![]() Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and s
专利摘要:
HAND HELD SURGICAL HANDLE ASSEMBLY, SURGICAL ADAPTERS FOR USE BETWEEN SURGICAL HANDLE ASSEMBLY AND SURGICAL END EFFECTORS, AND METHODS OF USE Abstract The present disclosure relates to a surgical device (100) including an adapter assembly (200) for selectively interconnecting an end effector (300) and the device housing. The adapter assembly (200) includes at least one drive converter assembly (240, 250) that converts and transmits a rotation of the rotatable drive shaft (122) to an axial translation of at least one axially translatable drive member (360) of the end effector (300). A first drive converter assembly (240) includes a first drive element (242), a nut (244), an articulation sleeve (206), an articulation bearing, and an articulation link. Rotation of the rotatable drive shaft (122) results in rotation of the first drive element (242). Rotation of the first drive element (242) results in axial translation of the nut (244), the articulation sleeve (206), the articulation bearing, the articulation link, and the at least one axially translatable drive member (360) of the end effector (300). CoD CCo -0-4 aL !; 公开号:AU2013205875A1 申请号:U2013205875 申请日:2013-05-16 公开日:2013-12-19 发明作者:John Beardsley;David Nicholas;Russell Pribanic;Michael Zemlok 申请人:Covidien LP; IPC主号:A61B17-00
专利说明:
1 HAND HELD SURGICAL HANDLE ASSEMBLY, SURGICAL ADAPTERS FOR USE BETWEEN SURGICAL HANDLE ASSEMBLY AND SURGICAL END EFFECTORS, AND METHODS OF USE Cross Reference to Related Applications [0001] The present application claims the benefit of and priority to U.S. Provisional Application Serial No. 61/654,191, filed on June 1, 2012 and U.S. Patent Application No. 13/875,571, filed on May 2, 2013, the entire contents of which are incorporated herein by reference. Field [0002] The present disclosure relates to surgical devices and/or systems, surgical adapters and their methods of use. More specifically, the present disclosure relates to hand held powered surgical devices, surgical adapters and/or adapter assemblies for use between and for interconnecting the powered, rotating and/or articulating surgical device or handle assembly and an end effector for clamping, cutting and/or stapling tissue. Background [0003] One type of surgical device is a linear clamping, cutting and stapling device. Such a device may be employed in a surgical procedure to resect a cancerous or anomalous tissue from a gastro-intestinal tract. Conventional linear clamping, cutting and stapling instruments include a pistol grip-styled structure having an elongated shaft and distal portion. The distal portion includes a pair of scissors-styled gripping elements, which clamp the open ends of the colon closed. In this device, one of the two scissors-styled gripping elements, such as the anvil portion, moves or pivots relative to the overall structure, whereas the other gripping element remains fixed relative to the overall structure. The actuation of this scissoring device (the pivoting of the anvil portion) is controlled by a grip trigger maintained in the handle. [0004] In addition to the scissoring device, the distal portion also includes a stapling mechanism. The fixed gripping element of the scissoring mechanism includes a staple cartridge receiving region and a mechanism for driving the staples up through the clamped end of the tissue against the anvil portion, thereby sealing the previously opened end. The scissoring 2 elements may be integrally formed with the shaft or may be detachable such that various scissoring and stapling elements may be interchangeable. [0005] A number of surgical device manufacturers have developed product lines with proprietary drive systems for operating and/or manipulating the surgical device. In many instances the surgical devices include a handle assembly, which is reusable, and a disposable end effector or the like that is selectively connected to the handle assembly prior to use and then disconnected from the end effector following use in order to be disposed of or in some instances sterilized for re-use. [0006] Many of the existing end effectors for use with many of the existing surgical devices and/or handle assemblies are driven by a linear force. For examples, end effectors for performing endo-gastrointestinal anastomosis procedures, end-to-end anastomosis procedures and transverse anastomosis procedures, each typically require a linear driving force in order to be operated. As such, these end effectors are not compatible with surgical devices and/or handle assemblies that use a rotary motion to deliver power or the like. [0007] In order to make the linear driven end effectors compatible with surgical devices and/or handle assemblies that use a rotary motion to deliver power, a need exists for adapters and/or adapter assemblies to interface between and interconnect the linear driven end effectors with the rotary driven surgical devices and/or handle assemblies. Object [0008] It is the object of the present invention to substantially overcome or ameliorate one or more of the disadvantages of the prior art, or at least provide a useful alternative. Summary of Invention [0009] The present disclosure relates to a surgical device comprising a device housing, at last one drive motor, a battery, a circuit board, an end effector, and an adapter assembly. The device housing defines a connecting portion for selectively connecting with the adapter assembly. The at least one drive motor is supported in the device housing and is configured to rotate at least one drive shaft. The battery is disposed in electrical communication with the at least one drive motor. The circuit board is disposed within the housing for controlling power delivered from the 3 battery to the at least one drive motor. The end effector is configured to perform at least one function and includes at least one axially translatable drive member. The adapter assembly is for selectively interconnecting the end effector and the device housing, and includes a knob housing, and at least one drive converter assembly. The knob housing is configured and adapted for selective connection to the device housing and to be in operative communication with each of the at least one rotatable drive shaft. The at least one drive converter assembly is for interconnecting a respective one of the at least one rotatable drive shaft and one of the at least one axially translatable drive member of the end effector. The at least one drive converter assembly converts and transmits a rotation of the rotatable drive shaft to an axial translation of the at least one axially translatable drive member of the end effector. The at least one drive converter assembly includes a first drive converter assembly including a first drive element, a nut, an articulation sleeve, an articulation bearing, and an articulation link. The first drive element is rotatably supported in the knob housing. A proximal end of the first drive element is engagable with the rotatable drive shaft. The nut is threadably connected to a threaded distal portion of the first drive element. A proximal portion of the articulation sleeve is disposed in mechanical cooperation with the nut. The articulation bearing is disposed in mechanical cooperation with a distal portion of the articulation sleeve. A proximal portion of the articulation link is disposed in mechanical cooperation with the articulation bearing. A distal portion of the articulation link is configured for selective engagement with the at least one axially translatable drive member of the end effector. Rotation of the rotatable drive shaft results in rotation of the first drive element. Rotation of the first drive element results in axial translation of the nut, the articulation sleeve, the articulation bearing, the articulation link, and the at least one axially translatable drive member of the end effector. [0010] In disclosed embodiments, the articulation bearing is configured for axial and rotatable movement with respect to the knob housing. [0011] In disclosed embodiments, the distal portion of the articulation sleeve is disposed in mechanically cooperation with a radially inner portion of the articulation bearing. Here, it is disclosed that the proximal portion of the articulation link is disposed in mechanical cooperation with a radially outer portion of the articulation bearing. [0012] In disclosed embodiments, a second drive converter assembly is included and comprises a second drive element, a first gear, a second gear, and a gear ring. The second drive element is 4 rotatably supported in the knob housing. A proximal end of the second drive element is connectable to a second rotatable drive shaft of the surgical device. The first gear is disposed in mechanical cooperation with a distal portion of the second drive element. The second gear is disposed in mechanical cooperation with the first gear. The gear ring is disposed in mechanical cooperation with the second gear and is disposed in mechanical cooperation with the end effector. The gear ring is fixed from rotation with respect to the knob housing. Rotation of the second rotatable drive shaft causes rotation of the first gear, rotation of the first gear causes rotation of the second gear, rotation of the second gear causes rotation of the gear ring, and rotation of the gear ring causes rotation of the end effector. Here, it is disclosed that the knob housing includes a drive coupling housing, which is rotatable with respect to the remainder of the knob housing. Here, it is disclosed that a rotation bearing is included, and the drive coupling housing is rotationally fixed to the rotation bearing. The knob housing is rotatable with respect to the rotation bearing. Here, it is disclosed that the gear ring includes a plurality of teeth disposed around an inner periphery thereof. [0013] In disclosed embodiments, a distal portion of the articulation link includes a slot therein configured to releasably accept a portion of the at least one axially translatable drive member of the end effector. Here, it is disclosed that the slot includes a tapered opening. [0014] The present disclosure also relates to an adapter assembly for selectively interconnecting a surgical end effector and a handle assembly having at least one rotatable drive shaft. The adapter assembly comprises a knob housing, ant at least one drive converter assembly. The knob housing is configured and adapted for selective connection to a handle assembly. The knob housing includes a drive coupling housing. The at least one drive converter assembly is for interconnecting a respective one of the at least one rotatable drive shaft and a portion of a surgical end effector. The at least one drive converter assembly converts and transmits a rotation of the rotatable drive shaft to an axial translation of the at least one axially translatable drive member of the end effector. The at least one drive converter assembly includes a first drive converter assembly including a drive element, a first gear, a second gear, a gear ring and a rotation bearing. The drive element is rotatably supported in the adapter housing. The first gear is disposed in mechanical cooperation with a distal portion of the drive element. The second gear is disposed in mechanical cooperation with the first gear. The gear ring is disposed in mechanical cooperation with the second gear and is disposed in mechanical cooperation with an end effector-engaging portion of the adapter assembly. The gear ring is fixed from rotation with 5 respect to the adapter housing. The drive coupling housing is rotationally fixed to the rotation bearing, and the knob housing is rotatable with respect to the rotation bearing. Rotation of the drive element causes rotation of the first gear; rotation of the first gear causes rotation of the second gear; rotation of the second gear causes rotation of the gear ring; and rotation of the gear ring causes rotation of the end effector-engaging portion of the adapter assembly. [0015] In disclosed embodiments, the gear ring includes a plurality of teeth disposed around an inner periphery thereof. [0016] In disclosed embodiments, the drive coupling housing is rotatable with respect to the remainder of the knob housing. [0017] In disclosed embodiments, a second drive converter assembly is included and comprises a second drive element, a nut, an articulation sleeve, and an articulation link. The second drive element is rotatably supported in the knob housing. The nut is threadably connected to a threaded distal portion of the second drive element. A proximal portion of the articulation sleeve is disposed in mechanical cooperation with the nut. The articulation bearing is disposed in mechanical cooperation with a distal portion of the articulation sleeve. A proximal portion of the articulation link is disposed in mechanical cooperation with the articulation bearing. A distal portion of the articulation link is configured for selective engagement with a portion of an end effector. Rotation of the second drive element results in axial translation of the nut, the articulation sleeve, the articulation bearing and the articulation link. Here, it is disclosed that the articulation bearing is configured for axial and rotatable movement with respect to the knob housing. Here, it is disclosed that distal portion of the articulation sleeve is disposed in mechanically cooperation with a radially inner portion of the articulation bearing. Here, it is disclosed that the proximal portion of the articulation link is disposed in mechanical cooperation with a radially outer portion of the articulation bearing. Brief Description of Drawings [0018] Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein: 6 [0019] FIG. 1 is a perspective view, with parts separated, of a surgical device and adapter, in accordance with an embodiment of the present disclosure, illustrating a connection thereof with an end effector; [0020] FIG. 2 is a perspective view of the surgical device of FIG. 1; [0021] FIG. 3 is a perspective view, with parts separated, of the surgical device of FIGS. 1 and 2; [0022] FIG. 4 is a perspective view of a battery for use in the surgical device of FIGS. 1-3; [0023] FIG. 5 is a perspective view of the surgical device of FIGS. 1-3, with a housing thereof removed; [0024] FIG. 6 is a perspective view of the connecting ends of each of the surgical device and the adapter, illustrating a connection therebetween; [0025] FIG. 7 is a cross-sectional view of the surgical device of FIGS. 1-3, as taken through 7-7 of FIG. 2; [0026] FIG. 8 is a cross-sectional view of the surgical device of FIGS. 1-3, as taken through 8-8 of FIG. 2; [0027] FIG. 9 is a perspective view, with parts separated, of a trigger housing of the surgical device of FIGS. 1-3; [0028] FIG. 10 is a perspective view of the adapter of FIG. 1; [0029] FIG. 11 is a cross-sectional view of the adapter of FIGS. 1 and 10, as taken through 11 11 of FIG. 10; [0030] FIG. 12 is an enlarged view of the indicated area of detail of FIG. 11; [0031] FIG. 13 is an enlarged view of the indicated area of detail of FIG. 11; 7 [0032] FIG. 14 is a perspective view, with some parts omitted, of the adapter and a portion of a loading unit; [0033] FIG. 15 is an enlarged view of the indicated area of detail of FIG. 14; [0034] FIG. 16 is an enlarged view of the indicated area of detail of FIG. 14; [0035] FIG. 17 is a perspective view of the distal end of the adapter engaged with a loading unit; [0036] FIGS. 18 and 19 are perspective views of portions of the adapter with parts omitted; [0037] FIG. 20. is a cross-sectional view of the adapter of FIGS. 1 and 10, as taken through 20 20 of FIG. 10; [0038] FIG. 21 is an enlarged view of the indicated area of detail of FIG. 20; [0039] FIG. 22 is an enlarged view of the indicated area of detail of FIG. 20; [0040] FIG. 23 is a perspective view of a distal portion of the adapter; [0041] FIG. 24 is a cut-away perspective view looking distally at the distal portion of the adapter as shown in FIG. 23; [0042] FIG. 25 is a perspective view of a portion of the adapter with parts omitted; [0043] FIG. 26 is a perspective view, with parts separated, of an exemplary end effector for use with the surgical device and the adapter of the present disclosure; and [0044] FIG. 27 is a schematic illustration of the outputs to the LEDs; selection of motor (to select clamping/cutting, rotation or articulation); and selection of the drive motors to perform a function selected. 8 Description of Embodiments [0045] Embodiments of the presently disclosed surgical devices, and adapter assemblies for surgical devices and/or handle assemblies are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term "distal" refers to that portion of the adapter assembly or surgical device, or component thereof, farther from the user, while the term "proximal" refers to that portion of the adapter assembly or surgical device, or component thereof, closer to the user. [0046] A surgical device, in accordance with an embodiment of the present disclosure, is generally designated as 100, and is in the form of a powered hand held electromechanical instrument configured for selective attachment thereto of a plurality of different end effectors that are each configured for actuation and manipulation by the powered hand held electromechanical surgical instrument. [0047] As illustrated in FIG. 1, surgical device 100 is configured for selective connection with an adapter 200, and, in turn, adapter 200 is configured for selective connection with an end effector or single use loading unit 300. [0048] As illustrated in FIGS. 1-3, surgical device 100 includes a handle housing 102 having a lower housing portion 104, an intermediate housing portion 106 extending from and/or supported on lower housing portion 104, and an upper housing portion 108 extending from and/or supported on intermediate housing portion 106. Intermediate housing portion 106 and upper housing portion 108 are separated into a distal half-section 1 10a that is integrally formed with and extending from the lower portion 104, and a proximal half-section 1 10b connectable to distal half-section 1 10a by a plurality of fasteners. When joined, distal and proximal half sections 1 10a, 1 10b define a handle housing 102 having a cavity 102a therein in which a circuit board 150 and a drive mechanism 160 is situated. [0049] Distal and proximal half-sections 1 10a, 1 10b are divided along a plane that traverses a longitudinal axis "X" of upper housing portion 108, as seen in FIG. 3. [0050] Handle housing 102 includes a gasket 112 extending completely around a rim of distal half-section and/or proximal half-section 1 10a, 1 10b and being interposed between distal half section 1 10a and proximal half-section 1 10b. Gasket 112 seals the perimeter of distal half- 9 section 110a and proximal half-section 110b. Gasket 112 functions to establish an air-tight seal between distal half-section 1 10a and proximal half-section 1 10b such that circuit board 150 and drive mechanism 160 are protected from sterilization and/or cleaning procedures. [0051] In this manner, the cavity 102a of handle housing 102 is sealed along the perimeter of distal half-section 1 10a and proximal half-section 1 10b yet is configured to enable easier, more efficient assembly of circuit board 150 and a drive mechanism 160 in handle housing 102. [0052] Intermediate housing portion 106 of handle housing 102 provides a housing in which circuit board 150 is situated. Circuit board 150 is configured to control the various operations of surgical device 100, as will be set forth in additional detail below. [0053] Lower housing portion 104 of surgical device 100 defines an aperture (not shown) formed in an upper surface thereof and which is located beneath or within intermediate housing portion 106. The aperture of lower housing portion 104 provides a passage through which wires 152 pass to electrically interconnect electrical components (a battery 156, as illustrated in FIG. 4, a circuit board 154, as illustrated in FIG. 3, etc.) situated in lower housing portion 104 with electrical components (circuit board 150, drive mechanism 160, etc.) situated in intermediate housing portion 106 and/or upper housing portion 108. [0054] Handle housing 102 includes a gasket 103 disposed within the aperture of lower housing portion 104 (not shown) thereby plugging or sealing the aperture of lower housing portion 104 while allowing wires 152 to pass therethrough. Gasket 103 functions to establish an air-tight seal between lower housing portion 106 and intermediate housing portion 108 such that circuit board 150 and drive mechanism 160 are protected from sterilization and/or cleaning procedures. [0055] As shown, lower housing portion 104 of handle housing 102 provides a housing in which a rechargeable battery 156, is removably situated. Battery 156 is configured to supply power to any of the electrical components of surgical device 100. Lower housing portion 104 defines a cavity (not shown) into which battery 156 is inserted. Lower housing portion 104 includes a door 105 pivotally connected thereto for closing cavity of lower housing portion 104 and retaining battery 156 therein. [0056] With reference to FIGS. 3 and 5, distal half-section 1 10a of upper housing portion 108 defines a nose or connecting portion 108a. A nose cone 114 is supported on nose portion 108a 10 of upper housing portion 108. Nose cone 114 is fabricated from a transparent material. An illumination member 116 is disposed within nose cone 114 such that illumination member 116 is visible therethrough. Illumination member 116 is in the form of a light emitting diode printed circuit board (LED PCB). Illumination member 116 is configured to illuminate multiple colors with a specific color pattern being associated with a unique discrete event. [0057] Upper housing portion 108 of handle housing 102 provides a housing in which drive mechanism 160 is situated. As illustrated in FIG. 5, drive mechanism 160 is configured to drive shafts and/or gear components in order to perform the various operations of surgical device 100. In particular, drive mechanism 160 is configured to drive shafts and/or gear components in order to selectively move tool assembly 304 of end effector 300 (see FIGS. 1 and 20) relative to proximal body portion 302 of end effector 300, to rotate end effector 300 about a longitudinal axis "X" (see FIG. 3) relative to handle housing 102, to move anvil assembly 306 relative to cartridge assembly 308 of end effector 300, and/or to fire a stapling and cutting cartridge within cartridge assembly 308 of end effector 300. [0058] The drive mechanism 160 includes a selector gearbox assembly 162 that is located immediately proximal relative to adapter 200. Proximal to the selector gearbox assembly 162 is a function selection module 163 having a first motor 164 that functions to selectively move gear elements within the selector gearbox assembly 162 into engagement with an input drive component 165 having a second motor 166. [0059] As illustrated in FIGS. 1-4, and as mentioned above, distal half-section 1 10a of upper housing portion 108 defines a connecting portion 108a configured to accept a corresponding drive coupling assembly 210 of adapter 200. [0060] As illustrated in FIGS. 6-8, connecting portion 108a of surgical device 100 has a cylindrical recess 108b that receives a drive coupling assembly 210 of adapter 200 when adapter 200 is mated to surgical device 100. Connecting portion 108a houses three rotatable drive connectors 118, 120, 122. [0061] When adapter 200 is mated to surgical device 100, each of rotatable drive connectors 118, 120, 122 of surgical device 100 couples with a corresponding rotatable connector sleeve 218, 220, 222 of adapter 200. (see FIG. 6). In this regard, the interface between corresponding first drive connector 118 and first connector sleeve 218, the interface between corresponding 11 second drive connector 120 and second connector sleeve 220, and the interface between corresponding third drive connector 122 and third connector sleeve 222 are keyed such that rotation of each of drive connectors 118, 120, 122 of surgical device 100 causes a corresponding rotation of the corresponding connector sleeve 218, 220, 222 of adapter 200. [0062] The mating of drive connectors 118, 120, 122 of surgical device 100 with connector sleeves 218, 220, 222 of adapter 200 allows rotational forces to be independently transmitted via each of the three respective connector interfaces. The drive connectors 118, 120, 122 of surgical device 100 are configured to be independently rotated by drive mechanism 160. In this regard, the function selection module 163 of drive mechanism 160 selects which drive connector or connectors 118, 120, 122 of surgical device 100 is to be driven by the input drive component 165 of drive mechanism 160. [0063] Since each of drive connectors 118, 120, 122 of surgical device 100 has a keyed and/or substantially non-rotatable interface with respective connector sleeves 218, 220, 222 of adapter 200, when adapter 200 is coupled to surgical device 100, rotational force(s) are selectively transferred from drive mechanism 160 of surgical device 100 to adapter 200. [0064] The selective rotation of drive connector(s) 118, 120 and/or 122 of surgical device 100 allows surgical device 100 to selectively actuate different functions of end effector 300. As will be discussed in greater detail below, selective and independent rotation of first drive connector 118 of surgical device 100 corresponds to the selective and independent opening and closing of tool assembly 304 of end effector 300, and driving of a stapling/cutting component of tool assembly 304 of end effector 300. Also, the selective and independent rotation of second drive connector 120 of surgical device 100 corresponds to the selective and independent articulation of tool assembly 304 of end effector 300 transverse to longitudinal axis "X" (see FIG. 3). Additionally, the selective and independent rotation of third drive connector 122 of surgical device 100 corresponds to the selective and independent rotation of end effector 300 about longitudinal axis "X" (see FIG. 3) relative to handle housing 102 of surgical device 100. [0065] As mentioned above and as illustrated in FIGS. 5 and 8, drive mechanism 160 includes a selector gearbox assembly 162; a function selection module 163, located proximal to the selector gearbox assembly 162, that functions to selectively move gear elements within the selector gearbox assembly 162 into engagement with second motor 166. Thus, drive mechanism 12 160 selectively drives one of drive connectors 118, 120, 122 of surgical device 100 at a given time. [0066] As illustrated in FIGS. 1-3 and FIG. 9, handle housing 102 supports a trigger housing 107 on a distal surface or side of intermediate housing portion 108. Trigger housing 107, in cooperation with intermediate housing portion 108, supports a pair of finger-actuated control buttons 124, 126 and rocker devices 128, 130. In particular, trigger housing 107 defines an upper aperture 124a for slidably receiving a first control button 124, and a lower aperture 126b for slidably receiving a second control button 126. [0067] Each one of the control buttons 124, 126 and rocker devices 128, 130 includes a respective magnet (not shown) that is moved by the actuation of an operator. In addition, circuit board 150 includes, for each one of the control buttons 124, 126 and rocker devices 128, 130, respective Hall-effect switches 150a-150d that are actuated by the movement of the magnets in the control buttons 124, 126 and rocker devices 128, 130. In particular, located immediately proximal to the control button 124 is a first Hall-effect switch 150a (see FIGS. 3 and 7) that is actuated upon the movement of a magnet within the control button 124 upon the operator actuating control button 124. The actuation of first Hall-effect switch 150a, corresponding to control button 124, causes circuit board 150 to provide appropriate signals to function selection module 163 and input drive component 165 of the drive mechanism 160 to close a tool assembly 304 of end effector 300 and/or to fire a stapling/cutting cartridge within tool assembly 304 of end effector 300. [0068] Also, located immediately proximal to rocker device 128 is a second Hall-effect switch 150b (see FIGS. 3 and 7) that is actuated upon the movement of a magnet (not shown) within rocker device 128 upon the operator actuating rocker device 128. The actuation of second Hall effect switch 150b, corresponding to rocker device 128, causes circuit board 150 to provide appropriate signals to function selection module 163 and input drive component 165 of drive mechanism 160 to articulate tool assembly 304 relative to body portion 302 of end effector 300. Advantageously, movement of rocker device 128 in a first direction causes tool assembly 304 to articulate relative to body portion 302 in a first direction, while movement of rocker device 128 in an opposite, e.g., second, direction causes tool assembly 304 to articulate relative to body portion 302 in an opposite, e.g., second, direction. 13 [0069] Furthermore, located immediately proximal to control button 126 is a third Hall effect switch 150c (see FIGS. 3 and 7) that is actuated upon the movement of a magnet (not shown) within control button 126 upon the operator actuating control button 126. The actuation of third Hall-effect switch 150c, corresponding to control button 126, causes circuit board 150 to provide appropriate signals to function selection module 163 and input drive component 165 of drive mechanism 160 to open tool assembly 304 of end effector 300. [0070] In addition, located immediately proximal to rocker device 130 is a fourth Hall effect switch 150d (see FIGS. 3 and 7) that is actuated upon the movement of a magnet (not shown) within rocker device 130 upon the operator actuating rocker device 130. The actuation of fourth Hall-effect switch 150d, corresponding to rocker device 130, causes circuit board 150 to provide appropriate signals to function selection module 163 and input drive component 165 of drive mechanism 160 to rotate end effector 300 relative to handle housing 102 surgical device 100. Specifically, movement of rocker device 130 in a first direction causes end effector 300 to rotate relative to handle housing 102 in a first direction, while movement of rocker device 130 in an opposite, e.g., second, direction causes end effector 300 to rotate relative to handle housing 102 in an opposite, e.g., second, direction. [0071] As seen in FIGS. 1-3, surgical device 100 includes a fire button or safety switch 132 supported between intermediate housing portion 108 and upper housing portion, and situated above trigger housing 107. In use, tool assembly 304 of end effector 300 is actuated between opened and closed conditions as needed and/or desired. In order to fire end effector 300, to expel fasteners therefrom when tool assembly 304 of end effector 300 is in a closed condition, safety switch 132 is depressed thereby instructing surgical device 100 that end effector 300 is ready to expel fasteners therefrom. [0072] As illustrated in FIGS. 1 and 10-25, surgical device 100 is configured for selective connection with adapter 200, and, in turn, adapter 200 is configured for selective connection with end effector 300. [0073] Adapter 200 is configured to convert a rotation of either of drive connectors 120 and 122 of surgical device 100 into axial translation useful for operating a drive assembly 360 and an articulation link 366 of end effector 300, as illustrated in FIG. 26 and as will be discussed in greater detail below. 14 [0074] Adapter 200 includes a first drive transmitting/converting assembly for interconnecting third rotatable drive connector 122 of surgical device 100 and a first axially translatable drive member 360 of end effector 300, wherein the first drive transmitting/converting assembly converts and transmits a rotation of third rotatable drive connector 122 of surgical device 100 to an axial translation of the first axially translatable drive assembly 360 of end effector 300 for firing. [0075] Adapter 200 includes a second drive transmitting/converting assembly for interconnecting second rotatable drive connector 120 of surgical device 100 and a second axially translatable drive member 366 of end effector 300, wherein the second drive transmitting/converting assembly converts and transmits a rotation of second rotatable drive connector 120 of surgical device 100 to an axial translation of articulation link 366 of end effector 300 for articulation. [0076] Turning now to FIG. 10, adapter 200 includes a knob housing 202 and an outer tube 206 extending from a distal end of knob housing 202. Knob housing 202 and outer tube 206 are configured and dimensioned to house the components of adapter 200. Outer tube 206 is dimensioned for endoscopic insertion, in particular, that outer tube is passable through a typical trocar port, cannula or the like. Knob housing 202 is dimensioned to not enter the trocar port, cannula of the like. [0077] Knob housing 202 is configured and adapted to connect to connecting portion 108a of upper housing portion 108 of distal half-section 1 10a of surgical device 100. [0078] As seen in FIGS. 10, 11 and 14 adapter 200 includes a surgical device drive coupling assembly 210 at a proximal end thereof and an end effector coupling assembly 230 at a distal end thereof. Drive coupling assembly 210 includes a drive coupling housing 210a rotatably supported, at least partially, in knob housing 202. Drive coupling assembly 210 rotatably supports a first rotatable proximal drive shaft or element 212, a second rotatable proximal drive shaft or element 214, and a third rotatable proximal drive shaft or element 216 therein (see FIG. 15, for example). [0079] As seen in FIG. 19, drive coupling housing 210a is configured to rotatably support first, second and third connector sleeves 218, 220 and 222, respectively. Each of connector sleeves 218, 220, 222 is configured to mate with respective first, second and third drive connectors 118, 15 120, 122 of surgical device 100, as described above. Each of connector sleeves 218, 220, 222 is further configured to mate with a proximal end of respective first, second and third proximal drive shafts or elements 212, 214, 216. [0080] With particular reference to FIGS. 19 and 22, proximal drive coupling assembly 210 includes a first, a second and a third biasing member 224, 226 and 228 disposed distally of respective first, second and third connector sleeves 218, 220, 222. Each of biasing members 224, 226 and 228 is disposed about respective first, second and third rotatable proximal drive shaft 212, 214 and 216. Biasing members 224, 226 and 228 act on respective connector sleeves 218, 220 and 222 to help maintain connector sleeves 218, 220 and 222 engaged with the distal end of respective drive rotatable drive connectors 118, 120, 122 of surgical device 100 when adapter 200 is connected to surgical device 100. [0081] In particular, first, second and third biasing members 224, 226 and 228 function to bias respective connector sleeves 218, 220 and 222 in a proximal direction. In this manner, during assembly of adapter 200 to surgical device 100, if first, second and/or third connector sleeves 218, 220 and/or 222 is/are misaligned with the drive connectors 118, 120, 122 of surgical device 100, first, second and/or third biasing member(s) 224, 226 and/or 228 are compressed. Thus, when drive mechanism 160 of surgical device 100 is engaged, drive connectors 118, 120, 122 of surgical device 100 will rotate and first, second and/or third biasing member(s) 224, 226 and/or 228 will cause respective first, second and/or third connector sleeve(s) 218, 220 and/or 222 to slide back proximally, effectively coupling drive connectors 118, 120, 122 of surgical device 100 to first, second and/or third proximal drive shaft(s) 212, 214 and 216 of proximal drive coupling assembly 210. [0082] Upon calibration of surgical device 100, each of drive connectors 118, 120, 122 of surgical device 100 is rotated and the bias on connector sleeve(s) 218, 220 and 222 properly seats connector sleeve(s) 218, 220 and 222 over the respective drive connectors 118, 120, 122 of surgical device 100 when the proper alignment is reached. [0083] Adapter 200, as seen in FIGS. 11, 14 and 20, includes a first, a second and a third drive transmitting/converting assembly 240, 250, 260, respectively, disposed within handle housing 202 and outer tube 206. Each drive transmitting/converting assembly 240, 250, 260 is configured and adapted to transmit or convert a rotation of a first, second and third drive 16 connector 118, 120, 122 of surgical device 100 into axial translation of a distal drive member 248 and drive bar (or articulation bar) 258 of adapter 200, to effectuate closing, opening, articulating and firing of end effector 300; or a rotation of ring gear 266 of adapter 200, to effectuate rotation of handle housing 202 of adapter 200. [0084] As seen in FIGS. 11-13, first drive transmitting/converting assembly 240 includes a first distal drive shaft 242 rotatably supported within housing 202 and outer tube 206. A proximal end portion 242a of first distal drive shaft 242 extends distally from first proximal drive shaft 212. First distal drive shaft 242 further includes a threaded portion 242b having a threaded outer profile or surface. [0085] First drive transmitting/converting assembly 240 further includes a drive coupling nut 244 rotatably coupled to threaded distal end portion 242b of first distal drive shaft 242, and which is slidably disposed within outer tube 206. Drive coupling nut 244 is keyed to an inner housing tube 206a of outer tube 206 so as to be prevented from rotation as first distal drive shaft 242 is rotated. In this manner, as first distal drive shaft 242 is rotated, drive coupling nut 244 is translated longitudinally through and/or along inner housing tube 206a of outer tube 206. [0086] First drive transmitting/converting assembly 240 further includes a distal drive member 248 that is mechanically engaged with drive coupling nut 244, such that axial movement of drive coupling nut 244 results in a corresponding amount of axial movement of distal drive member 248. More particularly, distal end of coupling nut 244 includes at least one inwardly depending projection 245 that engages at least one corresponding groove 249 disposed on a proximal portion of the distal drive member 248 (see FIG. 11). The distal end portion of distal drive member 248 supports a connection member 247 configured and dimensioned for selective engagement with drive member 374 of drive assembly 360 of end effector 300. [0087] In operation, as first rotatable proximal drive shaft 212 is rotated, due to a rotation of first connector sleeve 218, as a result of the rotation of the first respective drive connector 118 of surgical device 100, first distal drive shaft 242 rotates. As first distal drive shaft 242 is rotated, drive coupling nut 244 is caused to be translated axially along first distal drive shaft 242. As drive coupling nut 244 is caused to be translated axially along first distal drive shaft 242, distal drive member 248 is caused to be translated axially relative to inner housing tube 206a of outer tube 206. As distal drive member 248 is translated axially, with connection 17 member 247 connected thereto and engaged with drive member 374 of drive assembly 360 of end effector 300, distal drive member 248 causes concomitant axial translation of drive member 374 of end effector 300 to effectuate a closure of tool assembly 304 and a firing of tool assembly 304 of end effector 300. [0088] With reference to FIGS. 13-22, second drive converter assembly 250 of adapter 200 includes second rotatable proximal drive shaft 216 rotatably supported within drive coupling assembly 210. Second rotatable proximal drive shaft 216 includes a non-circular or shaped proximal end portion configured for connection with second connector or coupler 222 which is connected to respective second connector 120 of surgical device 100. Second rotatable proximal drive shaft 216 further includes a distal end portion 216b having a threaded outer profile or surface. [0089] Distal end portion 216b of proximal drive shaft 216 is threadably engaged with a nut 252. Nut 252 is disposed in mechanical cooperation with a proximal portion 254a of an articulation sleeve 254. For example, nut 252 extends through a recess 255 within articulation sleeve 254. A distal portion 254b of articulation sleeve 254 is disposed in mechanical cooperation (e.g., attached or coupled to) with an articulation bearing 261, and in particular with an inner sleeve 262 of articulation bearing 261. An outer sleeve 264 of articulation bearing 261 is mechanically coupled to a proximal portion 258a of articulation bar 258. A distal portion 258b of articulation bar 258 includes a slot 272 therein, which is configured to accept a portion (e.g., a flag, articulation link 366, etc.) of loading unit 300. Further, slot 272 includes a tapered entry section 274, which is configured to reduce the clearance between loading unit 300 and articulation bar 258, thus facilitating alignment and/or engagement therebetween. [0090] With further regard to articulation bearing 261, articulation bearing 261 is both rotatable and longitudinally translatable. Additionally, it is envisioned that articulation bearing 261 allows for free, unimpeded rotational movement of loading unit 300 when its jaw members 306, 308 are in an approximated position and/or when jaw members 306, 308 are articulated. Further, articulation bearing 261 reduces the amount of friction that is typically associated with rotation of articulated and/or approximated jaw members, as articulated and/or approximated jaw members generally generate significant loads on the rotational and/or articulation systems. 18 [0091] In operation, as drive shaft 216 is rotated due to a rotation of second connector sleeve 222, as a result of the rotation of the second drive connector 120 of surgical device 100, nut 252 is caused to be translated axially along threaded distal end portion 216b of proximal drive shaft 216, which in turn causes articulation sleeve 254 to be axially translated relative to knob housing 202. As articulation sleeve 254 is translated axially, articulation bearing 261 is caused to be translated axially. Accordingly, as articulation bearing 261 is translated axially, articulation bar 258 is caused to axially translate, which causes concomitant axial translation of an articulation link 366 of end effector 300 to effectuate an articulation of tool assembly 304. [0092] As seen in FIGS. 20-25 and as mentioned above, adapter 200 includes a third drive transmitting/converting assembly 260 supported in knob housing 202. Third drive transmitting/converting assembly 260 includes a tube assembly 400, a rotation bearing 410, a rotation ring gear 420, an idler gear 430 and a spur gear 440. Tube assembly 400 includes a housing tip 402, a tube 206 and a tube coupler 406. Housing tip 402 is distally disposed adjacent connection member 247. Tube coupler 406 is disposed adjacent a proximal end of tube assembly 400. Tube 206 extends between housing tip 402 and tube coupler 406. As shown in FIG. 24, tube coupler 406 is mechanically coupled adjacent distal ends of upper and lower portions handle or knob housing 202. The proximal portion of knob housing 202 is positioned around rotation bearing 410, which allows rotation therebetween. [0093] With further regard to rotation bearing 410, rotation bearing 410 is non-rotatable with respect to drive coupling housing 210a, and is both rotatable and longitudinally translatable with respect to knob housing 202. Additionally, it is envisioned that rotation bearing 410 allows for free, unimpeded rotational movement of loading unit 300 when its jaw members 306, 308 are in an approximated position and/or when jaw members are articulated. Further, rotation bearing 410 reduces the amount of friction that is typically associated with rotation of articulated and/or approximated jaw members, as articulated and/or approximated jaw members generally generate significant loads on the rotational and/or articulation systems. [0094] Rotation ring gear 420 is disposed distally of rotation bearing 410 and is non-rotatable with respect to knob housing 202 (e.g., due to protrusions 421 of ring gear 420 being captured by corresponding recesses in knob housing 202). Rotation ring gear 420 includes a plurality of teeth 422 disposed around an inner circumference thereof. Idler gear 430 is rotatable about a pin 434, and includes a plurality of teeth 432 disposed around an outer circumference thereof, which 19 are configured and positioned to engage teeth 422 of rotation ring gear 420. Spur gear 440 includes a plurality of teeth 442 disposed around an outer circumference thereof, which are configured and positioned to engage teeth 432 of idler gear 430. Additionally, spur gear 440 is attached to second rotatable proximal drive shaft 214. [0095] In operation, rotation of second drive connector 120 of surgical device 100 causes second connector sleeve 220 and drive shaft 214 to rotate. Rotation of drive shaft 214 causes spur gear 440 to rotate. Rotation of spur gear 440 results in rotation of idler gear 430, which causes ring gear 420 to likewise rotate. Since ring gear 420 is non-rotatable with respect to knob housing 202, rotation of ring gear 420 causes knob housing 202 to rotate. Further, due to the engagement between knob housing 202 and tube coupler 406, rotation of knob housing 202 causes tube coupler 406, tube 206, housing tip 402, and distal coupling assembly 230 to rotate about longitudinal axis "A-A" defined by adapter 200 (see FIG. 1). As distal coupling assembly 230 is rotated, end effector 300, that is connected to distal coupling assembly 230, is also caused to be rotated about longitudinal axis of adapter 200. [0096] With reference to FIGS. 21 and 22, adapter 200 further includes a lock mechanism 280 for fixing the axial position and radial orientation of distal drive member 248. Lock mechanism 280 includes a button 282 slidably supported on knob housing 202. Lock button 282 is connected to an actuation bar 284 that extends longitudinally through outer tube 206. Actuation bar 284 is interposed between outer tube 206 and inner housing tube 206a. Actuation bar 284 moves upon a movement of lock button 282. Upon a predetermined amount of movement of lock button 282, a distal end 284a of actuation bar 284 moves into contact with lock out 286, which causes lock out 286 to cam a camming member 288 from a recess 249 in distal drive member 248. When camming member 288 is in engagement with recess 249 (e.g., at least partially within recess 249), the engagement between camming member 288 and distal drive member 248 effectively locks the axial and rotational position of end effector 300 that is engaged with connection member 247. [0097] In operation, in order to lock the position and/or orientation of distal drive member 248, a user moves lock button 282 from a distal position to a proximal position, thereby causing lock out 286 to move proximally such that a distal face 286a of lock out 286 moves out of contact with camming member 288, which causes camming member 288 to cam into recess 249 of distal drive member 248. In this manner, distal drive member 248 is prevented from distal 20 and/or proximal movement. When lock button 282 is moved from the proximal position to the distal position, distal end 284a of actuation bar 284 moves distally into lock out 286, against the bias of biasing member 289, to force camming member 288 to out of recess 249, thereby allowing unimpeded axial translation and radial movement of distal drive member 248. When drive member 248 has translated to initiate closure of tool assembly 304, lock button 282 cannot be actuated and the end effector 300 cannot be removed until tool assembly 304 is reopened. [0098] As seen in FIG., 6 adapter 200 includes a pair of electrical contact pins 290a, 290b for electrical connection to a corresponding electrical plug 190a, 190b disposed in connecting portion 108a of surgical device 100. Electrical contacts 290a, 290b serve to allow for calibration and communication of life-cycle information to circuit board 150 of surgical device 100 via electrical plugs 190a, 190b that are electrically connected to circuit board 150. Adapter 200 further includes a circuit board supported in knob housing 202 and which is in electrical communication with electrical contact pins 290a, 290b. [0099] When a button of surgical device is activated by the user, the software checks predefined conditions. If conditions are met, the software controls the motors and delivers mechanical drive to the attached surgical stapler, which can then open, close, rotate, articulate or fire depending on the function of the pressed button. The software also provides feedback to the user by turning colored lights on or off in a defined manner to indicate the status of surgical device 100, adapter 200 and/or end effector 300. [0100] A high level electrical architectural view of the system is displayed below in Schematic "A" and shows the connections to the various hardware and software interfaces. Inputs from presses of buttons 124, 126 and from motor encoders of the drive shaft are shown on the left side of Schematic "A". The microcontroller contains the device software that operates surgical device 100, adapter 200 and/or end effector 300. The microcontroller receives inputs from and sends outputs to a MicroLAN, an Ultra ID chip, a Battery ID chip, and Adaptor ID chips. The MicroLAN, the Ultra ID chip, the Battery ID chip, and the Adaptor ID chips control surgical device 100, adapter 200 and/or end effector 300 as follows: MicroLAN - Serial 1-wire bus communication to read/write system component ID information. Ultra ID chip - identifies surgical device 100 and records usage information. 21 Battery ID chip - identifies the Battery 156 and records usage information. Adaptor ID chip - identifies the type of adapter 200, records the presence of an end effector 300, and records usage information. [0101] The right side of the schematic illustrated in FIG. 27 indicates outputs to the LEDs; selection of motor (to select clamping/cutting, rotation or articulation); and selection of the drive motors to perform the function selected. [0102] As illustrated in FIGS. 1 and 26, the end effector is designated as 300. End effector 300 is configured and dimensioned for endoscopic insertion through a cannula, trocar or the like. In particular, in the embodiment illustrated in FIGS. 1 and 26, end effector 300 may pass through a cannula or trocar when end effector 300 is in a closed condition. [0103] End effector 300 includes a proximal body portion 302 and a tool assembly 304. Proximal body portion 302 is releasably attached to a distal coupling 230 of adapter 200 and tool assembly 304 is pivotally attached to a distal end of proximal body portion 302. Tool assembly 304 includes an anvil assembly 306 and a cartridge assembly 308. Cartridge assembly 308 is pivotal in relation to anvil assembly 306 and is movable between an open or unclamped position and a closed or clamped position for insertion through a cannula of a trocar. [0104] Proximal body portion 302 includes at least a drive assembly 360 and an articulation link 366. [0105] Referring to FIG. 26, drive assembly 360 includes a flexible drive beam 364 having a distal end which is secured to a dynamic clamping member 365, and a proximal engagement section 368. Engagement section 368 includes a stepped portion defining a shoulder 370. A proximal end of engagement section 368 includes diametrically opposed inwardly extending fingers 372. Fingers 372 engage a hollow drive member 374 to fixedly secure drive member 374 to the proximal end of beam 364. Drive member 374 defines a proximal porthole 376 which receives connection member 247 of drive tube 246 of first drive converter assembly 240 of adapter 200 when end effector 300 is attached to distal coupling 230 of adapter 200. [0106] When drive assembly 360 is advanced distally within tool assembly 304, an upper beam of clamping member 365 moves within a channel defined between anvil plate 312 and anvil 22 cover 310 and a lower beam moves over the exterior surface of carrier 316 to close tool assembly 304 and fire staples therefrom. [0107] Proximal body portion 302 of end effector 300 includes an articulation link 366 having a hooked proximal end 366a which extends from a proximal end of end effector 300. Hooked proximal end 366a of articulation link 366 engages coupling hook 258c of drive bar 258 of adapter 200 when end effector 300 is secured to distal housing 232 of adapter 200. When drive bar 258 of adapter 200 is advanced or retracted as described above, articulation link 366 of end effector 300 is advanced or retracted within end effector 300 to pivot tool assembly 304 in relation to a distal end of proximal body portion 302. [0108] As illustrated in FIG. 26, cartridge assembly 308 of tool assembly 304 includes a staple cartridge 305 supportable in carrier 316. Staple cartridge 305 defines a central longitudinal slot 305a, and three linear rows of staple retention slots 305b positioned on each side of longitudinal slot 305a. Each of staple retention slots 305b receives a single staple 307 and a portion of a staple pusher 309. During operation of surgical device 100, drive assembly 360 abuts an actuation sled and pushes actuation sled through cartridge 305. As the actuation sled moves through cartridge 305, cam wedges of the actuation sled sequentially engage staple pushers 309 to move staple pushers 309 vertically within staple retention slots 305b and sequentially eject a single staple 307 therefrom for formation against anvil plate 312. [0109] Reference may be made to U.S. Patent Publication No. 2009/0314821, filed on August 31, 2009, entitled "TOOL ASSEMBLY FOR A SURGICAL STAPLING DEVICE" for a detailed discussion of the construction and operation of end effector 300. [0110] It will be understood that various modifications may be made to the embodiments of the presently disclosed adapter assemblies. For example, the battery 156 may be replaced with alternate sources of electrical power such as line voltage (either AC or DC) or a fuel cell. Therefore, the above description should not be construed as limiting, but merely as exemplifications of embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.
权利要求:
Claims (17) [1] 1. A surgical device, comprising: a device housing defining a connecting portion for selectively connecting with an adapter assembly; at least one drive motor supported in the device housing and being configured to rotate at least one drive shaft; a battery disposed in electrical communication with the at least one drive motor; and a circuit board disposed within the housing for controlling power delivered from the battery to the at least one drive motor; an end effector configured to perform at least one function, the end effector including at least one axially translatable drive member; and an adapter assembly for selectively interconnecting the end effector and the device housing, the adapter assembly including: a knob housing configured and adapted for selective connection to the device housing and to be in operative communication with each of the at least one rotatable drive shaft; at least one drive converter assembly for interconnecting a respective one of the at least one rotatable drive shaft and one of the at least one axially translatable drive member of the end effector, wherein the at least one drive converter assembly converts and transmits a rotation of the rotatable drive shaft to an axial translation of the at least one axially translatable drive member of the end effector, wherein the at least one drive converter assembly includes a first drive converter assembly including: a first drive element rotatably supported in the knob housing, wherein a proximal end of the first drive element is engagable with the rotatable drive shaft; a nut threadably connected to a threaded distal portion of the first drive element; an articulation sleeve, a proximal portion of the articulation sleeve disposed in mechanical cooperation with the nut; an articulation bearing disposed in mechanical cooperation with a distal portion of the articulation sleeve; and an articulation link, a proximal portion of the articulation link being disposed in mechanical cooperation with the articulation bearing, a distal portion of the articulation link configured for selective engagement with the at least one axially translatable drive member of the end effector; 24 wherein rotation of the rotatable drive shaft results in rotation of the first drive element, and wherein rotation of the first drive element results in axial translation of the nut, the articulation sleeve, the articulation bearing, the articulation link, and the at least one axially translatable drive member of the end effector. [2] 2. The surgical device of Claim 1, wherein the articulation bearing is configured for axial and rotatable movement with respect to the knob housing. [3] 3. The surgical device of Claim 1, wherein the distal portion of the articulation sleeve is disposed in mechanically cooperation with a radially inner portion of the articulation bearing. [4] 4. The surgical device of Claim 3, wherein the proximal portion of the articulation link is disposed in mechanical cooperation with a radially outer portion of the articulation bearing. [5] 5. The surgical device of Claim 1, further comprising a second drive converter assembly including: a second drive element rotatably supported in the knob housing, wherein a proximal end of the second drive element is connectable to a second rotatable drive shaft of the surgical device; a first gear disposed in mechanical cooperation with a distal portion of the second drive element; a second gear disposed in mechanical cooperation with the first gear; and a gear ring disposed in mechanical cooperation with the second gear and being disposed in mechanical cooperation with the end effector, the gear ring being fixed from rotation with respect to the knob housing; wherein rotation of the second rotatable drive shaft causes rotation of the first gear, rotation of the first gear causes rotation of the second gear, rotation of the second gear causes rotation of the gear ring, and rotation of the gear ring causes rotation of the end effector. [6] 6. The surgical device of Claim 5, wherein the knob housing includes a drive coupling housing, the drive coupling housing being rotatable with respect to the remainder of the knob housing. 25 [7] 7. The surgical device of Claim 6, further including a rotation bearing, wherein the drive coupling housing is rotationally fixed to the rotation bearing, and wherein the knob housing is rotatable with respect to the rotation bearing. [8] 8. The surgical device of Claim 5, wherein the gear ring includes a plurality of teeth disposed around an inner periphery thereof. [9] 9. The surgical device of Claim 1, wherein a distal portion of the articulation link includes a slot therein configured to releasably accept a portion of the at least one axially translatable drive member of the end effector. [10] 10. The surgical device of Claim 9, wherein the slot includes a tapered opening. [11] 11. An adapter assembly for selectively interconnecting a surgical end effector and a handle assembly having at least one rotatable drive shaft, the adapter assembly comprising: a knob housing configured and adapted for selective connection to a handle assembly, the knob housing including a drive coupling housing; at least one drive converter assembly for interconnecting a respective one of the at least one rotatable drive shaft and a portion of a surgical end effector, wherein the at least one drive converter assembly converts and transmits a rotation of the rotatable drive shaft to an axial translation of the at least one axially translatable drive member of the end effector, wherein the at least one drive converter assembly includes a first drive converter assembly including: a drive element rotatably supported in the adapter housing; a first gear disposed in mechanical cooperation with a distal portion of the drive element; a second gear disposed in mechanical cooperation with the first gear; a gear ring disposed in mechanical cooperation with the second gear and disposed in mechanical cooperation with an end effector-engaging portion of the adapter assembly, the gear ring being fixed from rotation with respect to the adapter housing; and a rotation bearing, wherein the drive coupling housing is rotationally fixed to the rotation bearing, and wherein the knob housing is rotatable with respect to the rotation bearing; wherein rotation of the drive element causes rotation of the first gear, rotation of the first gear causes rotation of the second gear, rotation of the second gear causes rotation of the 26 gear ring, and rotation of the gear ring causes rotation of the end effector-engaging portion of the adapter assembly. [12] 12. The adapter assembly of Claim 11, wherein the gear ring includes a plurality of teeth disposed around an inner periphery thereof. [13] 13. The adapter assembly of Claim 11, wherein the drive coupling housing is rotatable with respect to the remainder of the knob housing. [14] 14. The adapter assembly of Claim 11, further comprising a second drive converter assembly comprising: a second drive element rotatably supported in the knob housing; a nut threadably connected to a threaded distal portion of the second drive element; an articulation sleeve, a proximal portion of the articulation sleeve disposed in mechanical cooperation with the nut; an articulation bearing disposed in mechanical cooperation with a distal portion of the articulation sleeve; and an articulation link, a proximal portion of the articulation link being disposed in mechanical cooperation with the articulation bearing, a distal portion of the articulation link configured for selective engagement with a portion of an end effector; wherein rotation of the second drive element results in axial translation of the nut, the articulation sleeve, the articulation bearing and the articulation link. [15] 15. The adapter assembly of Claim 14, wherein the articulation bearing is configured for axial and rotatable movement with respect to the knob housing. [16] 16. The adapter assembly of Claim 14, wherein the distal portion of the articulation sleeve is disposed in mechanically cooperation with a radially inner portion of the articulation bearing. [17] 17. The adapter assembly of Claim 16, wherein the proximal portion of the articulation link is disposed in mechanical cooperation with a radially outer portion of the articulation bearing. Covidien LP Patent Attorneys for the Applicant/Nominated Person SPRUSON & FERGUSON
类似技术:
公开号 | 公开日 | 专利标题 US11071546B2|2021-07-27|Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use US10661422B2|2020-05-26|Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use AU2015200264B2|2017-03-02|Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use AU2015203216B2|2019-08-29|Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use EP2668910A2|2013-12-04|Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use AU2015200153B2|2016-05-26|Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use AU2012261711B8|2015-01-29|Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
同族专利:
公开号 | 公开日 JP2013248394A|2013-12-12| EP2668911A3|2016-06-29| US10542984B2|2020-01-28| US20170172576A1|2017-06-22| CN103445817B|2017-09-08| EP3566661A1|2019-11-13| US20220022870A1|2022-01-27| CN111481252A|2020-08-04| US11071546B2|2021-07-27| CA2816279A1|2013-12-01| EP2668911B1|2019-07-17| AU2013205875B2|2017-07-20| CN107411792A|2017-12-01| US20200155153A1|2020-05-21| CN103445817A|2013-12-18| CA2816279C|2019-10-15| US20130324978A1|2013-12-05| US9597104B2|2017-03-21| EP2668911A2|2013-12-04| JP6239867B2|2017-11-29| CN107411792B|2020-05-12|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US2777340A|1955-09-28|1957-01-15|Leonard J Hettwer|Offset drilling attachment| US2957353A|1958-08-26|1960-10-25|Teleflex Inc|Connector| US3111328A|1961-07-03|1963-11-19|Rito Vincent L J Di|Multiuse adapter for manipulators| US3734515A|1971-01-29|1973-05-22|Thor Power Tool Co|Power wrench with interchangeable adapters| US3695058A|1971-05-26|1972-10-03|Marvin W Keith Jr|Flexible link rotatable drive coupling| US3759336A|1972-01-21|1973-09-18|D Marcovitz|Interchangeable power operated tools| US4162399A|1977-09-16|1979-07-24|Bei Electronics, Inc.|Optical encoder with fiber optics| US4606343A|1980-08-18|1986-08-19|United States Surgical Corporation|Self-powered surgical fastening instrument| US4705038A|1985-01-23|1987-11-10|Dyonics, Inc.|Surgical system for powered instruments| US4722685A|1985-05-30|1988-02-02|Estrada Juan M De|Tool for adapting a portable lathe to treat the back molar teeth of horses| US4823807A|1988-02-11|1989-04-25|Board Of Regents, Univ. Of Texas System|Device for non-invasive diagnosis and monitoring of articular and periarticular pathology| US4874181A|1988-05-31|1989-10-17|Hsu Shing Wang|Coupling member for securing a drilling head to the rotatable rod of a pneumatic tool body| US5301061A|1989-07-27|1994-04-05|Olympus Optical Co., Ltd.|Endoscope system| US5152744A|1990-02-07|1992-10-06|Smith & Nephew Dyonics|Surgical instrument| JP3034019B2|1990-11-26|2000-04-17|旭光学工業株式会社|Endoscope tip| US5129570A|1990-11-30|1992-07-14|Ethicon, Inc.|Surgical stapler| US5413267A|1991-05-14|1995-05-09|United States Surgical Corporation|Surgical stapler with spent cartridge sensing and lockout means| US5129118A|1991-07-29|1992-07-14|Walmesley Mark W|Accessory tool apparatus for use on power drills| US5312023A|1991-10-18|1994-05-17|United States Surgical Corporation|Self contained gas powered surgical apparatus| US5478003A|1991-10-18|1995-12-26|United States Surgical Corporation|Surgical apparatus| US5326013A|1991-10-18|1994-07-05|United States Surgical Corporation|Self contained gas powered surgical apparatus| US5197649A|1991-10-29|1993-03-30|The Trustees Of Columbia University In The City Of New York|Gastrointestinal endoscoptic stapler| US5383874A|1991-11-08|1995-01-24|Ep Technologies, Inc.|Systems for identifying catheters and monitoring their use| US5383880A|1992-01-17|1995-01-24|Ethicon, Inc.|Endoscopic surgical system with sensing means| US5433721A|1992-01-17|1995-07-18|Ethicon, Inc.|Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue| US5350355A|1992-02-14|1994-09-27|Automated Medical Instruments, Inc.|Automated surgical instrument| US5389098A|1992-05-19|1995-02-14|Olympus Optical Co., Ltd.|Surgical device for stapling and/or fastening body tissues| US5658300A|1992-06-04|1997-08-19|Olympus Optical Co., Ltd.|Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues| US5609560A|1992-08-19|1997-03-11|Olympus Optical Co., Ltd.|Medical operation device control system for controlling a operation devices accessed respectively by ID codes| US6165169A|1994-03-04|2000-12-26|Ep Technologies, Inc.|Systems and methods for identifying the physical, mechanical, and functional attributes of multiple electrode arrays| US5601224A|1992-10-09|1997-02-11|Ethicon, Inc.|Surgical instrument| US5626587A|1992-10-09|1997-05-06|Ethicon Endo-Surgery, Inc.|Method for operating a surgical instrument| US5400267A|1992-12-08|1995-03-21|Hemostatix Corporation|Local in-device memory feature for electrically powered medical equipment| US5540706A|1993-01-25|1996-07-30|Aust; Gilbert M.|Surgical instrument| US5540375A|1993-04-20|1996-07-30|United States Surgical Corporation|Endoscopic stapler| US5467911A|1993-04-27|1995-11-21|Olympus Optical Co., Ltd.|Surgical device for stapling and fastening body tissues| CA2124109A1|1993-05-24|1994-11-25|Mark T. Byrne|Endoscopic surgical instrument with electromagnetic sensor| US5542594A|1993-10-06|1996-08-06|United States Surgical Corporation|Surgical stapling apparatus with biocompatible surgical fabric| US5487499A|1993-10-08|1996-01-30|United States Surgical Corporation|Surgical apparatus for applying surgical fasteners including a counter| US5476379A|1993-11-04|1995-12-19|Disel; Jimmy D.|Illumination system and connector assembly for a dental handpiece| AU1558995A|1994-01-04|1995-08-01|Alpha Surgical Technologies, Inc.|Stapling device| US5526822A|1994-03-24|1996-06-18|Biopsys Medical, Inc.|Method and apparatus for automated biopsy and collection of soft tissue| CA2145723A1|1994-03-30|1995-10-01|Steven W. Hamblin|Surgical stapling instrument with remotely articulated stapling head assembly on rotatable support shaft| US5529235A|1994-04-28|1996-06-25|Ethicon Endo-Surgery, Inc.|Identification device for surgical instrument| US5553675A|1994-06-10|1996-09-10|Minnesota Mining And Manufacturing Company|Orthopedic surgical device| EP0699418A1|1994-08-05|1996-03-06|United States Surgical Corporation|Self-contained powered surgical apparatus| US5779130A|1994-08-05|1998-07-14|United States Surgical Corporation|Self-contained powered surgical apparatus| EP0705571A1|1994-10-07|1996-04-10|United States Surgical Corporation|Self-contained powered surgical apparatus| US5549637A|1994-11-10|1996-08-27|Crainich; Lawrence|Articulated medical instrument| US5868760A|1994-12-07|1999-02-09|Mcguckin, Jr.; James F.|Method and apparatus for endolumenally resectioning tissue| US5632432A|1994-12-19|1997-05-27|Ethicon Endo-Surgery, Inc.|Surgical instrument| US5704534A|1994-12-19|1998-01-06|Ethicon Endo-Surgery, Inc.|Articulation assembly for surgical instruments| US6321855B1|1994-12-29|2001-11-27|George Edward Barnes|Anti-vibration adaptor| US5649956A|1995-06-07|1997-07-22|Sri International|System and method for releasably holding a surgical instrument| US6032849A|1995-08-28|2000-03-07|United States Surgical|Surgical stapler| US5762256A|1995-08-28|1998-06-09|United States Surgical Corporation|Surgical stapler| US5782396A|1995-08-28|1998-07-21|United States Surgical Corporation|Surgical stapler| BR9607702A|1995-09-15|1998-01-13|Robert Lee Thompson|Surgical device / diagnostic imaging| US6699177B1|1996-02-20|2004-03-02|Computer Motion, Inc.|Method and apparatus for performing minimally invasive surgical procedures| US6010054A|1996-02-20|2000-01-04|Imagyn Medical Technologies|Linear stapling instrument with improved staple cartridge| US5820009A|1996-02-20|1998-10-13|Richard-Allan Medical Industries, Inc.|Articulated surgical instrument with improved jaw closure mechanism| US5713505A|1996-05-13|1998-02-03|Ethicon Endo-Surgery, Inc.|Articulation transmission mechanism for surgical instruments| US6119913A|1996-06-14|2000-09-19|Boston Scientific Corporation|Endoscopic stapler| US6017354A|1996-08-15|2000-01-25|Stryker Corporation|Integrated system for powered surgical tools| US6129547A|1997-05-06|2000-10-10|Ballard Medical Products|Oral care system| AU8903898A|1997-08-11|1999-03-01|Paul W. Mayer|Motorized motion-canceling suture tool holder| US6434507B1|1997-09-05|2002-08-13|Surgical Navigation Technologies, Inc.|Medical instrument and method for use with computer-assisted image guided surgery| US5865361A|1997-09-23|1999-02-02|United States Surgical Corporation|Surgical stapling apparatus| US6171316B1|1997-10-10|2001-01-09|Origin Medsystems, Inc.|Endoscopic surgical instrument for rotational manipulation| US5863159A|1997-12-12|1999-01-26|Lasko; Leonard J.|Drill angle attachment coupling| US6371909B1|1998-02-19|2002-04-16|California Institute Of Technology|Apparatus and method for providing spherical viewing during endoscopic procedures| US7699835B2|2001-02-15|2010-04-20|Hansen Medical, Inc.|Robotically controlled surgical instruments| US6239732B1|1998-04-13|2001-05-29|Dallas Semiconductor Corporation|One-wire device with A-to-D converter| US6126058A|1998-06-19|2000-10-03|Scimed Life Systems, Inc.|Method and device for full thickness resectioning of an organ| US6256859B1|1998-09-25|2001-07-10|Sherwood Services Ag|Method of manufacturing an aspiring tool| US5993454A|1998-09-29|1999-11-30|Stryker Corporation|Drill attachment for a surgical drill| US7238021B1|1998-12-03|2007-07-03|Johnson Gary E|Powered cutting surface with protective guard for equine teeth| US7141049B2|1999-03-09|2006-11-28|Thermage, Inc.|Handpiece for treatment of tissue| US6860892B1|1999-05-28|2005-03-01|General Surgical Innovations, Inc.|Specially shaped balloon device for use in surgery and method of use| US6443973B1|1999-06-02|2002-09-03|Power Medical Interventions, Inc.|Electromechanical driver device for use with anastomosing, stapling, and resecting instruments| US7032798B2|1999-06-02|2006-04-25|Power Medical Interventions, Inc.|Electro-mechanical surgical device| EP2316345B1|2001-06-22|2016-12-21|Covidien LP|Electro-mechanical surgical device| US6793652B1|1999-06-02|2004-09-21|Power Medical Interventions, Inc.|Electro-mechanical surgical device| US6315184B1|1999-06-02|2001-11-13|Powermed, Inc.|Stapling device for use with an electromechanical driver device for use with anastomosing, stapling, and resecting instruments| US7951071B2|1999-06-02|2011-05-31|Tyco Healthcare Group Lp|Moisture-detecting shaft for use with an electro-mechanical surgical device| US6981941B2|1999-06-02|2006-01-03|Power Medical Interventions|Electro-mechanical surgical device| US6716233B1|1999-06-02|2004-04-06|Power Medical Interventions, Inc.|Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities| US6264087B1|1999-07-12|2001-07-24|Powermed, Inc.|Expanding parallel jaw device for use with an electromechanical driver device| US6451007B1|1999-07-29|2002-09-17|Dale E. Koop|Thermal quenching of tissue| US6611793B1|1999-09-07|2003-08-26|Scimed Life Systems, Inc.|Systems and methods to identify and disable re-use single use devices based on detecting environmental changes| US6368324B1|1999-09-24|2002-04-09|Medtronic Xomed, Inc.|Powered surgical handpiece assemblies and handpiece adapter assemblies| US6533157B1|2000-02-22|2003-03-18|Power Medical Interventions, Inc.|Tissue stapling attachment for use with an electromechanical driver device| US6488197B1|2000-02-22|2002-12-03|Power Medical Interventions, Inc.|Fluid delivery device for use with anastomosing resecting and stapling instruments| US6348061B1|2000-02-22|2002-02-19|Powermed, Inc.|Vessel and lumen expander attachment for use with an electromechanical driver device| US6491201B1|2000-02-22|2002-12-10|Power Medical Interventions, Inc.|Fluid delivery mechanism for use with anastomosing, stapling, and resecting instruments| JP3897962B2|2000-07-19|2007-03-28|株式会社モリタ製作所|Identification-type instrument body, identification-type adapter, identification-type tube, and medical device using these| US6830174B2|2000-08-30|2004-12-14|Cerebral Vascular Applications, Inc.|Medical instrument| US6817508B1|2000-10-13|2004-11-16|Tyco Healthcare Group, Lp|Surgical stapling device| US7905897B2|2001-03-14|2011-03-15|Tyco Healthcare Group Lp|Trocar device| JP4453801B2|2001-04-20|2010-04-21|パワーメディカルインターベンションズ,エルエルシー|Bipolar or ultrasonic surgical device| CN103065025A|2001-06-20|2013-04-24|柯惠Lp公司|Method and system for integrated medical tracking| US6716226B2|2001-06-25|2004-04-06|Inscope Development, Llc|Surgical clip| US7044911B2|2001-06-29|2006-05-16|Philometron, Inc.|Gateway platform for biological monitoring and delivery of therapeutic compounds| FR2827494B1|2001-07-17|2003-12-05|Seb Sa|RIGIDIFIED FLEXIBLE MOLD| DE60239812D1|2001-08-08|2011-06-01|Stryker Corp|SURGICAL TOOL SYSTEM WITH COMPONENTS THAT CARRY OUT AN INDUCTIVE DATA TRANSFER| DE10147145C2|2001-09-25|2003-12-18|Kunz Reiner|Multi-function instrument for micro-invasive surgery| WO2003030743A2|2001-10-05|2003-04-17|Tyco Healthcare Group Lp|Surgical stapling device| US10285694B2|2001-10-20|2019-05-14|Covidien Lp|Surgical stapler with timer and feedback display| US6783533B2|2001-11-21|2004-08-31|Sythes Ag Chur|Attachable/detachable reaming head for surgical reamer| CN101584607B|2001-12-04|2012-06-06|Tyco医疗健康集团|System and method for calibrating a surgical instrument| US8016855B2|2002-01-08|2011-09-13|Tyco Healthcare Group Lp|Surgical device| IL148702A|2002-03-14|2008-04-13|Innoventions Inc|Insertion and retrieval system for inflatable devices| CA2483094C|2002-04-25|2011-03-15|Tyco Healthcare Group, Lp|Surgical instruments including mems devices| CA2489727C|2002-06-14|2011-04-26|Power Medical Interventions, Inc.|Surgical device| US20030038938A1|2002-06-20|2003-02-27|Jung Wayne D.|Apparatus and method for measuring optical characteristics of an object or material| US8182494B1|2002-07-31|2012-05-22|Cardica, Inc.|Minimally-invasive surgical system| US6645218B1|2002-08-05|2003-11-11|Endius Incorporated|Surgical instrument| US20040176751A1|2002-08-14|2004-09-09|Endovia Medical, Inc.|Robotic medical instrument system| CN101904734B|2002-09-30|2013-01-02|Tyco医疗健康集团|Self-contained sterilizable surgical system| EP2228017A1|2002-10-04|2010-09-15|Tyco Healthcare Group LP|Tool assembly for a surgical stapling device| WO2004032760A2|2002-10-04|2004-04-22|Tyco Healthcare Group, Lp|Pneumatic powered surgical stapling device| US7559927B2|2002-12-20|2009-07-14|Medtronic Xomed, Inc.|Surgical instrument with telescoping attachment| JP2004208922A|2002-12-27|2004-07-29|Olympus Corp|Medical apparatus, medical manipulator and control process for medical apparatus| US20070084897A1|2003-05-20|2007-04-19|Shelton Frederick E Iv|Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism| US7380696B2|2003-05-20|2008-06-03|Ethicon Endo-Surgery, Inc.|Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism| US7140528B2|2003-05-20|2006-11-28|Ethicon Endo-Surgery, Inc.|Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing| US7380695B2|2003-05-20|2008-06-03|Ethicon Endo-Surgery, Inc.|Surgical stapling instrument having a single lockout mechanism for prevention of firing| US7143923B2|2003-05-20|2006-12-05|Ethicon Endo-Surgery, Inc.|Surgical stapling instrument having a firing lockout for an unclosed anvil| US6988649B2|2003-05-20|2006-01-24|Ethicon Endo-Surgery, Inc.|Surgical stapling instrument having a spent cartridge lockout| US7044352B2|2003-05-20|2006-05-16|Ethicon Endo-Surgery, Inc.|Surgical stapling instrument having a single lockout mechanism for prevention of firing| EP2589406B1|2003-05-21|2018-10-10|The Johns Hopkins University|Devices and systems for minimally invasive surgery of the throat and other portions of mammalian body| US20050004559A1|2003-06-03|2005-01-06|Senorx, Inc.|Universal medical device control console| EP1635712B1|2003-06-20|2015-09-30|Covidien LP|Surgical stapling device| US6964363B2|2003-07-09|2005-11-15|Ethicon Endo-Surgery, Inc.|Surgical stapling instrument having articulation joint support plates for supporting a firing bar| US7055731B2|2003-07-09|2006-06-06|Ethicon Endo-Surgery Inc.|Surgical stapling instrument incorporating a tapered firing bar for increased flexibility around the articulation joint| US6981628B2|2003-07-09|2006-01-03|Ethicon Endo-Surgery, Inc.|Surgical instrument with a lateral-moving articulation control| US7111769B2|2003-07-09|2006-09-26|Ethicon Endo-Surgery, Inc.|Surgical instrument incorporating an articulation mechanism having rotation about the longitudinal axis| JP4398813B2|2003-07-18|2010-01-13|ヤーマン株式会社|Skin care equipment| US6905057B2|2003-09-29|2005-06-14|Ethicon Endo-Surgery, Inc.|Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission| US6959852B2|2003-09-29|2005-11-01|Ethicon Endo-Surgery, Inc.|Surgical stapling instrument with multistroke firing incorporating an anti-backup mechanism| US7364061B2|2003-09-29|2008-04-29|Ethicon Endo-Surgery, Inc.|Surgical stapling instrument incorporating a multistroke firing position indicator and retraction mechanism| US8770459B2|2003-10-17|2014-07-08|Covidien Lp|Surgical stapling device with independent tip rotation| US7641655B2|2003-10-31|2010-01-05|Medtronic, Inc.|Coupling system for surgical instrument| US7172415B2|2003-11-22|2007-02-06|Flexi-Float, Llc|Equine dental grinding apparatus| DE10357105B3|2003-12-06|2005-04-07|Richard Wolf Gmbh|Medical instrument for medical applications comprises an insert and a handle detachedly connected to each other| US7172104B2|2004-02-17|2007-02-06|Tyco Healthcare Group Lp|Surgical stapling apparatus| US8025199B2|2004-02-23|2011-09-27|Tyco Healthcare Group Lp|Surgical cutting and stapling device| WO2005084556A1|2004-03-10|2005-09-15|Olympus Corporation|Treatment tool for surgery| US7059508B2|2004-06-30|2006-06-13|Ethicon Endo-Surgery, Inc.|Surgical stapling instrument incorporating an uneven multistroke firing mechanism having a rotary transmission| US7143925B2|2004-07-28|2006-12-05|Ethicon Endo-Surgery, Inc.|Surgical instrument incorporating EAP blocking lockout mechanism| US7147138B2|2004-07-28|2006-12-12|Ethicon Endo-Surgery, Inc.|Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism| CA2561473C|2005-09-30|2014-07-29|Ethicon Endo-Surgery, Inc.|Electroactive polymer-based actuation mechanism for linear surgical stapler| US7487899B2|2004-07-28|2009-02-10|Ethicon Endo-Surgery, Inc.|Surgical instrument incorporating EAP complete firing system lockout mechanism| US7947034B2|2004-07-30|2011-05-24|Tyco Healthcare Group Lp|Flexible shaft extender and method of using same| US7922719B2|2004-10-06|2011-04-12|Biodynamics, Llc|Adjustable angle pawl handle for surgical instruments| ES2598134T3|2004-10-08|2017-01-25|Ethicon Endo-Surgery, Llc|Ultrasonic surgical instrument| EP1833390B1|2004-12-09|2010-05-12|Stryker Corporation|Wireless system for providing instrument and implant data to a surgical navigation unit| US20060142740A1|2004-12-29|2006-06-29|Sherman Jason T|Method and apparatus for performing a voice-assisted orthopaedic surgical procedure| US7143926B2|2005-02-07|2006-12-05|Ethicon Endo-Surgery, Inc.|Surgical stapling instrument incorporating a multi-stroke firing mechanism with return spring rotary manual retraction system| US7822458B2|2005-05-19|2010-10-26|The Johns Hopkins University|Distal bevel-tip needle control device and algorithm| US7464847B2|2005-06-03|2008-12-16|Tyco Healthcare Group Lp|Surgical stapler with timer and feedback display| EP1736112B1|2005-06-20|2011-08-17|Heribert Schmid|Medical device| US8579176B2|2005-07-26|2013-11-12|Ethicon Endo-Surgery, Inc.|Surgical stapling and cutting device and method for using the device| US8241322B2|2005-07-27|2012-08-14|Tyco Healthcare Group Lp|Surgical device| EP1912570B1|2005-07-27|2014-10-08|Covidien LP|Shaft, e.g., for an electro-mechanical surgical device| US7770773B2|2005-07-27|2010-08-10|Power Medical Interventions, Llc|Surgical device| US20070029363A1|2005-08-07|2007-02-08|Sergey Popov|Surgical apparatus with remote drive| US8348855B2|2005-08-29|2013-01-08|Galil Medical Ltd.|Multiple sensor device for measuring tissue temperature during thermal treatment| JP4125311B2|2005-08-30|2008-07-30|株式会社東芝|Robots and manipulators| US7407078B2|2005-09-21|2008-08-05|Ehthicon Endo-Surgery, Inc.|Surgical stapling instrument having force controlled spacing end effector| US7641091B2|2005-10-04|2010-01-05|Tyco Healthcare Group Lp|Staple drive assembly| US20070102472A1|2005-11-04|2007-05-10|Ethicon Endo-Surgery, Inc.|Electrosurgical stapling instrument with disposable severing / stapling unit| US7328828B2|2005-11-04|2008-02-12|Ethicon Endo-Surgery, Inc,|Lockout mechanisms and surgical instruments including same| US7673780B2|2005-11-09|2010-03-09|Ethicon Endo-Surgery, Inc.|Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument| US7799039B2|2005-11-09|2010-09-21|Ethicon Endo-Surgery, Inc.|Surgical instrument having a hydraulically actuated end effector| US20070106317A1|2005-11-09|2007-05-10|Shelton Frederick E Iv|Hydraulically and electrically actuated articulation joints for surgical instruments| US7246734B2|2005-12-05|2007-07-24|Ethicon Endo-Surgery, Inc.|Rotary hydraulic pump actuated multi-stroke surgical instrument| US7481824B2|2005-12-30|2009-01-27|Ethicon Endo-Surgery, Inc.|Surgical instrument with bending articulation controlled articulation pivot joint| US7670334B2|2006-01-10|2010-03-02|Ethicon Endo-Surgery, Inc.|Surgical instrument having an articulating end effector| US7422139B2|2006-01-31|2008-09-09|Ethicon Endo-Surgery, Inc.|Motor-driven surgical cutting fastening instrument with tactile position feedback| US7416101B2|2006-01-31|2008-08-26|Ethicon Endo-Surgery, Inc.|Motor-driven surgical cutting and fastening instrument with loading force feedback| US20070175950A1|2006-01-31|2007-08-02|Shelton Frederick E Iv|Disposable staple cartridge having an anvil with tissue locator for use with a surgical cutting and fastening instrument and modular end effector system therefor| US7770775B2|2006-01-31|2010-08-10|Ethicon Endo-Surgery, Inc.|Motor-driven surgical cutting and fastening instrument with adaptive user feedback| US7464846B2|2006-01-31|2008-12-16|Ethicon Endo-Surgery, Inc.|Surgical instrument having a removable battery| US20070175955A1|2006-01-31|2007-08-02|Shelton Frederick E Iv|Surgical cutting and fastening instrument with closure trigger locking mechanism| US7845537B2|2006-01-31|2010-12-07|Ethicon Endo-Surgery, Inc.|Surgical instrument having recording capabilities| US8186555B2|2006-01-31|2012-05-29|Ethicon Endo-Surgery, Inc.|Motor-driven surgical cutting and fastening instrument with mechanical closure system| US7644848B2|2006-01-31|2010-01-12|Ethicon Endo-Surgery, Inc.|Electronic lockouts and surgical instrument including same| US8708213B2|2006-01-31|2014-04-29|Ethicon Endo-Surgery, Inc.|Surgical instrument having a feedback system| US7464849B2|2006-01-31|2008-12-16|Ethicon Endo-Surgery, Inc.|Electro-mechanical surgical instrument with closure system and anvil alignment components| US7575144B2|2006-01-31|2009-08-18|Ethicon Endo-Surgery, Inc.|Surgical fastener and cutter with single cable actuator| US7766210B2|2006-01-31|2010-08-03|Ethicon Endo-Surgery, Inc.|Motor-driven surgical cutting and fastening instrument with user feedback system| US7568603B2|2006-01-31|2009-08-04|Ethicon Endo-Surgery, Inc.|Motor-driven surgical cutting and fastening instrument with articulatable end effector| US20070175951A1|2006-01-31|2007-08-02|Shelton Frederick E Iv|Gearing selector for a powered surgical cutting and fastening instrument| US8992422B2|2006-03-23|2015-03-31|Ethicon Endo-Surgery, Inc.|Robotically-controlled endoscopic accessory channel| US8627995B2|2006-05-19|2014-01-14|Ethicon Endo-Sugery, Inc.|Electrically self-powered surgical instrument with cryptographic identification of interchangeable part| CN102319094B|2006-05-19|2014-12-10|爱惜康内镜外科公司|Electrical surgical instrument| US8551076B2|2006-06-13|2013-10-08|Intuitive Surgical Operations, Inc.|Retrograde instrument| US20080029573A1|2006-08-02|2008-02-07|Shelton Frederick E|Pneumatically powered surgical cutting and fastening instrument with replaceable power sources| US20080029574A1|2006-08-02|2008-02-07|Shelton Frederick E|Pneumatically powered surgical cutting and fastening instrument with actuator at distal end| US7740159B2|2006-08-02|2010-06-22|Ethicon Endo-Surgery, Inc.|Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist| US9554843B2|2006-09-01|2017-01-31|Conmed Corporation|Adapter and method for converting gas-enhanced electrosurgical coagulation instrument for cutting| US7967178B2|2006-10-06|2011-06-28|Tyco Healthcare Group Lp|Grasping jaw mechanism| US8733614B2|2006-10-06|2014-05-27|Covidien Lp|End effector identification by mechanical features| US20080083807A1|2006-10-06|2008-04-10|Beardsley John W|Surgical instrument including a locking assembly| JP5085996B2|2006-10-25|2012-11-28|テルモ株式会社|Manipulator system| US20080109012A1|2006-11-03|2008-05-08|General Electric Company|System, method and apparatus for tableside remote connections of medical instruments and systems using wireless communications| JP2008114339A|2006-11-06|2008-05-22|Terumo Corp|Manipulator| US7721930B2|2006-11-10|2010-05-25|Thicon Endo-Surgery, Inc.|Disposable cartridge with adhesive for use with a stapling device| WO2008061313A1|2006-11-24|2008-05-29|Mems-Id Pty Ltd|Tagging methods and apparatus| US7954682B2|2007-01-10|2011-06-07|Ethicon Endo-Surgery, Inc.|Surgical instrument with elements to communicate between control unit and end effector| US7738971B2|2007-01-10|2010-06-15|Ethicon Endo-Surgery, Inc.|Post-sterilization programming of surgical instruments| US7721931B2|2007-01-10|2010-05-25|Ethicon Endo-Surgery, Inc.|Prevention of cartridge reuse in a surgical instrument| US7900805B2|2007-01-10|2011-03-08|Ethicon Endo-Surgery, Inc.|Surgical instrument with enhanced battery performance| US7950562B2|2007-01-31|2011-05-31|Tyco Healthcare Group Lp|Surgical instrument with replaceable loading unit| US8979829B2|2007-02-05|2015-03-17|Novian Health, Inc.|Interstitial laser therapy kits| EP2131749B1|2007-03-06|2016-11-02|Covidien LP|Surgical stapling apparatus| US7422136B1|2007-03-15|2008-09-09|Tyco Healthcare Group Lp|Powered surgical stapling device| US8391957B2|2007-03-26|2013-03-05|Hansen Medical, Inc.|Robotic catheter systems and methods| US8056787B2|2007-03-28|2011-11-15|Ethicon Endo-Surgery, Inc.|Surgical stapling and cutting instrument with travel-indicating retraction member| US8893946B2|2007-03-28|2014-11-25|Ethicon Endo-Surgery, Inc.|Laparoscopic tissue thickness and clamp load measuring devices| JP5006093B2|2007-04-03|2012-08-22|テルモ株式会社|Manipulator system and control device| US20080251561A1|2007-04-13|2008-10-16|Chad Eades|Quick connect base plate for powder actuated tool| US20080255413A1|2007-04-13|2008-10-16|Michael Zemlok|Powered surgical instrument| US8800837B2|2007-04-13|2014-08-12|Covidien Lp|Powered surgical instrument| US7950560B2|2007-04-13|2011-05-31|Tyco Healthcare Group Lp|Powered surgical instrument| US8177776B2|2007-04-20|2012-05-15|Doheny Eye Institute|Independent surgical center| US20080281301A1|2007-04-20|2008-11-13|Deboer Charles|Personal Surgical Center| WO2008133956A2|2007-04-23|2008-11-06|Hansen Medical, Inc.|Robotic instrument control system| US8534528B2|2007-06-04|2013-09-17|Ethicon Endo-Surgery, Inc.|Surgical instrument having a multiple rate directional switching mechanism| US8931682B2|2007-06-04|2015-01-13|Ethicon Endo-Surgery, Inc.|Robotically-controlled shaft based rotary drive systems for surgical instruments| US20080308602A1|2007-06-18|2008-12-18|Timm Richard W|Surgical stapling and cutting instruments| US7549564B2|2007-06-22|2009-06-23|Ethicon Endo-Surgery, Inc.|Surgical stapling instrument with an articulating end effector| US8556151B2|2007-09-11|2013-10-15|Covidien Lp|Articulating joint for surgical instruments| US8968276B2|2007-09-21|2015-03-03|Covidien Lp|Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use| AU2013203675B2|2012-05-31|2014-11-27|Covidien Lp|Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use| US9023014B2|2007-09-21|2015-05-05|Covidien Lp|Quick connect assembly for use between surgical handle assembly and surgical accessories| US9055943B2|2007-09-21|2015-06-16|Covidien Lp|Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use| CA2698571C|2007-09-21|2016-12-20|Power Medical Interventions, Llc|Surgical device| AU2008302043B2|2007-09-21|2013-06-27|Covidien Lp|Surgical device| AU2008229795B2|2007-10-05|2014-02-13|Covidien Lp|Surgical stapler having an articulation mechanism| US20090090763A1|2007-10-05|2009-04-09|Tyco Healthcare Group Lp|Powered surgical stapling device| US8960520B2|2007-10-05|2015-02-24|Covidien Lp|Method and apparatus for determining parameters of linear motion in a surgical instrument| US9113880B2|2007-10-05|2015-08-25|Covidien Lp|Internal backbone structural chassis for a surgical device| US20130214025A1|2007-10-05|2013-08-22|Covidien Lp|Powered surgical stapling device| US8967443B2|2007-10-05|2015-03-03|Covidien Lp|Method and apparatus for determining parameters of linear motion in a surgical instrument| US7922063B2|2007-10-31|2011-04-12|Tyco Healthcare Group, Lp|Powered surgical instrument| US8758342B2|2007-11-28|2014-06-24|Covidien Ag|Cordless power-assisted medical cauterization and cutting device| WO2009073577A2|2007-11-29|2009-06-11|Surgiquest, Inc.|Surgical instruments with improved dexterity for use in minimally invasive surgical procedures| US20090171147A1|2007-12-31|2009-07-02|Woojin Lee|Surgical instrument| US8647258B2|2008-01-10|2014-02-11|Covidien Lp|Apparatus for endoscopic procedures| EP2240083B8|2008-01-10|2015-08-19|Covidien LP|Imaging system for a surgical device| TWI328496B|2008-02-01|2010-08-11|Mobiletron Electronics Co Ltd|| US8752749B2|2008-02-14|2014-06-17|Ethicon Endo-Surgery, Inc.|Robotically-controlled disposable motor-driven loading unit| US8758391B2|2008-02-14|2014-06-24|Ethicon Endo-Surgery, Inc.|Interchangeable tools for surgical instruments| US8657174B2|2008-02-14|2014-02-25|Ethicon Endo-Surgery, Inc.|Motorized surgical cutting and fastening instrument having handle based power source| US7793812B2|2008-02-14|2010-09-14|Ethicon Endo-Surgery, Inc.|Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus| US7857185B2|2008-02-14|2010-12-28|Ethicon Endo-Surgery, Inc.|Disposable loading unit for surgical stapling apparatus| US7819298B2|2008-02-14|2010-10-26|Ethicon Endo-Surgery, Inc.|Surgical stapling apparatus with control features operable with one hand| US7959051B2|2008-02-15|2011-06-14|Ethicon Endo-Surgery, Inc.|Closure systems for a surgical cutting and stapling instrument| US20090206131A1|2008-02-15|2009-08-20|Ethicon Endo-Surgery, Inc.|End effector coupling arrangements for a surgical cutting and stapling instrument| US8733611B2|2008-03-12|2014-05-27|Covidien Lp|Ratcheting mechanism for surgical stapling device| US20090254094A1|2008-04-08|2009-10-08|Knapp Troy D|Ratcheting mechanical driver for cannulated surgical systems| EP2278927A2|2008-04-25|2011-02-02|Downey, Earl C.|Laparoscopic surgical instrument| US7922061B2|2008-05-21|2011-04-12|Ethicon Endo-Surgery, Inc.|Surgical instrument with automatically reconfigurable articulating end effector| US8403926B2|2008-06-05|2013-03-26|Ethicon Endo-Surgery, Inc.|Manually articulating devices| US8303581B2|2008-09-02|2012-11-06|Covidien Lp|Catheter with remotely extendible instruments| KR101056232B1|2008-09-12|2011-08-11|정창욱|Minimally invasive surgical instruments and how to use them| US20100069942A1|2008-09-18|2010-03-18|Ethicon Endo-Surgery, Inc.|Surgical instrument with apparatus for measuring elapsed time between actions| US9386983B2|2008-09-23|2016-07-12|Ethicon Endo-Surgery, Llc|Robotically-controlled motorized surgical instrument| US8210411B2|2008-09-23|2012-07-03|Ethicon Endo-Surgery, Inc.|Motor-driven surgical cutting instrument| US8372057B2|2008-10-10|2013-02-12|Coeur, Inc.|Luer lock adapter| US8020743B2|2008-10-15|2011-09-20|Ethicon Endo-Surgery, Inc.|Powered articulatable surgical cutting and fastening instrument with flexible drive member| DE102008053842B4|2008-10-30|2010-08-26|Kirchner, Hilmar O.|Surgical cutting device| US8517239B2|2009-02-05|2013-08-27|Ethicon Endo-Surgery, Inc.|Surgical stapling instrument comprising a magnetic element driver| US20110006101A1|2009-02-06|2011-01-13|EthiconEndo-Surgery, Inc.|Motor driven surgical fastener device with cutting member lockout arrangements| EP2403671A1|2009-03-03|2012-01-11|Westport Medical, Inc.|Bit holders| US7967179B2|2009-03-31|2011-06-28|Tyco Healthcare Group Lp|Center cinch and release of buttress material| US8011550B2|2009-03-31|2011-09-06|Tyco Healthcare Group Lp|Surgical stapling apparatus| US8348126B2|2009-03-31|2013-01-08|Covidien Lp|Crimp and release of suture holding buttress material| US8016178B2|2009-03-31|2011-09-13|Tyco Healthcare Group Lp|Surgical stapling apparatus| US8365972B2|2009-03-31|2013-02-05|Covidien Lp|Surgical stapling apparatus| US8012170B2|2009-04-27|2011-09-06|Tyco Healthcare Group Lp|Device and method for controlling compression of tissue| US8827134B2|2009-06-19|2014-09-09|Covidien Lp|Flexible surgical stapler with motor in the head| US8146790B2|2009-07-11|2012-04-03|Tyco Healthcare Group Lp|Surgical instrument with safety mechanism| CN101953793A|2009-07-15|2011-01-26|上海新亚药业有限公司|Preparation method of fructose diphosphate sodium powder injection| US8314354B2|2009-07-27|2012-11-20|Apple Inc.|Accessory controller for electronic devices| US20110077673A1|2009-09-29|2011-03-31|Cardiovascular Systems, Inc.|Rotational atherectomy device with frictional clutch having magnetic normal force| ES2333509B2|2009-10-07|2011-01-03|Universidad De Cantabria|INSTRUMENT FOR ENDOSCOPIC SURGERY.| US8157151B2|2009-10-15|2012-04-17|Tyco Healthcare Group Lp|Staple line reinforcement for anvil and cartridge| US10105140B2|2009-11-20|2018-10-23|Covidien Lp|Surgical console and hand-held surgical device| US10588629B2|2009-11-20|2020-03-17|Covidien Lp|Surgical console and hand-held surgical device| US8806973B2|2009-12-02|2014-08-19|Covidien Lp|Adapters for use between surgical handle assembly and surgical end effector| EP2333509A1|2009-12-08|2011-06-15|Dingens BG bvba|Precision Anaeroid barometer with a capillary tube as a pressure indicator.| US8409086B2|2009-12-18|2013-04-02|Covidien Lp|Surgical portal with rotating seal| US8561871B2|2009-12-31|2013-10-22|Covidien Lp|Indicators for surgical staplers| WO2011108840A2|2010-03-05|2011-09-09|주식회사 이턴|Surgical instrument, coupling structure of the surgical instrument, and method for adjusting origin point| US8517241B2|2010-04-16|2013-08-27|Covidien Lp|Hand-held surgical devices| US8562592B2|2010-05-07|2013-10-22|Ethicon Endo-Surgery, Inc.|Compound angle laparoscopic methods and devices| CN101856251B|2010-06-07|2011-10-05|常州威克医疗器械有限公司|Disposable linear anastomat| US8968337B2|2010-07-28|2015-03-03|Covidien Lp|Articulating clip applier| KR101765727B1|2010-09-01|2017-08-08|미래컴퍼니|Coupling structure and zero point calibration method of surgical instrument| CN101966093B|2010-09-28|2012-01-11|常州市康迪医用吻合器有限公司|Cavity mirror surgical incision anastomat with replaceable nail bin| US8292150B2|2010-11-02|2012-10-23|Tyco Healthcare Group Lp|Adapter for powered surgical devices| US9510895B2|2010-11-05|2016-12-06|Ethicon Endo-Surgery, Llc|Surgical instrument with modular shaft and end effector| US20120116368A1|2010-11-10|2012-05-10|Viola Frank J|Surgical instrument with add-on power adapter for accessory| US8523043B2|2010-12-07|2013-09-03|Immersion Corporation|Surgical stapler having haptic feedback| US8348130B2|2010-12-10|2013-01-08|Covidien Lp|Surgical apparatus including surgical buttress| US8936614B2|2010-12-30|2015-01-20|Covidien Lp|Combined unilateral/bilateral jaws on a surgical instrument| US20120211542A1|2011-02-23|2012-08-23|Tyco Healthcare Group I.P|Controlled tissue compression systems and methods| US9549758B2|2011-03-23|2017-01-24|Covidien Lp|Surgical access assembly with adapter| CN102247182A|2011-04-29|2011-11-23|常州市康迪医用吻合器有限公司|Electric anastomat for surgical department| US9017314B2|2011-06-01|2015-04-28|Covidien Lp|Surgical articulation assembly| US9381010B2|2011-06-27|2016-07-05|Covidien Lp|Surgical instrument with adapter for facilitating multi-direction end effector articulation| DE102011084499A1|2011-10-14|2013-04-18|Robert Bosch Gmbh|tool attachment| US9480492B2|2011-10-25|2016-11-01|Covidien Lp|Apparatus for endoscopic procedures| US9492146B2|2011-10-25|2016-11-15|Covidien Lp|Apparatus for endoscopic procedures| US8657177B2|2011-10-25|2014-02-25|Covidien Lp|Surgical apparatus and method for endoscopic surgery| US8899462B2|2011-10-25|2014-12-02|Covidien Lp|Apparatus for endoscopic procedures| US8672206B2|2011-10-25|2014-03-18|Covidien Lp|Apparatus for endoscopic procedures| US9168042B2|2012-01-12|2015-10-27|Covidien Lp|Circular stapling instruments| US9241757B2|2012-01-13|2016-01-26|Covidien Lp|System and method for performing surgical procedures with a reusable instrument module| US9597104B2|2012-06-01|2017-03-21|Covidien Lp|Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use| US10080563B2|2012-06-01|2018-09-25|Covidien Lp|Loading unit detection assembly and surgical device for use therewith| US9868198B2|2012-06-01|2018-01-16|Covidien Lp|Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use| US9364220B2|2012-06-19|2016-06-14|Covidien Lp|Apparatus for endoscopic procedures| US10492814B2|2012-07-09|2019-12-03|Covidien Lp|Apparatus for endoscopic procedures| US9839480B2|2012-07-09|2017-12-12|Covidien Lp|Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors| US10022123B2|2012-07-09|2018-07-17|Covidien Lp|Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors| US9402604B2|2012-07-20|2016-08-02|Covidien Lp|Apparatus for endoscopic procedures| US9421014B2|2012-10-18|2016-08-23|Covidien Lp|Loading unit velocity and position feedback| US9782187B2|2013-01-18|2017-10-10|Covidien Lp|Adapter load button lockout| US10918364B2|2013-01-24|2021-02-16|Covidien Lp|Intelligent adapter assembly for use with an electromechanical surgical system| US9216013B2|2013-02-18|2015-12-22|Covidien Lp|Apparatus for endoscopic procedures| US9421003B2|2013-02-18|2016-08-23|Covidien Lp|Apparatus for endoscopic procedures| US9782169B2|2013-03-01|2017-10-10|Ethicon Llc|Rotary powered articulation joints for surgical instruments| US9492189B2|2013-03-13|2016-11-15|Covidien Lp|Apparatus for endoscopic procedures| US9700318B2|2013-04-09|2017-07-11|Covidien Lp|Apparatus for endoscopic procedures| US9775610B2|2013-04-09|2017-10-03|Covidien Lp|Apparatus for endoscopic procedures| US9801646B2|2013-05-30|2017-10-31|Covidien Lp|Adapter load button decoupled from loading unit sensor| US9797486B2|2013-06-20|2017-10-24|Covidien Lp|Adapter direct drive with manual retraction, lockout and connection mechanisms| US9955966B2|2013-09-17|2018-05-01|Covidien Lp|Adapter direct drive with manual retraction, lockout, and connection mechanisms for improper use prevention| US9962157B2|2013-09-18|2018-05-08|Covidien Lp|Apparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument| US9295522B2|2013-11-08|2016-03-29|Covidien Lp|Medical device adapter with wrist mechanism| US10561417B2|2013-12-09|2020-02-18|Covidien Lp|Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof| US9808245B2|2013-12-13|2017-11-07|Covidien Lp|Coupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof| US10164466B2|2014-04-17|2018-12-25|Covidien Lp|Non-contact surgical adapter electrical interface| US10080552B2|2014-04-21|2018-09-25|Covidien Lp|Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof| US9913643B2|2014-05-09|2018-03-13|Covidien Lp|Interlock assemblies for replaceable loading unit| US9713466B2|2014-05-16|2017-07-25|Covidien Lp|Adaptor for surgical instrument for converting rotary input to linear output| US20150374372A1|2014-06-26|2015-12-31|Covidien Lp|Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use| US9987095B2|2014-06-26|2018-06-05|Covidien Lp|Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units| US9839425B2|2014-06-26|2017-12-12|Covidien Lp|Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof| US9763661B2|2014-06-26|2017-09-19|Covidien Lp|Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof| US10163589B2|2014-06-26|2018-12-25|Covidien Lp|Adapter assemblies for interconnecting surgical loading units and handle assemblies| US10561418B2|2014-06-26|2020-02-18|Covidien Lp|Adapter assemblies for interconnecting surgical loading units and handle assemblies| WO2016057225A1|2014-10-07|2016-04-14|Covidien Lp|Handheld electromechanical surgical system| US10226254B2|2014-10-21|2019-03-12|Covidien Lp|Adapter, extension, and connector assemblies for surgical devices| US10085750B2|2014-10-22|2018-10-02|Covidien Lp|Adapter with fire rod J-hook lockout| US9949737B2|2014-10-22|2018-04-24|Covidien Lp|Adapter assemblies for interconnecting surgical loading units and handle assemblies|CN1103769C|1996-10-25|2003-03-26|第一制药株式会社|Tricyclic amine derivatives| US10285694B2|2001-10-20|2019-05-14|Covidien Lp|Surgical stapler with timer and feedback display| US20070084897A1|2003-05-20|2007-04-19|Shelton Frederick E Iv|Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism| US9060770B2|2003-05-20|2015-06-23|Ethicon Endo-Surgery, Inc.|Robotically-driven surgical instrument with E-beam driver| US8215531B2|2004-07-28|2012-07-10|Ethicon Endo-Surgery, Inc.|Surgical stapling instrument having a medical substance dispenser| US7947034B2|2004-07-30|2011-05-24|Tyco Healthcare Group Lp|Flexible shaft extender and method of using same| EP1912570B1|2005-07-27|2014-10-08|Covidien LP|Shaft, e.g., for an electro-mechanical surgical device| US9237891B2|2005-08-31|2016-01-19|Ethicon Endo-Surgery, Inc.|Robotically-controlled surgical stapling devices that produce formed staples having different lengths| US7669746B2|2005-08-31|2010-03-02|Ethicon Endo-Surgery, Inc.|Staple cartridges for forming staples having differing formed staple heights| US7934630B2|2005-08-31|2011-05-03|Ethicon Endo-Surgery, Inc.|Staple cartridges for forming staples having differing formed staple heights| US10159482B2|2005-08-31|2018-12-25|Ethicon Llc|Fastener cartridge assembly comprising a fixed anvil and different staple heights| US11246590B2|2005-08-31|2022-02-15|Cilag Gmbh International|Staple cartridge including staple drivers having different unfired heights| US20070106317A1|2005-11-09|2007-05-10|Shelton Frederick E Iv|Hydraulically and electrically actuated articulation joints for surgical instruments| US8820603B2|2006-01-31|2014-09-02|Ethicon Endo-Surgery, Inc.|Accessing data stored in a memory of a surgical instrument| US7753904B2|2006-01-31|2010-07-13|Ethicon Endo-Surgery, Inc.|Endoscopic surgical instrument with a handle that can articulate with respect to the shaft| US11207064B2|2011-05-27|2021-12-28|Cilag Gmbh International|Automated end effector component reloading system for use with a robotic system| US11224427B2|2006-01-31|2022-01-18|Cilag Gmbh International|Surgical stapling system including a console and retraction assembly| US7845537B2|2006-01-31|2010-12-07|Ethicon Endo-Surgery, Inc.|Surgical instrument having recording capabilities| US20120292367A1|2006-01-31|2012-11-22|Ethicon Endo-Surgery, Inc.|Robotically-controlled end effector| US8708213B2|2006-01-31|2014-04-29|Ethicon Endo-Surgery, Inc.|Surgical instrument having a feedback system| US20110295295A1|2006-01-31|2011-12-01|Ethicon Endo-Surgery, Inc.|Robotically-controlled surgical instrument having recording capabilities| US8186555B2|2006-01-31|2012-05-29|Ethicon Endo-Surgery, Inc.|Motor-driven surgical cutting and fastening instrument with mechanical closure system| US8992422B2|2006-03-23|2015-03-31|Ethicon Endo-Surgery, Inc.|Robotically-controlled endoscopic accessory channel| US8236010B2|2006-03-23|2012-08-07|Ethicon Endo-Surgery, Inc.|Surgical fastener and cutter with mimicking end effector| US8322455B2|2006-06-27|2012-12-04|Ethicon Endo-Surgery, Inc.|Manually driven surgical cutting and fastening instrument| US8348131B2|2006-09-29|2013-01-08|Ethicon Endo-Surgery, Inc.|Surgical stapling instrument with mechanical indicator to show levels of tissue compression| US10568652B2|2006-09-29|2020-02-25|Ethicon Llc|Surgical staples having attached drivers of different heights and stapling instruments for deploying the same| US8684253B2|2007-01-10|2014-04-01|Ethicon Endo-Surgery, Inc.|Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor| US8652120B2|2007-01-10|2014-02-18|Ethicon Endo-Surgery, Inc.|Surgical instrument with wireless communication between control unit and sensor transponders| US11039836B2|2007-01-11|2021-06-22|Cilag Gmbh International|Staple cartridge for use with a surgical stapling instrument| US8827133B2|2007-01-11|2014-09-09|Ethicon Endo-Surgery, Inc.|Surgical stapling device having supports for a flexible drive mechanism| US20090005809A1|2007-03-15|2009-01-01|Hess Christopher J|Surgical staple having a slidable crown| US8893946B2|2007-03-28|2014-11-25|Ethicon Endo-Surgery, Inc.|Laparoscopic tissue thickness and clamp load measuring devices| US20080255413A1|2007-04-13|2008-10-16|Michael Zemlok|Powered surgical instrument| US11259801B2|2007-04-13|2022-03-01|Covidien Lp|Powered surgical instrument| US7823760B2|2007-05-01|2010-11-02|Tyco Healthcare Group Lp|Powered surgical stapling device platform| US8931682B2|2007-06-04|2015-01-13|Ethicon Endo-Surgery, Inc.|Robotically-controlled shaft based rotary drive systems for surgical instruments| US7753245B2|2007-06-22|2010-07-13|Ethicon Endo-Surgery, Inc.|Surgical stapling instruments| US9055943B2|2007-09-21|2015-06-16|Covidien Lp|Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use| AU2008302043B2|2007-09-21|2013-06-27|Covidien Lp|Surgical device| US10498269B2|2007-10-05|2019-12-03|Covidien Lp|Powered surgical stapling device| US10779818B2|2007-10-05|2020-09-22|Covidien Lp|Powered surgical stapling device| US10041822B2|2007-10-05|2018-08-07|Covidien Lp|Methods to shorten calibration times for powered devices| US8573465B2|2008-02-14|2013-11-05|Ethicon Endo-Surgery, Inc.|Robotically-controlled surgical end effector system with rotary actuated closure systems| US7819298B2|2008-02-14|2010-10-26|Ethicon Endo-Surgery, Inc.|Surgical stapling apparatus with control features operable with one hand| US8636736B2|2008-02-14|2014-01-28|Ethicon Endo-Surgery, Inc.|Motorized surgical cutting and fastening instrument| US9179912B2|2008-02-14|2015-11-10|Ethicon Endo-Surgery, Inc.|Robotically-controlled motorized surgical cutting and fastening instrument| RU2493788C2|2008-02-14|2013-09-27|Этикон Эндо-Серджери, Инк.|Surgical cutting and fixing instrument, which has radio-frequency electrodes| US8758391B2|2008-02-14|2014-06-24|Ethicon Endo-Surgery, Inc.|Interchangeable tools for surgical instruments| US7866527B2|2008-02-14|2011-01-11|Ethicon Endo-Surgery, Inc.|Surgical stapling apparatus with interlockable firing system| US9585657B2|2008-02-15|2017-03-07|Ethicon Endo-Surgery, Llc|Actuator for releasing a layer of material from a surgical end effector| US8210411B2|2008-09-23|2012-07-03|Ethicon Endo-Surgery, Inc.|Motor-driven surgical cutting instrument| US9386983B2|2008-09-23|2016-07-12|Ethicon Endo-Surgery, Llc|Robotically-controlled motorized surgical instrument| US9005230B2|2008-09-23|2015-04-14|Ethicon Endo-Surgery, Inc.|Motorized surgical instrument| US8608045B2|2008-10-10|2013-12-17|Ethicon Endo-Sugery, Inc.|Powered surgical cutting and stapling apparatus with manually retractable firing system| US8517239B2|2009-02-05|2013-08-27|Ethicon Endo-Surgery, Inc.|Surgical stapling instrument comprising a magnetic element driver| US20110024477A1|2009-02-06|2011-02-03|Hall Steven G|Driven Surgical Stapler Improvements| US8444036B2|2009-02-06|2013-05-21|Ethicon Endo-Surgery, Inc.|Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector| US8220688B2|2009-12-24|2012-07-17|Ethicon Endo-Surgery, Inc.|Motor-driven surgical cutting instrument with electric actuator directional control assembly| US8517241B2|2010-04-16|2013-08-27|Covidien Lp|Hand-held surgical devices| US10945731B2|2010-09-30|2021-03-16|Ethicon Llc|Tissue thickness compensator comprising controlled release and expansion| US9629814B2|2010-09-30|2017-04-25|Ethicon Endo-Surgery, Llc|Tissue thickness compensator configured to redistribute compressive forces| US9364233B2|2010-09-30|2016-06-14|Ethicon Endo-Surgery, Llc|Tissue thickness compensators for circular surgical staplers| US9517063B2|2012-03-28|2016-12-13|Ethicon Endo-Surgery, Llc|Movable member for use with a tissue thickness compensator| US9282962B2|2010-09-30|2016-03-15|Ethicon Endo-Surgery, Llc|Adhesive film laminate| US9241714B2|2011-04-29|2016-01-26|Ethicon Endo-Surgery, Inc.|Tissue thickness compensator and method for making the same| US9320523B2|2012-03-28|2016-04-26|Ethicon Endo-Surgery, Llc|Tissue thickness compensator comprising tissue ingrowth features| JP6026509B2|2011-04-29|2016-11-16|エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc.|Staple cartridge including staples disposed within a compressible portion of the staple cartridge itself| US9295464B2|2010-09-30|2016-03-29|Ethicon Endo-Surgery, Inc.|Surgical stapler anvil comprising a plurality of forming pockets| RU2013119928A|2010-09-30|2014-11-10|Этикон Эндо-Серджери, Инк.|A STAPLING SYSTEM CONTAINING A RETAINING MATRIX AND A LEVELING MATRIX| US9220501B2|2010-09-30|2015-12-29|Ethicon Endo-Surgery, Inc.|Tissue thickness compensators| RU2644272C2|2012-03-28|2018-02-08|Этикон Эндо-Серджери, Инк.|Limitation node with tissue thickness compensator| US9204880B2|2012-03-28|2015-12-08|Ethicon Endo-Surgery, Inc.|Tissue thickness compensator comprising capsules defining a low pressure environment| CN104321024B|2012-03-28|2017-05-24|伊西康内外科公司|Tissue thickness compensator comprising a plurality of layers| US8695866B2|2010-10-01|2014-04-15|Ethicon Endo-Surgery, Inc.|Surgical instrument having a power control circuit| US8292150B2|2010-11-02|2012-10-23|Tyco Healthcare Group Lp|Adapter for powered surgical devices| US9549758B2|2011-03-23|2017-01-24|Covidien Lp|Surgical access assembly with adapter| US9072535B2|2011-05-27|2015-07-07|Ethicon Endo-Surgery, Inc.|Surgical stapling instruments with rotatable staple deployment arrangements| US9480492B2|2011-10-25|2016-11-01|Covidien Lp|Apparatus for endoscopic procedures| US9492146B2|2011-10-25|2016-11-15|Covidien Lp|Apparatus for endoscopic procedures| US8672206B2|2011-10-25|2014-03-18|Covidien Lp|Apparatus for endoscopic procedures| US11207089B2|2011-10-25|2021-12-28|Covidien Lp|Apparatus for endoscopic procedures| US9016539B2|2011-10-25|2015-04-28|Covidien Lp|Multi-use loading unit| US9364231B2|2011-10-27|2016-06-14|Covidien Lp|System and method of using simulation reload to optimize staple formation| US9044230B2|2012-02-13|2015-06-02|Ethicon Endo-Surgery, Inc.|Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status| RU2639857C2|2012-03-28|2017-12-22|Этикон Эндо-Серджери, Инк.|Tissue thickness compensator containing capsule for medium with low pressure| US9597104B2|2012-06-01|2017-03-21|Covidien Lp|Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use| US10080563B2|2012-06-01|2018-09-25|Covidien Lp|Loading unit detection assembly and surgical device for use therewith| US9868198B2|2012-06-01|2018-01-16|Covidien Lp|Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use| US9101358B2|2012-06-15|2015-08-11|Ethicon Endo-Surgery, Inc.|Articulatable surgical instrument comprising a firing drive| US9364220B2|2012-06-19|2016-06-14|Covidien Lp|Apparatus for endoscopic procedures| US9289256B2|2012-06-28|2016-03-22|Ethicon Endo-Surgery, Llc|Surgical end effectors having angled tissue-contacting surfaces| RU2636861C2|2012-06-28|2017-11-28|Этикон Эндо-Серджери, Инк.|Blocking of empty cassette with clips| US11202631B2|2012-06-28|2021-12-21|Cilag Gmbh International|Stapling assembly comprising a firing lockout| US20140001231A1|2012-06-28|2014-01-02|Ethicon Endo-Surgery, Inc.|Firing system lockout arrangements for surgical instruments| US9408606B2|2012-06-28|2016-08-09|Ethicon Endo-Surgery, Llc|Robotically powered surgical device with manually-actuatable reversing system| US20140005718A1|2012-06-28|2014-01-02|Ethicon Endo-Surgery, Inc.|Multi-functional powered surgical device with external dissection features| US10022123B2|2012-07-09|2018-07-17|Covidien Lp|Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors| US9421014B2|2012-10-18|2016-08-23|Covidien Lp|Loading unit velocity and position feedback| US9421003B2|2013-02-18|2016-08-23|Covidien Lp|Apparatus for endoscopic procedures| US9216013B2|2013-02-18|2015-12-22|Covidien Lp|Apparatus for endoscopic procedures| JP6345707B2|2013-03-01|2018-06-20|エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc.|Surgical instrument with soft stop| JP6382235B2|2013-03-01|2018-08-29|エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc.|Articulatable surgical instrument with a conductive path for signal communication| US9629629B2|2013-03-14|2017-04-25|Ethicon Endo-Surgey, LLC|Control systems for surgical instruments| US9687230B2|2013-03-14|2017-06-27|Ethicon Llc|Articulatable surgical instrument comprising a firing drive| US9775610B2|2013-04-09|2017-10-03|Covidien Lp|Apparatus for endoscopic procedures| US9826976B2|2013-04-16|2017-11-28|Ethicon Llc|Motor driven surgical instruments with lockable dual drive shafts| US9801646B2|2013-05-30|2017-10-31|Covidien Lp|Adapter load button decoupled from loading unit sensor| US10117654B2|2013-06-18|2018-11-06|Covidien Lp|Method of emergency retraction for electro-mechanical surgical devices and systems| US9797486B2|2013-06-20|2017-10-24|Covidien Lp|Adapter direct drive with manual retraction, lockout and connection mechanisms| US9629633B2|2013-07-09|2017-04-25|Covidien Lp|Surgical device, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use| JP6416260B2|2013-08-23|2018-10-31|エシコン エルエルシー|Firing member retractor for a powered surgical instrument| US9283054B2|2013-08-23|2016-03-15|Ethicon Endo-Surgery, Llc|Interactive displays| US9539006B2|2013-08-27|2017-01-10|Covidien Lp|Hand held electromechanical surgical handle assembly for use with surgical end effectors, and methods of use| US9955966B2|2013-09-17|2018-05-01|Covidien Lp|Adapter direct drive with manual retraction, lockout, and connection mechanisms for improper use prevention| US9962157B2|2013-09-18|2018-05-08|Covidien Lp|Apparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument| US9974540B2|2013-10-18|2018-05-22|Covidien Lp|Adapter direct drive twist-lock retention mechanism| US9295522B2|2013-11-08|2016-03-29|Covidien Lp|Medical device adapter with wrist mechanism| US10236616B2|2013-12-04|2019-03-19|Covidien Lp|Adapter assembly for interconnecting surgical devices and surgical attachments, and surgical systems thereof| ES2672301T3|2013-12-09|2018-06-13|Covidien Lp|Adapter set for interconnecting electromechanical surgical devices and surgical loading units, and corresponding surgical systems| ES2755485T3|2013-12-09|2020-04-22|Covidien Lp|Adapter assembly for the interconnection of electromechanical surgical devices and surgical load units, and surgical systems thereof| US10561417B2|2013-12-09|2020-02-18|Covidien Lp|Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof| CN110074844A|2013-12-11|2019-08-02|柯惠Lp公司|Wrist units and clamp assemblies for robotic surgical system| EP3079609B1|2013-12-12|2019-07-17|Covidien LP|Gear train assemblies for robotic surgical systems| US9808245B2|2013-12-13|2017-11-07|Covidien Lp|Coupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof| US9839428B2|2013-12-23|2017-12-12|Ethicon Llc|Surgical cutting and stapling instruments with independent jaw control features| US9585662B2|2013-12-23|2017-03-07|Ethicon Endo-Surgery, Llc|Fastener cartridge comprising an extendable firing member| US9724092B2|2013-12-23|2017-08-08|Ethicon Llc|Modular surgical instruments| US20150173756A1|2013-12-23|2015-06-25|Ethicon Endo-Surgery, Inc.|Surgical cutting and stapling methods| US9839424B2|2014-01-17|2017-12-12|Covidien Lp|Electromechanical surgical assembly| US9655616B2|2014-01-22|2017-05-23|Covidien Lp|Apparatus for endoscopic procedures| US9962161B2|2014-02-12|2018-05-08|Ethicon Llc|Deliverable surgical instrument| US10226305B2|2014-02-12|2019-03-12|Covidien Lp|Surgical end effectors and pulley assemblies thereof| US9301691B2|2014-02-21|2016-04-05|Covidien Lp|Instrument for optically detecting tissue attributes| US9775608B2|2014-02-24|2017-10-03|Ethicon Llc|Fastening system comprising a firing member lockout| JP6462004B2|2014-02-24|2019-01-30|エシコン エルエルシー|Fastening system with launcher lockout| US11259799B2|2014-03-26|2022-03-01|Cilag Gmbh International|Interface systems for use with surgical instruments| US9804618B2|2014-03-26|2017-10-31|Ethicon Llc|Systems and methods for controlling a segmented circuit| US9750499B2|2014-03-26|2017-09-05|Ethicon Llc|Surgical stapling instrument system| US20150272557A1|2014-03-26|2015-10-01|Ethicon Endo-Surgery, Inc.|Modular surgical instrument system| EP3125785B1|2014-03-31|2020-03-04|Covidien LP|Wrist and jaw assemblies for robotic surgical systems| US10299792B2|2014-04-16|2019-05-28|Ethicon Llc|Fastener cartridge comprising non-uniform fasteners| US20150297205A1|2014-04-17|2015-10-22|Covidien Lp|Manual retraction tool for use with an electromechanical surgical device| US10164466B2|2014-04-17|2018-12-25|Covidien Lp|Non-contact surgical adapter electrical interface| US10080552B2|2014-04-21|2018-09-25|Covidien Lp|Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof| US10258363B2|2014-04-22|2019-04-16|Ethicon Llc|Method of operating an articulating ultrasonic surgical instrument| US10667835B2|2014-04-22|2020-06-02|Ethicon Llc|Ultrasonic surgical instrument with end effector having restricted articulation| US9861366B2|2014-05-06|2018-01-09|Covidien Lp|Ejecting assembly for a surgical stapler| US9913643B2|2014-05-09|2018-03-13|Covidien Lp|Interlock assemblies for replaceable loading unit| US9713466B2|2014-05-16|2017-07-25|Covidien Lp|Adaptor for surgical instrument for converting rotary input to linear output| US10045781B2|2014-06-13|2018-08-14|Ethicon Llc|Closure lockout systems for surgical instruments| US9839425B2|2014-06-26|2017-12-12|Covidien Lp|Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof| US9763661B2|2014-06-26|2017-09-19|Covidien Lp|Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof| US20150374372A1|2014-06-26|2015-12-31|Covidien Lp|Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use| US10163589B2|2014-06-26|2018-12-25|Covidien Lp|Adapter assemblies for interconnecting surgical loading units and handle assemblies| US9987095B2|2014-06-26|2018-06-05|Covidien Lp|Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units| US10561418B2|2014-06-26|2020-02-18|Covidien Lp|Adapter assemblies for interconnecting surgical loading units and handle assemblies| BR112017004361A2|2014-09-05|2017-12-05|Ethicon Llc|medical overcurrent modular power supply| US9737301B2|2014-09-05|2017-08-22|Ethicon Llc|Monitoring device degradation based on component evaluation| MX2017003960A|2014-09-26|2017-12-04|Ethicon Llc|Surgical stapling buttresses and adjunct materials.| US10206677B2|2014-09-26|2019-02-19|Ethicon Llc|Surgical staple and driver arrangements for staple cartridges| WO2016057225A1|2014-10-07|2016-04-14|Covidien Lp|Handheld electromechanical surgical system| US10076325B2|2014-10-13|2018-09-18|Ethicon Llc|Surgical stapling apparatus comprising a tissue stop| US9924944B2|2014-10-16|2018-03-27|Ethicon Llc|Staple cartridge comprising an adjunct material| US10729443B2|2014-10-21|2020-08-04|Covidien Lp|Adapter, extension, and connector assemblies for surgical devices| US10226254B2|2014-10-21|2019-03-12|Covidien Lp|Adapter, extension, and connector assemblies for surgical devices| US9991069B2|2014-10-22|2018-06-05|Covidien Lp|Surgical instruments and switch assemblies thereof| US10085750B2|2014-10-22|2018-10-02|Covidien Lp|Adapter with fire rod J-hook lockout| US9949737B2|2014-10-22|2018-04-24|Covidien Lp|Adapter assemblies for interconnecting surgical loading units and handle assemblies| US10517594B2|2014-10-29|2019-12-31|Ethicon Llc|Cartridge assemblies for surgical staplers| US11141153B2|2014-10-29|2021-10-12|Cilag Gmbh International|Staple cartridges comprising driver arrangements| US9844376B2|2014-11-06|2017-12-19|Ethicon Llc|Staple cartridge comprising a releasable adjunct material| US10898196B2|2014-11-21|2021-01-26|Covidien Lp|Cleaning apparatus for surgical instruments| US10736636B2|2014-12-10|2020-08-11|Ethicon Llc|Articulatable surgical instrument system| US10085748B2|2014-12-18|2018-10-02|Ethicon Llc|Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors| US9987000B2|2014-12-18|2018-06-05|Ethicon Llc|Surgical instrument assembly comprising a flexible articulation system| US9844375B2|2014-12-18|2017-12-19|Ethicon Llc|Drive arrangements for articulatable surgical instruments| US9844374B2|2014-12-18|2017-12-19|Ethicon Llc|Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member| US10117649B2|2014-12-18|2018-11-06|Ethicon Llc|Surgical instrument assembly comprising a lockable articulation system| US10188385B2|2014-12-18|2019-01-29|Ethicon Llc|Surgical instrument system comprising lockable systems| US10004501B2|2014-12-18|2018-06-26|Ethicon Llc|Surgical instruments with improved closure arrangements| US10039549B2|2015-01-07|2018-08-07|Covidien Lp|Loading unit retention clip for surgical stapling instrument| US10111665B2|2015-02-19|2018-10-30|Covidien Lp|Electromechanical surgical systems| US10045779B2|2015-02-27|2018-08-14|Ethicon Llc|Surgical instrument system comprising an inspection station| US11154301B2|2015-02-27|2021-10-26|Cilag Gmbh International|Modular stapling assembly| US10226250B2|2015-02-27|2019-03-12|Ethicon Llc|Modular stapling assembly| US10180463B2|2015-02-27|2019-01-15|Ethicon Llc|Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band| US9901342B2|2015-03-06|2018-02-27|Ethicon Endo-Surgery, Llc|Signal and power communication system positioned on a rotatable shaft| US9993248B2|2015-03-06|2018-06-12|Ethicon Endo-Surgery, Llc|Smart sensors with local signal processing| US10045776B2|2015-03-06|2018-08-14|Ethicon Llc|Control techniques and sub-processor contained within modular shaft with select control processing from handle| US9808246B2|2015-03-06|2017-11-07|Ethicon Endo-Surgery, Llc|Method of operating a powered surgical instrument| US10245033B2|2015-03-06|2019-04-02|Ethicon Llc|Surgical instrument comprising a lockable battery housing| US9924961B2|2015-03-06|2018-03-27|Ethicon Endo-Surgery, Llc|Interactive feedback system for powered surgical instruments| US10052044B2|2015-03-06|2018-08-21|Ethicon Llc|Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures| US10617412B2|2015-03-06|2020-04-14|Ethicon Llc|System for detecting the mis-insertion of a staple cartridge into a surgical stapler| US10687806B2|2015-03-06|2020-06-23|Ethicon Llc|Adaptive tissue compression techniques to adjust closure rates for multiple tissue types| US10190888B2|2015-03-11|2019-01-29|Covidien Lp|Surgical stapling instruments with linear position assembly| US10213201B2|2015-03-31|2019-02-26|Ethicon Llc|Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw| US10327779B2|2015-04-10|2019-06-25|Covidien Lp|Adapter, extension, and connector assemblies for surgical devices| US10226239B2|2015-04-10|2019-03-12|Covidien Lp|Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof| EP3285656A4|2015-04-22|2019-01-02|Covidien LP|Handheld electromechanical surgical system| US10299789B2|2015-05-05|2019-05-28|Covidie LP|Adapter assembly for surgical stapling devices| US10117650B2|2015-05-05|2018-11-06|Covidien Lp|Adapter assembly and loading units for surgical stapling devices| US10178992B2|2015-06-18|2019-01-15|Ethicon Llc|Push/pull articulation drive systems for articulatable surgical instruments| US10751058B2|2015-07-28|2020-08-25|Covidien Lp|Adapter assemblies for surgical devices| US10835249B2|2015-08-17|2020-11-17|Ethicon Llc|Implantable layers for a surgical instrument| US10517599B2|2015-08-26|2019-12-31|Ethicon Llc|Staple cartridge assembly comprising staple cavities for providing better staple guidance| MX2018002388A|2015-08-26|2018-08-01|Ethicon Llc|Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading.| US11213295B2|2015-09-02|2022-01-04|Cilag Gmbh International|Surgical staple configurations with camming surfaces located between portions supporting surgical staples| US10363036B2|2015-09-23|2019-07-30|Ethicon Llc|Surgical stapler having force-based motor control| US10327769B2|2015-09-23|2019-06-25|Ethicon Llc|Surgical stapler having motor control based on a drive system component| US10085751B2|2015-09-23|2018-10-02|Ethicon Llc|Surgical stapler having temperature-based motor control| US10105139B2|2015-09-23|2018-10-23|Ethicon Llc|Surgical stapler having downstream current-based motor control| US10076326B2|2015-09-23|2018-09-18|Ethicon Llc|Surgical stapler having current mirror-based motor control| US10238386B2|2015-09-23|2019-03-26|Ethicon Llc|Surgical stapler having motor control based on an electrical parameter related to a motor current| US10299878B2|2015-09-25|2019-05-28|Ethicon Llc|Implantable adjunct systems for determining adjunct skew| AU2016327595B2|2015-09-25|2020-07-23|Covidien Lp|Robotic surgical assemblies and electromechanical instruments thereof| EP3352699A4|2015-09-25|2019-07-10|Covidien LP|Robotic surgical assemblies and instrument drive connectors thereof| WO2017053358A1|2015-09-25|2017-03-30|Covidien Lp|Surgical robotic assemblies and instrument adapters thereof| US10182813B2|2015-09-29|2019-01-22|Ethicon Llc|Surgical stapling instrument with shaft release, powered firing, and powered articulation| US10433846B2|2015-09-30|2019-10-08|Ethicon Llc|Compressible adjunct with crossing spacer fibers| US10327777B2|2015-09-30|2019-06-25|Ethicon Llc|Implantable layer comprising plastically deformed fibers| US10980539B2|2015-09-30|2021-04-20|Ethicon Llc|Implantable adjunct comprising bonded layers| US10371238B2|2015-10-09|2019-08-06|Covidien Lp|Adapter assembly for surgical device| US10413298B2|2015-10-14|2019-09-17|Covidien Lp|Adapter assembly for surgical devices| US10729435B2|2015-11-06|2020-08-04|Covidien Lp|Adapter assemblies for interconnecting surgical loading units and handle assemblies| US10292705B2|2015-11-06|2019-05-21|Covidien Lp|Surgical apparatus| US10939952B2|2015-11-06|2021-03-09|Covidien Lp|Adapter, extension, and connector assemblies for surgical devices| US10595864B2|2015-11-24|2020-03-24|Covidien Lp|Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof| US10617411B2|2015-12-01|2020-04-14|Covidien Lp|Adapter assembly for surgical device| US10433841B2|2015-12-10|2019-10-08|Covidien Lp|Adapter assembly for surgical device| US10420554B2|2015-12-22|2019-09-24|Covidien Lp|Personalization of powered surgical devices| US10285690B2|2015-12-22|2019-05-14|Covidien Lp|Surgical instruments and switch assemblies thereof| US10253847B2|2015-12-22|2019-04-09|Covidien Lp|Electromechanical surgical devices with single motor drives and adapter assemblies therfor| US10292704B2|2015-12-30|2019-05-21|Ethicon Llc|Mechanisms for compensating for battery pack failure in powered surgical instruments| US10368865B2|2015-12-30|2019-08-06|Ethicon Llc|Mechanisms for compensating for drivetrain failure in powered surgical instruments| US10265068B2|2015-12-30|2019-04-23|Ethicon Llc|Surgical instruments with separable motors and motor control circuits| US10314579B2|2016-01-07|2019-06-11|Covidien Lp|Adapter assemblies for interconnecting surgical loading units and handle assemblies| US10524797B2|2016-01-13|2020-01-07|Covidien Lp|Adapter assembly including a removable trocar assembly| US10660623B2|2016-01-15|2020-05-26|Covidien Lp|Centering mechanism for articulation joint| US10508720B2|2016-01-21|2019-12-17|Covidien Lp|Adapter assembly with planetary gear drive for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof| US10588625B2|2016-02-09|2020-03-17|Ethicon Llc|Articulatable surgical instruments with off-axis firing beam arrangements| US11213293B2|2016-02-09|2022-01-04|Cilag Gmbh International|Articulatable surgical instruments with single articulation link arrangements| US10835255B2|2016-02-10|2020-11-17|Covidien Lp|Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units| US10398439B2|2016-02-10|2019-09-03|Covidien Lp|Adapter, extension, and connector assemblies for surgical devices| US11224426B2|2016-02-12|2022-01-18|Cilag Gmbh International|Mechanisms for compensating for drivetrain failure in powered surgical instruments| US10448948B2|2016-02-12|2019-10-22|Ethicon Llc|Mechanisms for compensating for drivetrain failure in powered surgical instruments| US10258331B2|2016-02-12|2019-04-16|Ethicon Llc|Mechanisms for compensating for drivetrain failure in powered surgical instruments| US10376263B2|2016-04-01|2019-08-13|Ethicon Llc|Anvil modification members for surgical staplers| US10617413B2|2016-04-01|2020-04-14|Ethicon Llc|Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts| US10426467B2|2016-04-15|2019-10-01|Ethicon Llc|Surgical instrument with detection sensors| US10357247B2|2016-04-15|2019-07-23|Ethicon Llc|Surgical instrument with multiple program responses during a firing motion| US11179150B2|2016-04-15|2021-11-23|Cilag Gmbh International|Systems and methods for controlling a surgical stapling and cutting instrument| US10335145B2|2016-04-15|2019-07-02|Ethicon Llc|Modular surgical instrument with configurable operating mode| US10828028B2|2016-04-15|2020-11-10|Ethicon Llc|Surgical instrument with multiple program responses during a firing motion| US10492783B2|2016-04-15|2019-12-03|Ethicon, Llc|Surgical instrument with improved stop/start control during a firing motion| US10405859B2|2016-04-15|2019-09-10|Ethicon Llc|Surgical instrument with adjustable stop/start control during a firing motion| US10456137B2|2016-04-15|2019-10-29|Ethicon Llc|Staple formation detection mechanisms| US10368867B2|2016-04-18|2019-08-06|Ethicon Llc|Surgical instrument comprising a lockout| US10617486B2|2016-05-04|2020-04-14|Covidien Lp|Manual retraction tool for use with an electromechanical surgical device| US11039833B2|2016-05-04|2021-06-22|Covidien Lp|Manual retraction tool for use with an electromechanical surgical device| CN110123401A|2018-02-02|2019-08-16|柯惠Lp公司|The manual retrieving tool being used together with electromechanical surgical equipment| US10799239B2|2016-05-09|2020-10-13|Covidien Lp|Adapter assembly with pulley system and worm gear drive for interconnecting electromechanical surgical devices and surgical end effectors| US10736637B2|2016-05-10|2020-08-11|Covidien Lp|Brake for adapter assemblies for surgical devices| US10588610B2|2016-05-10|2020-03-17|Covidien Lp|Adapter assemblies for surgical devices| US10702302B2|2016-05-17|2020-07-07|Covidien Lp|Adapter assembly including a removable trocar assembly| US10463374B2|2016-05-17|2019-11-05|Covidien Lp|Adapter assembly for a flexible circular stapler| GB2553259B|2016-05-17|2021-07-14|Creo Medical Ltd|Control device for a surgical instrument| EP3463146A4|2016-05-26|2020-03-11|Covidien LP|Robotic surgical assemblies| USD847989S1|2016-06-24|2019-05-07|Ethicon Llc|Surgical fastener cartridge| USD850617S1|2016-06-24|2019-06-04|Ethicon Llc|Surgical fastener cartridge| USD826405S1|2016-06-24|2018-08-21|Ethicon Llc|Surgical fastener| US10893863B2|2016-06-24|2021-01-19|Ethicon Llc|Staple cartridge comprising offset longitudinal staple rows| US10653398B2|2016-08-05|2020-05-19|Covidien Lp|Adapter assemblies for surgical devices| US10537983B2|2016-10-17|2020-01-21|Black & Decker, Inc.|Modular power tool| US11116594B2|2016-11-08|2021-09-14|Covidien Lp|Surgical systems including adapter assemblies for interconnecting electromechanical surgical devices and end effectors| US10687810B2|2016-12-21|2020-06-23|Ethicon Llc|Stepped staple cartridge with tissue retention and gap setting features| US10568625B2|2016-12-21|2020-02-25|Ethicon Llc|Staple cartridges and arrangements of staples and staple cavities therein| US20180168608A1|2016-12-21|2018-06-21|Ethicon Endo-Surgery, Llc|Surgical instrument system comprising an end effector lockout and a firing assembly lockout| US20180168625A1|2016-12-21|2018-06-21|Ethicon Endo-Surgery, Llc|Surgical stapling instruments with smart staple cartridges| US11134942B2|2016-12-21|2021-10-05|Cilag Gmbh International|Surgical stapling instruments and staple-forming anvils| US10499914B2|2016-12-21|2019-12-10|Ethicon Llc|Staple forming pocket arrangements| US10993715B2|2016-12-21|2021-05-04|Ethicon Llc|Staple cartridge comprising staples with different clamping breadths| US10779823B2|2016-12-21|2020-09-22|Ethicon Llc|Firing member pin angle| US10675026B2|2016-12-21|2020-06-09|Ethicon Llc|Methods of stapling tissue| US10588632B2|2016-12-21|2020-03-17|Ethicon Llc|Surgical end effectors and firing members thereof| US10945727B2|2016-12-21|2021-03-16|Ethicon Llc|Staple cartridge with deformable driver retention features| CN110087565A|2016-12-21|2019-08-02|爱惜康有限责任公司|Surgical stapling system| US10517595B2|2016-12-21|2019-12-31|Ethicon Llc|Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector| US20180168647A1|2016-12-21|2018-06-21|Ethicon Endo-Surgery, Llc|Surgical stapling instruments having end effectors with positive opening features| US10617414B2|2016-12-21|2020-04-14|Ethicon Llc|Closure member arrangements for surgical instruments| US10426471B2|2016-12-21|2019-10-01|Ethicon Llc|Surgical instrument with multiple failure response modes| US10758229B2|2016-12-21|2020-09-01|Ethicon Llc|Surgical instrument comprising improved jaw control| US10492785B2|2016-12-21|2019-12-03|Ethicon Llc|Shaft assembly comprising a lockout| US10639034B2|2016-12-21|2020-05-05|Ethicon Llc|Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present| US10631945B2|2017-02-28|2020-04-28|Covidien Lp|Autoclavable load sensing device| US10299790B2|2017-03-03|2019-05-28|Covidien Lp|Adapter with centering mechanism for articulation joint| US10660641B2|2017-03-16|2020-05-26|Covidien Lp|Adapter with centering mechanism for articulation joint| US10390858B2|2017-05-02|2019-08-27|Covidien Lp|Powered surgical device with speed and current derivative motor shut off| US10603035B2|2017-05-02|2020-03-31|Covidien Lp|Surgical loading unit including an articulating end effector| US10881399B2|2017-06-20|2021-01-05|Ethicon Llc|Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument| USD879808S1|2017-06-20|2020-03-31|Ethicon Llc|Display panel with graphical user interface| US10980537B2|2017-06-20|2021-04-20|Ethicon Llc|Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations| US10307170B2|2017-06-20|2019-06-04|Ethicon Llc|Method for closed loop control of motor velocity of a surgical stapling and cutting instrument| US10646220B2|2017-06-20|2020-05-12|Ethicon Llc|Systems and methods for controlling displacement member velocity for a surgical instrument| US10390841B2|2017-06-20|2019-08-27|Ethicon Llc|Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation| US10813639B2|2017-06-20|2020-10-27|Ethicon Llc|Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions| US10624633B2|2017-06-20|2020-04-21|Ethicon Llc|Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument| US10779820B2|2017-06-20|2020-09-22|Ethicon Llc|Systems and methods for controlling motor speed according to user input for a surgical instrument| US11090046B2|2017-06-20|2021-08-17|Cilag Gmbh International|Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument| US10327767B2|2017-06-20|2019-06-25|Ethicon Llc|Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation| US11071554B2|2017-06-20|2021-07-27|Cilag Gmbh International|Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements| US10881396B2|2017-06-20|2021-01-05|Ethicon Llc|Surgical instrument with variable duration trigger arrangement| USD890784S1|2017-06-20|2020-07-21|Ethicon Llc|Display panel with changeable graphical user interface| USD879809S1|2017-06-20|2020-03-31|Ethicon Llc|Display panel with changeable graphical user interface| US10368864B2|2017-06-20|2019-08-06|Ethicon Llc|Systems and methods for controlling displaying motor velocity for a surgical instrument| US10888321B2|2017-06-20|2021-01-12|Ethicon Llc|Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument| US10993716B2|2017-06-27|2021-05-04|Ethicon Llc|Surgical anvil arrangements| US11090049B2|2017-06-27|2021-08-17|Cilag Gmbh International|Staple forming pocket arrangements| US10772629B2|2017-06-27|2020-09-15|Ethicon Llc|Surgical anvil arrangements| US10856869B2|2017-06-27|2020-12-08|Ethicon Llc|Surgical anvil arrangements| USD851762S1|2017-06-28|2019-06-18|Ethicon Llc|Anvil| USD869655S1|2017-06-28|2019-12-10|Ethicon Llc|Surgical fastener cartridge| US10786253B2|2017-06-28|2020-09-29|Ethicon Llc|Surgical end effectors with improved jaw aperture arrangements| USD854151S1|2017-06-28|2019-07-16|Ethicon Llc|Surgical instrument shaft| US11246592B2|2017-06-28|2022-02-15|Cilag Gmbh International|Surgical instrument comprising an articulation system lockable to a frame| US10765427B2|2017-06-28|2020-09-08|Ethicon Llc|Method for articulating a surgical instrument| USD906355S1|2017-06-28|2020-12-29|Ethicon Llc|Display screen or portion thereof with a graphical user interface for a surgical instrument| US10903685B2|2017-06-28|2021-01-26|Ethicon Llc|Surgical shaft assemblies with slip ring assemblies forming capacitive channels| US11259805B2|2017-06-28|2022-03-01|Cilag Gmbh International|Surgical instrument comprising firing member supports| US10716614B2|2017-06-28|2020-07-21|Ethicon Llc|Surgical shaft assemblies with slip ring assemblies with increased contact pressure| US10211586B2|2017-06-28|2019-02-19|Ethicon Llc|Surgical shaft assemblies with watertight housings| US20190000477A1|2017-06-28|2019-01-03|Ethicon Llc|Surgical instrument comprising a shaft including a housing arrangement| US10898183B2|2017-06-29|2021-01-26|Ethicon Llc|Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing| US10932772B2|2017-06-29|2021-03-02|Ethicon Llc|Methods for closed loop velocity control for robotic surgical instrument| US10258418B2|2017-06-29|2019-04-16|Ethicon Llc|System for controlling articulation forces| US11007022B2|2017-06-29|2021-05-18|Ethicon Llc|Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument| US10398434B2|2017-06-29|2019-09-03|Ethicon Llc|Closed loop velocity control of closure member for robotic surgical instrument| US10874289B2|2017-07-21|2020-12-29|Karl Storz Imaging, Inc.|Control interface and adjustment mechanism for an endoscope or exoscope| US10772700B2|2017-08-23|2020-09-15|Covidien Lp|Contactless loading unit detection| US10743872B2|2017-09-29|2020-08-18|Ethicon Llc|System and methods for controlling a display of a surgical instrument| USD907647S1|2017-09-29|2021-01-12|Ethicon Llc|Display screen or portion thereof with animated graphical user interface| US10729501B2|2017-09-29|2020-08-04|Ethicon Llc|Systems and methods for language selection of a surgical instrument| US10796471B2|2017-09-29|2020-10-06|Ethicon Llc|Systems and methods of displaying a knife position for a surgical instrument| USD917500S1|2017-09-29|2021-04-27|Ethicon Llc|Display screen or portion thereof with graphical user interface| US10765429B2|2017-09-29|2020-09-08|Ethicon Llc|Systems and methods for providing alerts according to the operational state of a surgical instrument| USD907648S1|2017-09-29|2021-01-12|Ethicon Llc|Display screen or portion thereof with animated graphical user interface| US11090075B2|2017-10-30|2021-08-17|Cilag Gmbh International|Articulation features for surgical end effector| US11134944B2|2017-10-30|2021-10-05|Cilag Gmbh International|Surgical stapler knife motion controls| US10779903B2|2017-10-31|2020-09-22|Ethicon Llc|Positive shaft rotation lock activated by jaw closure| US10842490B2|2017-10-31|2020-11-24|Ethicon Llc|Cartridge body design with force reduction based on firing completion| US10869666B2|2017-12-15|2020-12-22|Ethicon Llc|Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument| US10828033B2|2017-12-15|2020-11-10|Ethicon Llc|Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto| US10743874B2|2017-12-15|2020-08-18|Ethicon Llc|Sealed adapters for use with electromechanical surgical instruments| US11197670B2|2017-12-15|2021-12-14|Cilag Gmbh International|Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed| US11006955B2|2017-12-15|2021-05-18|Ethicon Llc|End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments| US11033267B2|2017-12-15|2021-06-15|Ethicon Llc|Systems and methods of controlling a clamping member firing rate of a surgical instrument| US10779826B2|2017-12-15|2020-09-22|Ethicon Llc|Methods of operating surgical end effectors| US10743875B2|2017-12-15|2020-08-18|Ethicon Llc|Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member| US11071543B2|2017-12-15|2021-07-27|Cilag Gmbh International|Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges| US10779825B2|2017-12-15|2020-09-22|Ethicon Llc|Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments| US10966718B2|2017-12-15|2021-04-06|Ethicon Llc|Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments| US10687813B2|2017-12-15|2020-06-23|Ethicon Llc|Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments| US10835330B2|2017-12-19|2020-11-17|Ethicon Llc|Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly| US10729509B2|2017-12-19|2020-08-04|Ethicon Llc|Surgical instrument comprising closure and firing locking mechanism| US10716565B2|2017-12-19|2020-07-21|Ethicon Llc|Surgical instruments with dual articulation drivers| USD910847S1|2017-12-19|2021-02-16|Ethicon Llc|Surgical instrument assembly| US11045270B2|2017-12-19|2021-06-29|Cilag Gmbh International|Robotic attachment comprising exterior drive actuator| US11020112B2|2017-12-19|2021-06-01|Ethicon Llc|Surgical tools configured for interchangeable use with different controller interfaces| US11076853B2|2017-12-21|2021-08-03|Cilag Gmbh International|Systems and methods of displaying a knife position during transection for a surgical instrument| US20190192151A1|2017-12-21|2019-06-27|Ethicon Llc|Surgical instrument having a display comprising image layers| US11129680B2|2017-12-21|2021-09-28|Cilag Gmbh International|Surgical instrument comprising a projector| US11160556B2|2018-04-23|2021-11-02|Covidien Lp|Threaded trocar for adapter assemblies| US11241233B2|2018-07-10|2022-02-08|Covidien Lp|Apparatus for ensuring strain gauge accuracy in medical reusable device| US20200015808A1|2018-07-10|2020-01-16|Covidien Lp|Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units| US11076858B2|2018-08-14|2021-08-03|Covidien Lp|Single use electronics for surgical devices| US11253256B2|2018-08-20|2022-02-22|Cilag Gmbh International|Articulatable motor powered surgical instruments with dedicated articulation motor arrangements| US10779821B2|2018-08-20|2020-09-22|Ethicon Llc|Surgical stapler anvils with tissue stop features configured to avoid tissue pinch| US11045192B2|2018-08-20|2021-06-29|Cilag Gmbh International|Fabricating techniques for surgical stapler anvils| US11207065B2|2018-08-20|2021-12-28|Cilag Gmbh International|Method for fabricating surgical stapler anvils| US10856870B2|2018-08-20|2020-12-08|Ethicon Llc|Switching arrangements for motor powered articulatable surgical instruments| US10912559B2|2018-08-20|2021-02-09|Ethicon Llc|Reinforced deformable anvil tip for surgical stapler anvil| US11083458B2|2018-08-20|2021-08-10|Cilag Gmbh International|Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions| US11039834B2|2018-08-20|2021-06-22|Cilag Gmbh International|Surgical stapler anvils with staple directing protrusions and tissue stability features| US10842492B2|2018-08-20|2020-11-24|Ethicon Llc|Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system| USD914878S1|2018-08-20|2021-03-30|Ethicon Llc|Surgical instrument anvil| US11147551B2|2019-03-25|2021-10-19|Cilag Gmbh International|Firing drive arrangements for surgical systems| US11172929B2|2019-03-25|2021-11-16|Cilag Gmbh International|Articulation drive arrangements for surgical systems| US11147553B2|2019-03-25|2021-10-19|Cilag Gmbh International|Firing drive arrangements for surgical systems| US11241228B2|2019-04-05|2022-02-08|Covidien Lp|Surgical instrument including an adapter assembly and an articulating surgical loading unit| US11253254B2|2019-04-30|2022-02-22|Cilag Gmbh International|Shaft rotation actuator on a surgical instrument| US11058429B2|2019-06-24|2021-07-13|Covidien Lp|Load sensing assemblies and methods of manufacturing load sensing assemblies| US11207146B2|2019-06-27|2021-12-28|Cilag Gmbh International|Surgical instrument drive systems with cable-tightening system| US11219455B2|2019-06-28|2022-01-11|Cilag Gmbh International|Surgical instrument including a lockout key| US11259803B2|2019-06-28|2022-03-01|Cilag Gmbh International|Surgical stapling system having an information encryption protocol| US11229437B2|2019-06-28|2022-01-25|Cilag Gmbh International|Method for authenticating the compatibility of a staple cartridge with a surgical instrument| US11246678B2|2019-06-28|2022-02-15|Cilag Gmbh International|Surgical stapling system having a frangible RFID tag| US11051807B2|2019-06-28|2021-07-06|Cilag Gmbh International|Packaging assembly including a particulate trap| US11224497B2|2019-06-28|2022-01-18|Cilag Gmbh International|Surgical systems with multiple RFID tags| US11123101B2|2019-07-05|2021-09-21|Covidien Lp|Retaining mechanisms for trocar assemblies| US11076850B2|2019-11-26|2021-08-03|Covidien Lp|Surgical instrument including an adapter assembly and an articulating surgical loading unit| US11234698B2|2019-12-19|2022-02-01|Cilag Gmbh International|Stapling system comprising a clamp lockout and a firing lockout| CN112617935B|2020-12-18|2022-02-01|苏州法兰克曼医疗器械有限公司|Anastomat with automatic resetting safety mechanism for digestive system department|
法律状态:
2017-11-16| FGA| Letters patent sealed or granted (standard patent)|
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 US201261654191P| true| 2012-06-01|2012-06-01|| US61/654,191||2012-06-01|| US13/875,571||2013-05-02|| US13/875,571|US9597104B2|2012-06-01|2013-05-02|Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|