专利摘要:
The invention relates to face equipment for mechanical extraction in longwall mining, in particular in underground coal mining, comprising a face conveyor (17) which is arranged along the mining wall, extraction means (18) which can be moved along the face conveyor (17), and shield support frames (10) supported on the face conveyor (17) at an angle thereto. The invention is characterized in that a hose level (21) which comprises a liquid-filled hose (22) is placed in the region of the face conveyor (17) on individual support frames (10), said hose level (21) being placed between the face conveyor (17) and at least one main component of the shield support frame (10), in order to ascertain the height of the face opening, and a pressure sensor (23, 24, 28) is placed at at least one end of the hose (22). In addition to taking into consideration a longitudinal and/or transverse inclination of the face conveyor (17) and of the main component of the shield support frame (10) when ascertaining the face height, the face conveyor (17) and the shield support frame (10) main component which has the hose-level end are each equipped with an inclination measuring arrangement (25, 26) which allows the measurement of at least two tilting axes towards the horizontal, and the pressure sensor (23, 24, 28) and the inclination measuring arrangements (25, 26) are connected to an analyzing and control unit.
公开号:AU2012375986A1
申请号:U2012375986
申请日:2012-04-02
公开日:2014-10-09
发明作者:Martin Junker;Armin Mozar
申请人:RAG AG;
IPC主号:E21D23-16
专利说明:
FACE EQUIPMENT WITH FLEXIBLE HOSE LEVELS INSTALLED BETWEEN THE FACE CONVEYOR AND SHIELD SUPPORT FRAMES SPECIFICATION The invention relates to a face equipment for mechanical extraction in longwall mining, in particular in the underground hard coal mining industry, with a face conveyor arranged along the mining wall, an extraction means that can be moved along the face conveyor, and shield support frames supportet on the face conveyor at an angle thereto NO 2009/103303 describes a face equipment with the aforementioned :features along with a method for controlling such a face equipment. To this end, the above publication explains in detail that automating such a controller for the face equipment generally depends on knowing where the face equipment is positioned in the room, but especially on knowing the respective height of the face opening tnaz exists in the region of the front end of the roof canopy of the shield support frame. The respective base values for calculating the face opening height are determined in this prior art by means of inclination sensors secured to the main components of the shield support frame such as the floor skid, gob shield, support connection rod and roof canopy, which determine the inclination of the respective components against the vertical. By comparing the recorded data with base data that are stored in an evaluation unit and define the geometric orientation of the components of the shield support frame and ts movement while advancing the respective height perpendicular to the stratification can be calculated for the shield support frame at the front end of its roof canopy, which represents a gauge for the height of the face opening. The known procedure is associated with the disadvantage of complex computing operations, which further require that -2 the base data valid for the respective design of the used shield support frame be accurately determined, and that a useable algorithm be generated for calculating the height perpendicular to the stratification of the shield support frame Apart from indirectly determining the height of the face opening mentioned above, a method for directly ascertaining height data by means of a flexible hose level system while boring tunnels is known from DE 43 33 032 02. Situated between the tunnel boring machine and a reference point here is a flexible hose level system, whose closed, liquid filted hose is allocated to the reference height at one end, and to the tunnel boring machine at the other end for determining additional measuring height dimensions for the tunnel advancing machine. The object of the invention is to simplify face opening height determination given a generic face equipment. The solution to this object along with advantageous embodiments and further developments of the invention may be achieved from the contents of the claims, which follow this specification, The central idea underlying the invention provides that, in order to determine the height of the face opening, a flexible hose level with a 1quid-filled hose placed between the face conveyor and at least one main component of the shield support frame is installed in the area of the face conveyor on individual shield support frames, and a pressure sensor is arranged on at least one end of the hose, wherein, in addition to considering a longitudinal and/or transverse inclination of the face conveyor and the main component of the shield support frame during face height determination, an inclination measuring device that permits the measurement of at least two tilting axes against the horizontal is arranged on the face conveyor and on the main component of the shield d support frame exhibiting the end of the flexible hose level, and the pressure sensor and inclination measuring devices are connected to an analyzing and control unit. The invention is associated with the advantage that the flexible hose level arranged on individual shield support frames or even on each shield support frame and leading to the face conveyor can be used to ascertain the height distance between the face conveyor, and hence also the extraction machine guided on the face conveyor, and a primary component of the shield support frame, and to calculate the distance between the lower edge of the face conveyor and the upper edge of the roof canopy as the height of the face opening or face eight, taking into account the geometrically fixed position of the hose ends on the face conveyor and primary component of the shield support frame. Since the invention provides for arranging inclination measuring devices on the face conveyor and the respective primary component of the shield support frame, the latter furnish additional information about the transverse inclination and longitudinal inclination of both the face conveyor and the respective primary component of the shield support frame, and hence about the location of these components in the room. As a consequence, the trigonometric calculation formulas can be used to convert the result of determining the height between the face conveyor and roof canopy into the height perpendicular to the stratification for the face opening between the hanging wall and football. A first embodiment of the invention provides that the hose of the flexible hose level extend between the face conveyor and the roof canopy of the shield support frame, so that the dastance between the face conveyor and roof canopy can be directly ascertained -4 In a first configuration, the hose of the flexible hose level can here be guided from the face conveyor directly to tne root canopy, so that the hose runs freely from its point of attachment to the face conveyor directly up untlW the roof canopy, wherein, with the objective of obtaining additional measured values so as to improve the basis of calculation, it can be provided that the hose running between the face conveyor and roof canopy of the shield support frame extend beyond a pressure sensor secured to the root canopy-side end of the hose up until the floor skid of the shield support frame, and that a pressure sensor be situated on the end of the hose attached to the floor skid. An alternatively installed flexible hose level can also provide that the hose be guided from the face conveyor via the floor skid of the shield support frame and along another component, such as a prop or gob shield, up until the roof canopy. Since this hose configuration allows for incorporating a pressure sensor in the progression of the hose between the face conveyor and roof canopy in the area of the floor skid of the shield support frame, two height differences can be determined, specifically the difference in height between the face conveyor and the floor skid of the shield support frame on the one hand, and the difference in height between the floor skid and the roof canopy of the shield support frame on the other. From this stndpoint the bases for calculating the face height perpendicular to the stratification are improved even further. Because a hose that extends continuously from the face conveyor over the floor skid of the shield support frame up until its root canopy can cause problems in the course of mining operations, an embodiment of the invention provides that a respective flexible hose level with a liquid-filled hose and pressure sensors arranged at both of its ends be situated between the face onveyor and the floor skid of the shield support frame on the one hand, and between the floor skid and the roof canopy of the shield support frame on the other, wherein the floor skid-side pressure sensor of the hose running between the face conveyor and floor skid and the floor skidside pressure sensor of the hose running between the floor skid and the roof canopy of the shield support frame form an equipotential coupling point. in a corresponding embodiment of the invention in which a nose of the flexible hose level runs from the face conveyor directly to the roof canopy of the shield support frame and then further to its floor skid, it Can aIso be provided that a respective flexible hose level with a liquid-filled hose and pressure sensors arranged at both of its ends be situated between the face conveyor and the roof canoov of the shield support frame on the one hand, and between the roof canopy and the floor skid of the shield support frame on the other, wherein the roof canopy-side pressure sensor of the hose running between the face conveyor and roof canopy and the roof canopy- side pressure sensor of the hose running between the roof canopy and the floor skid of the shield support frame form an equipotential coupling point According to an alternative embodiment of the inventions it may be sufficient for- the hose of the flexi-ble hoelevel toextnd between the face conveyor and the floor skid of the shield support frame, so that a difference in height is ascertained between the face conveyor and floor skid. If the height of the extended shield support frame is to be included in the face height determination the invention provides that inclination measuring devices be arranged on az least three of the four primary coconents of each shield support frame such as the floor skid gob shield, support connection rods and roof canopy, so as to determine -6 the respective inclination of the primary components against the horizontal as the basis for calculating the eig9t perpendicular to the stratification for the shield support frame on tne front end of the roof canopy by comparing the measured data with the base data that are stored in the analyzing and control unit and define the geometric orientation of the components and their movement while advancing. Proceeding in this manner to determine the extended height of the shield support frame by way o calculation is known from WO 2009/103303 Al. With respect to the design of the flexible hose level, a first embodiment of the invention provides that toe flexible hose level is designed as a closed flexible hose level with a pressure-filled hose that is closed on both sides and connected to a pressure accumulator. The advantage to a flexible hose level closed on both sides essentially lies in the fact that a barometric correction is not needed, and that degassing-induced density changes in the liquid (for example, dissolved air) play a lesser, and hence negligible, role due to the elevated pressure level in the pressure-filled hose. For example, a disadvantage to the closed flexible hose level is that the liquid contained in the hose is completely chambered. As a result, pinching or temperature changes of the hose and liquid alike can alter the pressure level, In order to minimize this influence, a pre-stressed pressure accumulator blister with a pre-stressed gas that acts against the liquid column is connected to the hose. This also dampens hydraulic pressure fluctuations, e.g., caused by vibrations, while at the same time protecting the pressure sensors against possible pressure spikes. As a consequence, the measuring range of the pressure sensors can also be reduced to improve measuring accuracy. As an alternative, it can be provided that the flexible hose level be designed as a flexible hose level open on one side, with a hose connected to an overflow forming the highs t point of the flexible hose level, for example in the form of a correspondingly arranged overflow basin. The advantages to such a flexible hose level open on one side here lie in the fact that a simple hydrostatic pressure/height determination is present. Hose pinching or temperature-induced changes in internal prescure are prevented from influencing the measurement, and there is also only a slight sensitivity to dynamic influences in the form of mechanical oscillations. The disadvantage is that a barometric correction is required for precision measurements. In addition, problems may be encountered with respect to the arrangement of the open flexible hose level n the shield support frame, since the open end of the hose with the overflow basin must always lie at the highest location. This may require reconstIruction work given the variable operating conditions that cannot be ruled out during underground mining operations. A flexible hose level overflow or refilling must also be ensured to achieve a properly operating flexible hose level. An embodient of the invention can provide that the pressure sensor arranged on the skid-side end of the hose be an absolute pressure sensor. In order to improve pressure-measuring accuracy and minimize system-induced errors, an embodiment can provide that a pressure sensor be situated both on the face conveyor-side and roof canopy-side end of the hose. In such a two-sensor system, the difference between the indicated pressures can be used to infer the hydrostatic height dif ference. A two-sensor system is here associated with the advantage that using the difference in indicated pressures allows a barometric correction given atmospheric air pressure changes. Since the height is derived based upon the difference in pressure between both sensors, the height difference can be measured with little error based on the measured pressure difference, even given changes in the internal pressure of the hose, for example due to bent or pinched hoses An embodiment of the invention can here provide that the pressure sensor situated on the roof canopy-side end of the hose also be an absolute pressure sensor. Since absolute pressure sensors are somewhat less precise in terms of their measuring results and also more expensive to procure by comparison to also known relative pressure sensors, relative pressure sensors can also serve as pressure sensors when using two pressure sensors, and each measure the atmospheric pressure against the fluid pressure. In order to balance out a motional clearance with respect to the hose running between the face conveyor and shield support frame, specifically its roof canopy or its floor skid, as the shield support frame advances relative to the face conveyor, it can be provided that the hose or flexible hose section running between the face coneyor and shield support frame be exposed to the force of a retaining spring. An embodiment of the invention can provide that an inctination measuring device located on the same component of the shield support frame and a pressure sensor each be arranged in a shared sensor housing wmth shared power supply and measuring line connector. An embodiment of the invention provides that an inclination measuring device be situated on the floor skid of the shield support frame. In alternative embodiments of the invention, the respectively provided inclination measuring device can consist of two uniaxial inclination sensors or a respective biaxial inclination sensor. A known triaxial inclination sensor can also be used, even if the measuring results are only required with respect to two tilting axes,. The drawing 'presents embodiments of the invention, which will be described below. Shown on; Fig. la is a schematic side view of a face eguigment consisting of a face conveyor, an extraction machine traveling thereon, and connected shield support frames, with a flexible hose level installed between the face conveyor and roof canopy of the shield support frame; Fig. lb is a front view of the subject matter on Fig. la, leaving out the extraction machine guided on the face conveyor; Fig. 2 is the subject matter on Fig. la with a flexible hose level additionally guided further from the roof canopy to the floor skid of the shield support frame; Fig. 3 is another embodiment of the face equipment according to Fig. la or 2 with a flexible hose level installed from the face conveyor over the floor skid of the shield support frame up until its roof canopy; Fig, 4 is the subject matter on Fig, 3 or Fig. Iat again in another embodiment; Fig. 5 is an alternative embodiment of the face equipment according to Fig. la with a flexible hose level installed between the face conveyor and floor skid of the shield support frame, and inclination sensors arranged on the shield support frame for determining its extended height by way of calculation, - 0 The face equipment schematically depicted on Fig ia initially encompasses a shield support frame 10 with a floor skid L, which has attached to it two parallel arranged props 12, of which only one prop can be seen on Fig. la, and whose upper end bears a roof canopy 13. A gob shield 14 is secured to the rear (right) end of the roof canopy 13 by means of a hinge 15, wherein the gob shield 14 is supported by two support connection rods 16 resting on the floor skid 11 in the side view. The front ilefti end of the roof canopy 13 protrudes over a face conveyor 17, upon which can travel an extraction machine 18 designed as a disc shearer with a hanging wall disc 19 and footwall disc situated between the face conveyor 17 and the roof canopy 13 of the shield support frame 10 is a flexible hose level 21 with a hose 22 running freely between the face conveyor 17 and roof canopy 13, whose lower end is arranged on the face conveyor 17, and whose upper end is arranged on the roof canopy 13. Located at both ends of the hose 22 are respective pressure sensors, specifically a lower pressure sensor 23 at the end of the hose 22 situated on the face conveyor 17, and an upper pressure sensor 24 at the end of the hose 22 situated on the roof canopy 13. In the embodiment shown, the flexible hose leave 21 is designed as a closed flexible hose level with a closed. pressurized nose 22 that is filled with a suitable liquid, and also connected to a pressure accumulator in a manner that is not depicted, yet advantageous, for example, in the form of a pressure accumulator blister A liquid that can only absorb or dissolve a little gas is desired for use as e liquid. For simplicity's sake, the embodiment assumes that the hose 22 is filled with water which is a1o5 available in the aiea of the face equipment from a longwall jet system. The two pressure sensors 23 and 24 designed either as absolute pressure sensors or also as relative - 11 pressure sensors that measure the atmospheric pressure against the fluid pressure can be used to directly determine the height of the liquid column h, independently of the installed length of the hose 22. Provided that the upper end of the hose 22 with the upper pressure sensor 24 situated thereon observes a distance h 3 from the upper edge of the roof canopy 13 and correspondingly the lower end of the hose 22 with the lower pressure sensor 23 situated thereon observes a distance h from the lower edge of the floor skid l the resultant overall height of the shield support frame in the area of the flexible hose level 21 measures h, = h + h, hV If the respective height perpendicular to the stratification of the face opening is to be determined as the perpendicular distance between the upper edge of the roof canopy and lower edge of the face conveyor, this height perpendicular to the stratification also corresponds to the measurable height of the liquid column with the face equipment in a horizontal position. In practice, however, the positions encountered for the face equipment in the face room deviate from the ideal horizontal position of the face equipment, so that the height perpendicular to the stratification deviates from the height of the water column of the flexible hose level 21 measurable exclusively as the vertical distance between the pressure sensors 23, 24. For this reason, this height of the water column h, must be converted into the respective height perpendicular to the stratification h2, taking into account longitudinal inclinations or transverse inclinations of the shield support frame 10, including the face conveyor 17. In order to acquire the data necessary for this conversion, the roof canopy 13 as well as the face conveyor 17 in the shown embodiment each have secured to them an inclination measuring device 25 or 26, which optionally consists of two - 12 unia xal inclination sensors, a biaxial or a triaxial inclination sensor. It is important that the respectively used inclination measuring device make it possible to measure at least two tilting axes against the horizontal. The embodiment shown on Fig, la assumes a longitudinal inclination of the face equipment illustrated by angle $, wherein a transverse inclination of the face equipment according to angle tZ is simultaneously assumed based on the ront view of the face equipment on Fig, lb. For the sake of clarity, the extraction machine shown on Fig. la has been omitted from Fig. lb. The face equipment positioned in the room as described above yields the height perpendicular to the stratification h 2 as the face height according to hI = h + h, + h, / cosa cos In Lhe embodiment shown on Fig 2, the hose 22 of the flexible hose level 21 is guided beyond the roof canopy Side upper pressure sensor 2 with a hose branch 27 extending up until the floor skid 11 of the shield support frame 10, wherein the lower end of the hose branch 27 is secured to the floor skid 11. Accordingly, a pressure sensor 28 is also situated on the floor skid-side end of the hose branch 27. Given the postonal correction to be introduced, an inclination measuring device 29 is also correspondingly attached to |the floor skid 11 of the shield support frame 10, In addition to the distance between the face conveyor 17 and roof canopy 13, this embodiment also makes it possible to determine the extended height of the shield support frame 10, which may be significant when considering a potentially angled position of the face conveyor 17 relative to the floor skid 11 of the shield support frame 10, and hence to its location in the room, The embodiment shown on Fig. 3 only diffs from embodiment described on Fig la and 2 in that the hose 22 of 13 the flexible hose level 21 that again runs between the face conveyor 1 and the roof canopy 13 of the shield support frame 10 has been installed in another way The hose 22 is here guided from the face conveyor 1 over the floor skid 11 of the shield support frame 10 and the gob shield 14 up until the roof canopy 13. The conditions are otherwise identical, especially as relates to those described on Fio, 2. In order to facilitate potential repairs to the flexible nose level 21 run between the face conveyor 17 and roof canopy 13 of the shield support frame 10, the hose progression described for Fig. 3 has been divided into two separate flexible hose levels in the embodiment shown on Fig. 4, wherein, in addition to the flexible hose level 21 installed between the face conveyor 17 and floor skid 11 as the allocated primary component of the shield support frame 10, an independent flexible hose level 30 has also been run between the floor skid 11 and the roof canopy 13 of the shield support frame 10 with a hose 31. 1tf a pressure sensor 28 is again situated at the end of the hose 22 of the flexible hose level 21 arranged on the floor skid 11, then a second pressure sensor 32 is also situated at the lower end of the hose 31 of the second flexible hose level 30. Care must here be taken that the pressure sensors 28 and 32 respectively secured to the floor skid 11 at the ends of hose 22 and hose 31 form an equipotential coupling point The advantage to this embodiment is that, n due to the special stress placed on the hose 22 running between the face conveyor 17 and floor skid I by the constantly recurrn relative movemnents bhetw een the shield support frame 10 and face conveyor 17 during face equipment operation, the flexible hose level 21 with accompanying hose 22 can be easily replaced without touching the additional flexible hose leve1 30 installed on the shield support frame 10, so that a height measuring process does not have to be interrupted at this point.
- 4 As not shown in any greater detail, a hose progression realized according to Fig. 2 can also involve arranging a respective separate flexible hose level between the face conveyor 17 and roof canopy 13 and between the roof canopy 13 and floor skid 11, whose pressure sensors situated on the roof canopy 13 form an equipotential coupling point. Fig. 5 presents another embodiment of the invention, in which the arrangement of a flexible hose level is confined to its installation between the face conveyor 17 and the floor skid I of the shield support frame 10. In this regard, the roof canopy 13 of the shield support frame 10 is not included in the direct height determination by means of the flexible hose level, with the height of the extended shield support frame 10 instead being ascertained in a manner known from NC009/103303 Al by securing inclination sensors 29 or 35 or 36 or 26 to at least three of the four prima ry components of each shield support frame 10, such as the floor skid 11, gob shield 1 support connection rods 16 or roof canopy 13, which determine the inclination of the respective shield components against the horizontal in the advancing direction. Based on the data measured here the respective height perpendicular to the stratification for the shield support frame 10 at the: front end of the roof canopy 13 is calculated in a computer unit through comparison with base data stored therein, which define the geometric orientation of the components and their movement while advancing. In this respect 1 the extended height of the shield support frame 10 is available as a gauge for the height of the face opening, wherein the elevation of the face conveyor 17 in relation to the position of the shield support frame 10 in the room can be determined via the height determination performed with the flexible hose level 21 and included in the face height determination.
- 15 The features described in the preceding specification or in the following claims or on the attached drawings, in their specific forms, as a means for implementing the described function, or as a method or process for achieving the described result, can be used to implement the invention in their varying forms, whether separately or in any combination of these features.
权利要求:
Claims (13)
[1] 2. The face equipment according to claim 1, characterized in that the hose (22) of the flexible hose level (21) extends between the face conveyor (17) and the roof canopy (13) of the shield support frame (10) - 17 3. The face equipment according to claim 2 characterized in that the hose (22) of the flexible hose level (21) is guided from the face conveyor (17) directly to the roof canopy (13). 4 1 The face equipment according to claim 3, characterized in that the hose (22) running between the race conveyor (17) and roof canopy 13) of the shield support frame (10) extends beyond a pressure sensor (24) secured to the roof canopy-side end of the hose (22) up until the floor skid (1.) of the shield support frame (10), and that a pressure sensor (28) is situated on the end of the hose (22) attached to the floor skid (11) S. The face equipment according to claim characterized in that the hose (22) of the flexible hose level (21) is guided from the face conveyor (17 via the floor skid (11) of the shield support frame (10) and along its other components up until the roof canopy (13) 6 The face equipment according to claim 5, characterized in that a pressure sensor (28) is incorporated in the progression of the hose (22) between the face conveyor (1) and roof canopy (13) in the area of the floor skid (11) of the shield support frame (10)
[2] 7. The face equipment according to claim 2, characterized in that a respective flexible hose level (21 30) with a liquid-filed hose (22, 31) and pressure sensors (3, 28 32 24) arranged at both of its ends is situated between the face conveyor (17) and the floor skid (11) of the shield support frame (10) on the one hand, and between the floor skid (11) and the roof canopy (13) of the shield support frame (10) on the other, wherein the floor skid-side pressure sensor (28) of the hose (22 running between the face conveyor (1I) and floor skid (11) and the floor skid side pressure sensor (32) of the hose (31) running between the floor skid (11) and the roof canopy (13 of the shield support frame (10) form an equiotential coupling point, B The face equipment according to claim characterized in that a respective flexible hose level with a liquid-filled hose and pressure sensors arranged at both of its ends is situated between the face conveyor (17) and the roof canopy (13) of the shield support frame (10) on the one hand, and between the roof canopy (13) and the floor skid (11) of the shield support frame (10) on the other, wherein the roof canopy-side pressure sensor of the hose running between the face conveyor and roof canopy and the roof canopy-side pressure sensor of the hose running between the roof canopy and the floor skid of the shield support frame form an equipotential coupling point.
[3] 9. The face equipment according to claim characterized in that the hose (22) of the flexible hose level (21) extends between the face conveyor (17) and the floor skid (11) of the shield support frame (10), and that inclination measuring devices (29, 35, 36, 26) are arranged on at least three of the four primary components of each shield support frame (10), such as the floor skid (11), gob shield (14), support connection rods (16) and roof canopy (13) so as to determine the respective inclination of the primary components against the horizontal as the basis for calculating the height perpendicular to the stratification for the shield support frame (10) on the front end of the roof canopy (13) by comparing the measured data with the base data that are stored in the analyzing and control unit and define the - 19 geomtetric orientation of the components and their movement while advancing.
[4] 10. The face equipment according to one of claims 1 to 9, characterized in that the flexible hose level (21 30) is designed as a closed flexible hose level with a pressureiled hose (22, 31) that is closed on both sides and connected to a pressure accumulator.
[5] 11. The face equipment according to one of claims I to 9, characterized in that the flexible hose level (21 30) is designed as a flexible hose level open on one side, with a hose (22, 31) Connected to an overflow forming the highest point of the flexible hose level. 12 The face equipment according to one of claims 1 to 11, characterized in that the pressure sensor (23) arranged on the skid-side end of the hose (22 is an absolute pressure sensor.
[6] 13. The face equipment according to one of claims I to 12, characterized in that a pressure sensor (23, 21) is situated both on the face conveyor-side and roof canopy-side end of the hose (22)
[7] 14. The face equipment according to claim 13, characterized in that the pressure sensor (24) situated on the roof canopy-side end of the hose (22) is an absolute pressure sensor.
[8] 15. The face equipment according to one of claims I to 14, characterized in that the respective pressure sensors (23, 24, 28) arranged on the two ends of the hose (22, 31) each are relative pressure sensors that measure the atmospheric pressure against the fluid pressure. - 20 16. The face equipment according to one of claims 1 to 15, characterized in that the hose (22) running between the face conveyor (17 and shield support frame (10) is exposed to the force of a retaining spring.
[9] 17. T'he face equipment according to one of claims I to 16, characterized in that an inclination measuring device located on the same component of the shield support frame (10) and a pressure sensor each are arranged in a shared sensor housing with shared power supply and measuring line connector.
[10] 18. The. face equipment according to one of claims 4 or 7 to 9, characterized in that an inclination measuring device (29s is situated on the floor skid (1i of the shield support frame (10).
[11] 19. The face equipment according to one of claims 1, 9 or 17, characterized in that the inclination measuring device (25, 29, 2 35, 36) consists of two uniaxial inclination sensors.
[12] 20. The face equipment according to one of claims 1, 9 or 17, characterized in that the inclination measuring device (25, 29, 26, 35, 36) consists of a biaxial inclination sensor.
[13] 21. The face equipment according to one of claims 1, 9 or 17, characterized in that the inclination measuring device (25, 29, 26, 35, 36) consists of a triaxial inclination sensor.
类似技术:
公开号 | 公开日 | 专利标题
US9227792B2|2016-01-05|Longwall equipment with a hydrostatic tube balance thereon for determining the height position of individual elements of the longwall equipment
US8777325B2|2014-07-15|Method for determining the position or situation of installation components in mineral mining installations and mining installation
KR101282184B1|2013-07-04|Grouting apparatus
CN205403761U|2016-07-27|Shield constructs quick -witted angle of pitch, banking angle measuring device
US9470089B2|2016-10-18|Face equipment comprising hose levels placed on the shield support frames of said face equipment
AU2012375986B2|2015-08-13|Face equipment comprising hose levels placed between the face conveyor and the shield support frames
CN103397890B|2015-04-22|Locating device for mounting hobs of shield tunneling machine, and using method of locating device
KR20180057155A|2018-05-30|Displacement determination apparatus of tunnel
CN104236430A|2014-12-24|Shield tunnel section curvature radius testing device and application method thereof
CN105571564B|2018-05-29|A kind of elevation carrection sensor and the hydraulic support using elevation carrection sensor
CN207007171U|2018-02-13|Slope height measurement apparatus
CN102817605A|2012-12-12|Method for accurately measuring elevation of drilling point in subterranean drilling
CN207407886U|2018-05-25|A kind of measuring device for mine roadways
CN109458999A|2019-03-12|Drilling construction underlying parameter corrects measuring device and its measurement method
CN205957878U|2017-02-15|Leveling of sai la mechanism detects frock
CN104613841B|2017-12-19|ESP fluid pressure governor mounting brackets hole site gauge
CN208125122U|2018-11-20|A kind of hydraulic support height measuring device and system
CN209327576U|2019-08-30|A kind of tunnel excavation headroom control device
CN110470273B|2021-07-09|Roadway roof subsidence measuring ball monitoring method based on pressure difference
CN102607357A|2012-07-25|Method for rapidly detecting radian of template of tunnel lining trolley and debugging trolley in position
CN205718968U|2016-11-23|Scale-type laser orientation instrument
JP2002090187A|2002-03-27|Settlement measuring system and settlement measuring method
JP3370882B2|2003-01-27|Monorail surveying equipment
CN111911236A|2020-11-10|Automatic monitoring and measuring method for multi-section tunnel
RU2451178C1|2012-05-20|Device for measuring offsets of rock walls in mine workings
同族专利:
公开号 | 公开日
AU2012375986B2|2015-08-13|
EP2834465A1|2015-02-11|
US20150061352A1|2015-03-05|
RU2586991C2|2016-06-10|
CN104364469A|2015-02-18|
UA109514C2|2015-08-25|
CN104364469B|2016-08-24|
US9482091B2|2016-11-01|
WO2013149648A1|2013-10-10|
RU2014139143A|2016-05-27|
EP2834465B1|2017-04-26|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
SE436436B|1981-06-18|1984-12-10|Eurotrade Machine Pool Ab|DEPTH METER FOR EXCAVATORS|
DE4333032C2|1993-09-29|1996-11-28|Honeywell Ag|Device for determining the position, location and orientation of a tunnel boring machine|
JPH08219776A|1995-02-10|1996-08-30|Tokimec Inc|Level measuring device|
GB9713501D0|1997-06-26|1997-09-03|Henderson Stephen C|Relative height gauge|
DE102007035848C5|2007-07-31|2018-11-15|Marco Systemanalyse Und Entwicklung Gmbh|Removal screen and method for controlling or determining the position of a removal screen|
WO2009103307A1|2008-02-19|2009-08-27|Rag Aktiengesellschaft|Method for automatically creating a defined face opening in longwall coal mining operations|
WO2009103309A1|2008-02-19|2009-08-27|Rag Aktiengesellschaft|Method for automatically creating a defined face opening in plow operations in coal mining|
PL2247826T3|2008-02-19|2015-01-30|Rag Ag|Method for the controlled maintaining of a distance between the roof and the face in longwall mining operations|
EP2247823B1|2008-02-19|2014-06-25|Rag Aktiengesellschaft|Method for controlling longwall mining operations|
DE102009026011A1|2009-06-23|2010-12-30|Bucyrus Europe Gmbh|Method for determining the position or location of plant components in mining and extraction facilities|
WO2011020484A1|2009-08-20|2011-02-24|Rag Aktiengesellschaft|Method for producing a face opening using automation systems|
WO2011144223A1|2010-05-18|2011-11-24|Rag Aktiengesellschaft|Face equipment set up for inertial navigation, and method for operating said equipment|
AU2010366615B2|2010-12-30|2015-11-26|Rag Aktiengesellschaft|Face equipment with a hydrostatic tube balance installed thereon and intended for determining the height position of individual elements of the face equipment|
RU2670624C9|2014-01-21|2018-11-23|ДЖОЙ ЭмЭм ДЕЛАВЭР, ИНК.|Fluid tank balancing system for mining machine|CN105806264B|2016-05-13|2018-05-25|中国科学院国家天文台|A kind of method for measuring profound coaxiality of inner hole|
法律状态:
2015-12-10| FGA| Letters patent sealed or granted (standard patent)|
2018-10-25| MK14| Patent ceased section 143(a) (annual fees not paid) or expired|
优先权:
申请号 | 申请日 | 专利标题
PCT/EP2012/055990|WO2013149648A1|2012-04-02|2012-04-02|Face equipment comprising hose levels placed between the face conveyor and the shield support frames|
[返回顶部]