2007-04-10|Ashland Inc.|Liquid metal cleaner for an aqueous system| DE19714369A1|1997-04-08|1998-10-15|Henkel Kgaa|Means for cleaning hard surfaces| DE69722768T2|1997-04-30|2004-05-19|The Procter & Gamble Company, Cincinnati|Acidic limestone removal compositions| US6268323B1|1997-05-05|2001-07-31|Arch Specialty Chemicals, Inc.|Non-corrosive stripping and cleaning composition| US6251845B1|1997-07-09|2001-06-26|The Procter & Gamble Company|Detergent compositions comprising an oxygenase enzyme and cofactor to remove body soils| DE69811786T2|1997-07-16|2003-10-23|Nippon Catalytic Chem Ind|Use of chelating compositions for cleaning| US6060439A|1997-09-29|2000-05-09|Kyzen Corporation|Cleaning compositions and methods for cleaning resin and polymeric materials used in manufacture| US5962388A|1997-11-26|1999-10-05|The Procter & Gamble Company|Acidic aqueous cleaning compositions| US5922672A|1997-12-10|1999-07-13|Colgate-Palmolive Co|Cleaning compositions comprising an amine oxide and acetic acid| CA2330279C|1998-05-22|2003-06-10|The Procter & Gamble Company|Acidic cleaning compositions with c10 alkyl sulfate detergent surfactant| US6017872A|1998-06-08|2000-01-25|Ecolab Inc.|Compositions and process for cleaning and finishing hard surfaces| CA2276165A1|1998-06-30|1999-12-30|Bernardus M. Tangelder|Cleaning composition for removing mildew, soap scum and hard water scale| US6627586B1|1998-07-08|2003-09-30|The Procter & Gamble Company|Cleansing compositions| GB2340501B|1998-08-11|2002-07-03|Reckitt & Colman Inc|Improvements in or relating to organic compositions| JP2000154399A|1998-09-18|2000-06-06|Hitachi Techno Eng Co Ltd|Glycol-based solvent for washing| AU1109699A|1998-10-22|2000-05-08|Custom Cleaner, Inc.|Dry-cleaning compositions containing polysulfonic acid| DE19856727A1|1998-12-09|2000-06-15|Cognis Deutschland Gmbh|All-purpose cleaner| AU2495400A|1999-01-11|2000-08-01|Huntsman Petrochemical Corporation|Surfactant compositions containing alkoxylated amines| US5998358A|1999-03-23|1999-12-07|Ecolab Inc.|Antimicrobial acid cleaner for use on organic or food soil| US6399563B1|1999-03-24|2002-06-04|Colgate-Palmolive Co.|All purpose liquid cleaning compositions| US6436445B1|1999-03-26|2002-08-20|Ecolab Inc.|Antimicrobial and antiviral compositions containing an oxidizing species| US6107261A|1999-06-23|2000-08-22|The Dial Corporation|Compositions containing a high percent saturation concentration of antibacterial agent| US6425959B1|1999-06-24|2002-07-30|Ecolab Inc.|Detergent compositions for the removal of complex organic or greasy soils| US6699828B1|1999-06-28|2004-03-02|The Procter & Gamble Company|Aqueous liquid detergent compositions comprising an effervescent system| US6814088B2|1999-09-27|2004-11-09|The Procter & Gamble Company|Aqueous compositions for treating a surface| US6432395B1|1999-11-04|2002-08-13|Cogent Environmental Solutions Ltd.|Cleaning composition containing naturally-derived components| US6436885B2|2000-01-20|2002-08-20|The Procter & Gamble Company|Antimicrobial cleansing compositions containing 2-pyrrolidone-5-carboxylic acid| GB0002229D0|2000-02-01|2000-03-22|Reckitt & Colman Inc|Improvements in or relating to organic compositions| US6346508B1|2000-02-11|2002-02-12|Colgate-Palmolive Company|Acidic all purpose liquid cleaning compositions| US6281182B1|2000-04-06|2001-08-28|Colgate-Palmolive Co.|Acidic cleaning composition comprising a glycol ether mixture| US6387871B2|2000-04-14|2002-05-14|Alticor Inc.|Hard surface cleaner containing an alkyl polyglycoside| DE60114174T2|2000-04-28|2006-07-20|Ecolab Inc., St. Paul|ANTIMICROBIAL COMPOSITION| US6384010B1|2000-06-15|2002-05-07|S.C. Johnson & Son, Inc.|All purpose cleaner with low organic solvent content| US6306805B1|2000-09-15|2001-10-23|Stepan Company|Shampoo and body wash composition comprising ternary surfactant blends of cationic, anionic, and bridging surfactants and methods of preparing same| US20030100465A1|2000-12-14|2003-05-29|The Clorox Company, A Delaware Corporation|Cleaning composition| GB2370042A|2000-12-15|2002-06-19|Reckitt Benckiser Inc|Hard surface cleaning compositions| US6699825B2|2001-01-12|2004-03-02|S.C. Johnson & Son, Inc.|Acidic hard-surface antimicrobial cleaner| US6867174B2|2001-04-16|2005-03-15|Bissell Homecare, Inc.|Non-foaming cleaning compositions and a method for their use| US6605584B2|2001-05-04|2003-08-12|The Clorox Company|Antimicrobial hard surface cleaner comprising an ethoxylated quaternary ammonium surfactant| EP1266600A1|2001-06-13|2002-12-18|The Procter & Gamble Company|Printed wet wipes| US6429183B1|2001-07-12|2002-08-06|Colgate-Palmolive Company|Antibacterial cleaning wipe comprising betaine| US6429182B1|2001-07-12|2002-08-06|Colgate-Palmolive Company|Antibacterial cleaning wipe comprising betaine| US6436892B1|2001-07-12|2002-08-20|Colgate-Palmolive Company|Cleaning wipe comprising 2 bromo-2 nitropropane-1,3 diol| US6794346B2|2001-10-26|2004-09-21|S.C. Johnson & Son, Inc.|Hard surface cleaners containing chitosan and furanone| US6926745B2|2002-05-17|2005-08-09|The Clorox Company|Hydroscopic polymer gel films for easier cleaning| US20030216281A1|2002-05-17|2003-11-20|The Clorox Company|Hard surface cleaning composition| US7098181B2|2002-05-22|2006-08-29|Kao Corporation|Liquid detergent composition| US20030224958A1|2002-05-29|2003-12-04|Andreas Michael T.|Solutions for cleaning polished aluminum-containing layers| US7622606B2|2003-01-17|2009-11-24|Ecolab Inc.|Peroxycarboxylic acid compositions with reduced odor| US6905276B2|2003-04-09|2005-06-14|The Clorox Company|Method and device for delivery and confinement of surface cleaning composition| US6821939B1|2003-10-10|2004-11-23|Colgate-Palmolive Company|Acidic light duty liquid cleaning compositions comprising a sultaine| US7094742B2|2004-04-23|2006-08-22|Jelmar, Llc|Hard surface cleaning compositions containing a sultaine and a mixture of organic acids| US7144846B2|2004-05-11|2006-12-05|Steris, Inc.|Acidic phenolic disinfectant compositions| US20050282722A1|2004-06-16|2005-12-22|Mcreynolds Kent B|Two part cleaning composition| US7776813B2|2004-09-15|2010-08-17|The Procter & Gamble Company|Fabric care compositions comprising polyol based fabric care materials and deposition agents| DE102005014033A1|2005-03-23|2006-09-28|Basf Ag|surface treatment| EP1945850B1|2005-09-23|2013-11-20|DC Chemical Co., Ltd.|Non-aqueous liquid oxygen bleach composition| CN101473025B|2006-05-31|2011-06-15|宝洁公司|Cleaning compositions with amphiphilic graft polymers based on polyalkylene oxides and vinyl esters| AU2007280279B2|2006-07-31|2013-04-04|Reckitt Benckiser Limited|Improved hard surface cleaning compositions| US7468345B2|2006-09-29|2008-12-23|Eco Holdings, Llc|Graffiti cleaning solution including a non-aqueous concentrate and diluted aqueous solution| US7517842B2|2006-11-10|2009-04-14|Gojo Industries, Inc.|Antimicrobial wash formulations including amidoamine-based cationic surfactants| US7893014B2|2006-12-21|2011-02-22|Gregory Van Buskirk|Fabric treatment for stain release| US7597766B2|2007-08-03|2009-10-06|American Sterilizer Company|Biodegradable detergent concentrate for medical instruments and equipment| US8569221B2|2007-08-30|2013-10-29|Kimberly-Clark Worldwide, Inc.|Stain-discharging and removing system| US8268334B2|2007-11-07|2012-09-18|Reckitt Benckiser Llc|Aqueous acidic hard surface cleaning and disinfecting compositions| US8871807B2|2008-03-28|2014-10-28|Ecolab Usa Inc.|Detergents capable of cleaning, bleaching, sanitizing and/or disinfecting textiles including sulfoperoxycarboxylic acids| US8222194B2|2008-05-09|2012-07-17|Rhodia Operations|Cleaning compositions incorporating green solvents and methods for use| EP2285946B1|2008-05-09|2017-06-21|Rhodia Opérations|Cleaning compositions incorporating green solvents and methods for use| CN102076838B|2008-06-30|2013-03-27|巴斯夫欧洲公司|Amphoteric polymer for treating hard surfaces| US8722610B2|2009-10-19|2014-05-13|Rhodia Operations|Auto-emulsifying cleaning systems and methods for use| US7951766B1|2010-02-12|2011-05-31|Galata Chemicals, Llc|Bio-based solvents and methods for using same| GB201016001D0|2010-09-23|2010-11-10|Innospec Ltd|Composition and method| US8575084B2|2010-11-12|2013-11-05|Jelmar, Llc|Hard surface cleaning composition for personal contact areas| US8569220B2|2010-11-12|2013-10-29|Jelmar, Llc|Hard surface cleaning composition| EP2643447A4|2010-11-22|2015-08-12|Rhodia Operations|Dilutable cleaning compositions and methods for use|EP3170884A1|2015-11-20|2017-05-24|The Procter and Gamble Company|Alcohols in liquid cleaning compositions to remove stains from surfaces| US10829723B2|2018-06-29|2020-11-10|Henkel IP & Holding GmbH|Devices for removing oxidizable stains and methods for the same|
法律状态:
2017-09-21| MK5| Application lapsed section 142(2)(e) - patent request and compl. specification not accepted|
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 US13/694,897|US9873854B2|2013-01-16|2013-01-16|Stain removing solution| US13/694,897||2013-01-16||AU2017219102A| AU2017219102B2|2013-01-16|2017-08-25|Stain Removing Solution| AU2019204092A| AU2019204092B2|2013-01-16|2019-06-07|Stain removing solution| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|