![]() Method and apparatus for reporting and cancelling cross-subframe co-channel interference
专利摘要:
Embodiments of the disclosure provide methods and apparatuses for cancelling cross-subframe co-channel interference (CCI), the method comprising receiving a channel quality indicator (CQI) of a cross-subframe from a user equipment (UE), the cross-subframe is a downlink subframe that is interfered by an uplink subframe in a neighboring cell; determining if the UE should be scheduled during cross-subframes by comparing the CQI with an adaptive threshold; and scheduling the UE during the cross-subframes if the UE is determined to be scheduled. By means of determining the resources scheduling based on an adaptive threshold, CCI may be cancelled and the overall resource usage will be increased according to the present invention. Furthermore, the adaptive threshold scheme can be easily implemented in practice. 公开号:AU2012375907A1 申请号:U2012375907 申请日:2012-03-27 公开日:2014-09-25 发明作者:Ming Lei;Zhennian SUN;Gang Wang;Yu Zhang;Dalin Zhu 申请人:NEC China Co Ltd; IPC主号:H04W72-04
专利说明:
WO 2013/143074 PCT/CN2012/073146 METHOD AND APPARATUS FOR REPORTING AND CANCELLING CROSS-SUBFRAME CO-CHANNEL INTERFERENCE FIELD OF THE INVENTION 5 [01] Embodiments of the present invention generally relate to communication techniques. More particularly, embodiments of the present invention relate to a method and apparatus for reporting and cancelling cross-subframe co-channel interference (CCI). 10 BACKGROUND OF THE INVENTION [02] 3GPP LTE and LTE-Advanced, also known as the evolution standard of the great success of GSM/HSPA technology, is aiming at creating a new series of specifications for the new evolving radio-access technology. One of its goals is to go on improving the communication system performance, such as the higher throughput. LTE 15 has two different duplex modes for separating the transmission directions from the user to the base station and back: frequency division duplex (FDD) and time division duplex (TDD). In the TDD duplex mode, a single bandwidth is shared between uplink (UL) and downlink (DL), with the sharing being performed by allotting different periods of time to uplink and downlink. In LTE TDD system, there are 7 different patterns of 20 uplink/downlink switching, termed uplink-downlink configurations 0 through 6. LTE TDD system allows for asymmetric UL-DL allocations by the seven different uplink-downlink configurations. Generally, LTE TDD system statically or semi-statically allocates the uplink-downlink configuration among cells. As shown in FIG. 1, all the neighboring cells have the same uplink-downlink configuration 0 after 25 configurations of the cells are deployed by the LTE TDD system. The configuration allocation is not changed during operation (static allocation) or is changed after years of operation (semi-static allocation). [031 In some scenarios, the static or semi-static allocation may not match the instantaneous traffic condition. Hence, there is a need to employ additional mechanisms 30 in LTE TDD system, e.g., dynamic allocation of subframes to UL or DL. The dynamic deployment of UP-DL configuration among cells is possibly changed every 10 ms or 640 ms. As shown in FIG. 2, at one instant, Cell 0 may be deployed to have the UP-DL WO 2013/143074 PCT/CN2012/073146 configuration 4, while the neighboring cells may be deployed to have the UP-DL configuration 0. However, deploying different UP-DL configurations among neighboring cells in TDD system would result in cross-subframe co-channel interference. A cross-subframe is a down link subframe that is interfered by an upper 5 link subframe of a neighboring cell. The cross-subframe co-channel interference (CCI) is that the DL subframes in a cell of interest are interfered on the same channel by a UL subframe in a neighboring cell, i.e. the so-called UE-UE cross-subframe co-channel interference. As shown in FIG. 3, UE 0 in Cell 0 is deployed to use UP-DL configuration 5 while UE 1, which is near UE 0 and is located in the neighboring Cell 1, 10 is deployed to use UP-DL configuration 6. In this case, UE 0 is interfered by UE 1 on subframe 4 because subframe 4 in configuration 5 at UE 0 is configured to transmit downlink data while subframe 4 of configuration 6 at UE 1 is configured to transmit uplink data on the same channel. 1041 Employing effective CCI cancellation (CCIC) methods is important if 15 dynamic reconfiguration is allowed in LTE TDD system. One of CCIC methods is scheduling a UE according to the distance between the UE and the base station. As shown in FIG. 4, the base station will not schedule UEs whose distances to the base station are larger than a predefined distance because these UEs are near the neighboring cells and possibly suffer CCI by other nearby UEs which have different UP-DL 20 configurations. [05] However, in practice, it may be difficult to measure the physical distance between the UE and the base station. In addition, the physical distance may not adequately reveal the interference experienced by the UE. For example, a UE that is far away from the base station may not suffer CCI when no other UE is nearby or the CCI 25 is not severe even other UEs with different UP-DL configurations are nearby. [061 To improve the distance-based UE-UE CCIC, the inventor(s) of the present invention has suggested a CQI-based CCIC solution that actual interferences reported by UEs are used to determine the scheduling of resources. However, although CQIs is more accurate than the physical distance for measuring the interference of the 30 UEs, it is still difficult to schedule resources based on the CQIs in various network environments. WO 2013/143074 PCT/CN2012/073146 SUMMARY OF THE INVENTION [07] In view of the foregoing problems, there is a need to improve the CQI-based UE-UE CCIC. The present invention proposes a CCIC solution which an adaptive threshold is used to determine the scheduling of resources. 5 108] According to a first aspect of the present invention, embodiments of the invention provide a method for cancelling cross-subframe co-channel interference (CCI), comprising receiving a channel quality indicator (CQI) of a cross-subframe from a user equipment (UE), the cross-subframe is a downlink subframe that is interfered by an uplink subframe in a neighboring cell; determining if the UE should be scheduled 10 during cross-subframes by comparing the CQI with an adaptive threshold; and scheduling the UE during the cross-subframes if the UE is determined to be scheduled. [09] According to a second aspect of the present invention, embodiments of the invention provide an apparatus for cancelling cross-subframe co-channel interference (CCI), comprising a receiving unit for receiving a channel quality indicator 15 (CQI) of a cross-subframe from a user equipment (UE), the cross-subframe is a downlink subframe that is interfered by an uplink subframe in a neighboring cell; a determining unit for determining if the UE should be scheduled during cross-subframes by comparing the CQI with an adaptive threshold; and a scheduling unit for scheduling the UE during the cross-subframes if the UE is determined to be scheduled. 20 [10] The following benefits are expected with the invention. By means of determining the resources scheduling based on an adaptive threshold, CCI may be cancelled and the overall resource usage will be increased according to the present invention. Furthermore, the adaptive threshold scheme can be easily implemented in practice. 25 [11] Other features and advantages of the embodiments of the present invention will also be apparent from the following description of specific embodiments when read in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of embodiments of the invention. [121 30 BRIEF DESCRIPTION OF THE DRAWINGS 113] Embodiments of the invention are presented in the sense of examples WO 2013/143074 PCT/CN2012/073146 and their advantages are explained in greater detail below, with reference to the accompanying drawings, where [141 FIG. 1 illustrates a schematic diagram of static or semi-static UP-DL configurations of cells in LTE TDD system; 5 [15] FIG 2 illustrates a schematic diagram of dynamic UP-DL configurations of cells in LTE TDD system; [16] FIG 3 illustrates a schematic diagram of CCI due to different UP-DL configurations of two adjacent UEs; [17] FIG 4 illustrates a schematic diagram of physical distance-based 10 scheduling CCIC; [181 FIG. 5 illustrates a flow chart of a method for cancelling cross-subframe co-channel interference according to an embodiment of the invention; [19] FIG 6A illustrates a flow chart of a method for updating an adaptive threshold according to an embodiment of the invention; 15 [201 FIG 6B illustrates a flow chart of a method for updating an adaptive threshold according to another embodiment of the invention; [211 FIG 7A illustrates a diagrams of long-term CQIs received by a base station; 1221 FIG. 7B illustrates a diagrams of short-term CQIs received by a base 20 station; [23] FIG 8 illustrates a block diagram of an apparatus for cancelling cross-subframe co-channel interference according to an embodiment of the invention; [241 FIG 9A illustrates a block diagram of an apparatus for updating an adaptive threshold according to an embodiment of the invention; and 25 [251 FIG 9B illustrates a block diagram of an apparatus for updating an adaptive threshold according to another embodiment of the invention. DETAILED DESCRIPTION OF EMBODIMENTS [26] Various embodiments of the present invention are described in detail 30 with reference to the drawings. The flowcharts and block diagrams in the figures illustrate the apparatus, method, as well as architecture, functions and operations executable by a computer program product according to the embodiments of the present WO 2013/143074 PCT/CN2012/073146 invention. In this regard, each block in the flowcharts or block may represent a module, a program, or a part of code, which contains one or more executable instructions for performing specified logic functions. It should be noted that in some alternatives, functions indicated in blocks may occur in an order differing from the order 5 as illustrated in the figures. For example, two blocks illustrated consecutively may be actually performed in parallel substantially or in an inverse order, which depends on related functions. It should also be noted that block diagrams and/or each block in the flowcharts and a combination of thereof may be implemented by a dedicated hardware-based system for performing specified functions/operations or by a 10 combination of dedicated hardware and computer instructions. [271 In the disclosure, a user equipment (UE) may refer to a terminal, a Mobile Terminal (MT), a Subscriber Station (SS), a Portable Subscriber Station (PSS), Mobile Station (MS), or an Access Terminal (AT), and some or all of the functions of the UE, the tenninal, the MT, the SS, the PSS, the MS, or the AT may be included. 15 [281 In the disclosure, a base station (BS) may refer to a node B (NodeB or NB) or an evolved NodeB (eNodeB or eNB). A base station may be a macrocell BS or a small cell BS. According to the present invention, a macrocell BS may be a base station which manages a macrocell, for example, a macro eNB, and a small cell BS may be a base station which manages a small cell, for example, a pico eNB, a femto eNB, 20 and some other suitable low power nodes. [29] FIG. 5 illustrates a flow chart of a method for cancelling cross-subframe co-channel interference according to an embodiment of the invention. The method of FIG 5 may be performed at a base station which different UP-DL configurations may be dynamically deployed according to demand of data transmission, 25 [301 The base station, as would be readily understood by those skilled in the art, can get UP-DL configurations of neighboring cells through connections therebetween. For example, the neighboring base stations may be connected by optical fibers or be controlled by a base station controller. Therefore, the dynamic UP-DL configurations of cells may be advertised to neighboring cells through the connections 30 therebetween or by the base station controller. When the base station receives the UP-DL configurations of neighboring cells, the base station may compare the UP-DL configurations of neighboring cells with its own UP-DL configuration. If the UP-DL WO 2013/143074 PCT/CN2012/073146 configurations of neighboring cells are different from the UP-DL configuration of its own on a subframe, the base station determines which subframes are cross-subframes and CCIs may be occurred on the cross-subframes. When the base station detects that a CCI may be occurred due to the different configurations of neighboring cells, a method 5 for cancelling CCI may be started. 131] At step S510, the base station instructs a UE within the cell of the base station to report a channel quality indicator (CQI) of a cross-subframe. In one embodiment, the base station instructs the UE to report CQI of the cross-subframe when the cross-subframe is detected. In another embodiment, this step is optional because the 10 UE may periodically report a CQI of a subframe that might be a cross-subframe in different UP-DL configurations to the base station without the instruction from the base station. For example, subframes 0 and 5 are used for download only in all UP-DL configurations and can not be cross-subframe. The UE may report CQI on other subframes other than subframes 0 and 5 to the base station and let the base station 15 determine if the subframe on which a CQI is reported is a cross-subframe after receiving the reported CQI based on the current deployment of UP-DL configurations of neighboring base stations. [32] At step S520, the base station receives the CQI of the cross-subframe from the UE. As mentioned above, in one embodiment, the base station sends the 20 instruction for reporting the CQI of the cross-subframe to the UE when the cross-subframe is detected. The base station may then wait for the CQI fed back from the UE. It is known that a UE may report CQIs to a base station through PUCCH (periodic report) or PUSCH (aperiodic report). Therefore, the reported CQI may be received periodically or aperiodically by the base station. Also as mentioned above, the 25 UE may periodically report CQI on a subframe that potentially is a cross-subframe according to different UL-DL configurations. The base station decides the CQI is of a cross-subframe based on the current deployment of UP-DL configurations of neighboring base stations. 1331 At step S530, the base station determines if the UE should be scheduled 30 during cross-subframes by comparing the CQI with an adaptive threshold. If the CQI is lower than the adaptive threshold, it means that the UE is interfered by another UE on the cross-subframe. In a previous invention of the same inventor(s), a predetermined WO 2013/143074 PCT/CN2012/073146 threshold on the basis of experience, simulation models or interference models are used. Because network environments are different among cells in practice, it is difficult to set a predetermined threshold for each cell. It is also possible that a predetermined threshold is always suitable for a cell when the network environment of the cell changed. 5 Therefore, an adaptive threshold which can be adjusted according to the actual network environment is more practical than the predetermined threshold. [34] Although CQI is used for determining the resource scheduling in embodiments of the invention, it is understood that other indicators that indicate the interference of the UE can also be used. For example, signal to interference noise ratio 10 (SINR), which can be conducted from the reported CQI, may also be used to determine the resource scheduling in embodiments of the invention. [35] At step S540, the base station schedules the UE during the cross-subframes if the UE is determined to be scheduled. Here, if the CQI reported by the UE is higher than the adaptive threshold, the base station may schedule the UE. On 15 the other hand, Here, if the CQI reported by the UE is lower than the adaptive threshold, the base station will not schedule the UE. By scheduling resources to non-CCI UEs, CCI may be cancelled and the overall resource usage will be increased according to the present invention. 136] In one embodiment, the adaptive threshold is updated based on a 20 plurality of CQIs received from a plurality of UEs. It is known that a UE may report CQIs to a base station through PUCCH (periodic report) or PUSCH (aperiodic report). The base station may receive a plurality CQIs reported from a plurality of UEs within its coverage in a certain time period. Therefore, it is suitable to adjust the adaptive threshold based on the reported CQIs so that the base station may determine which UEs 25 should be scheduled in a more accurate way. [371 In a further embodiment, the adaptive threshold is updated periodically. The dynamic deployment of UP-DL configuration among cells in LTE TDD system is possibly changed every 10 ms or 640 ms. Therefore, it is possible that the adaptive threshold may be adjusted at the same period. 30 1381 Next, various embodiments for adjusting the adaptive threshold will be described while referring to FIGS. 6A and 6B. [391 FIG. 6A illustrates a flow chart of a method for updating an adaptive WO 2013/143074 PCT/CN2012/073146 threshold according to an embodiment of the invention. 140] In step S610, a base station receives a plurality of long-term or short term CQIs from a plurality of UEs. t41] In one embodiment, the adaptive threshold is updated based on 5 long-term CQIs or short-term CQIs, wherein long-term CQIs are all the previously received CQls and short-term CQIs are CQIs previously received in a predetermined time. Due to the different network environments, the amount of CQIs received by base stations in a certain time period may be different. For example, it is possible for a base station in an urban area receives thousands of CQIs in a short time period due to the 10 density of UEs in the urban area is usually high. On the contrary, a base station in a rural area receives only a small amount of CQIs in a certain time period due to the density of UEs in the rural area is usually low. To accurately adjust the adaptive threshold, the base station need relatively large among of reported CQls. Therefore, the adaptive threshold is updated based on long-term CQIs or short-term CQIs. As shown in FIG. 7A, 15 long-term CQIs are all the previously received CQIs by the base station. Due to the amount of CQIs received by the base station is relatively small, all the CQIs received by the base station are used for adjusting the adaptive threshold. As shown in FIG. 7B, short-tenn CQIs are CQls previously received in a predetermined time (Xms). Due to the amount of CQIs received by the base station is relatively high, only CQIs received 20 in a previous Xms time period by the base station are enough for adjusting the adaptive threshold. Further, it is also possible to use the short-term CQis for adjusting the adaptive threshold after some time period because CQIs received a long time ago is not suitable to adjust current threshold. [421 Now, refer back to FIG 6A. At step S620, the base station calculates a 25 cumulative density function (CDF) of the long-term CQIs or the short-term CQIs. The CDF describes the probability that a real-valued random variable X with a given probability distribution will be found at a value less than or equal to X. Here, the probability that CQIs are less than or equal to a given CQI can be conducted from the CDF of reported CQIs. Further, if a possibility is given, then a CQI can be conducted 30 based on the CDF where the occurrence of values that less than or equal to the CQI is the given possibility. [43] At step S630, the base station calculates y% value from the CDF, WO 2013/143074 PCT/CN2012/073146 wherein y is a predetermined value. Here, suppose CQI values are from 0 to 15, and a possibility of 5% is given, then a CQI (y% value) can be conducted based on the CDF where the occurrence of values that less than or equal to the conducted CQI is 5%. The value y is usually set to 5 in practice, while other value is possible according to 5 requirements of LTE TDD system. [44] At step S640 the base station sets the calculated y% value as an updated adaptive threshold. Here, the smallest y% value of CQIs, where channel qualities are in y% worst among all CQIs, is selected as updated adaptive threshold. As the base station continuously receives CQIs reported by UEs, then the adaptive threshold may be 10 adjusted based on the reported CQIs so that the adaptive threshold may more accurate than a predetermined one. [45] FIG. 6B illustrates a flow chart of a method for updating an adaptive threshold according to another embodiment of the invention; [46] At step S650, the base station calculates the average of the long-term 15 CQIs or the short-term CQIs. [471 At step S660, the base station calculates z% value from the average, wherein z is a predetermined value. Here, suppose z% is 20%. Then, a CQI whose value is 20% of the average CQI is selected. [48] At step S660, the base station sets the calculated z% value as an 20 updated adaptive threshold. Here, the adaptive threshold can also be updated based on the average value of reported CQIs. [491 In some embodiments, the short-term CQIs are used for updating the adaptive threshold when the number of the short-term CQIs is higher than a predetermined value. Here, if the number of CQIs reported in a short time is high 25 enough, then only the short-term CQIs are used for updating the adaptive threshold. [50] In some embodiments, the short-term CQIs are used for updating the adaptive threshold when the number of the long-term CQIs is higher than a predetermined value. Here, if the total number of CQIs previously received by the base station is high enough, then the base station begins to use only the short-term CQIs for 30 updating the adaptive threshold. [51] FIG. 8 illustrates a block diagram of an apparatus for cancelling cross-subframe co-channel interference according to an embodiment of the invention. WO 2013/143074 PCT/CN2012/073146 The apparatus may be used in a base station. [521 In this embodiment, the apparatus 800 comprises a receiving unit 820, a determining unit 830 and a scheduling unit 840. The receiving unit 820 may be configured to receive a channel quality indicator (CQI) of a cross-subframe from a user 5 equipment (UE), the cross-subframe is a downlink subframe that is interfered by an uplink subframe in a neighboring cell. The determining unit 830 may be configured to determine if the UE should be scheduled during cross-subframes by comparing the CQI with an adaptive threshold. The scheduling unit 840 may be configured to schedule the UE during the cross-subframes if the UE is determined to be scheduled. 10 [53] In another embodiment, the apparatus 800 may optionally comprise an instruction unit 710. The instructing unit 710 may be configured to instruct the UE to report the CQI of the cross-subframe. [541 FIG. 9A illustrates a block diagram of an apparatus for updating an adaptive threshold according to an embodiment of the invention. The apparatus for 15 updating the adaptive threshold shown in FIG. 9A may be a separated module or unit in LTE TDD system or be incorporated with apparatus 800 of FIG 8. In one embodiment, the apparatus for updating the adaptive threshold shown in FIG. comprises a first calculating unit 910, a second calculating unit 920 and a first setting unit 930. The first calculating unit 910 may be configured to calculate a 20 cumulative density function(CDF) of the long-term CQIs or the short-term CQIs. The second calculating unit 920 may be configured to calculate y% value from the CDF, wherein y is a predetermined value. The first setting unit 930 may be configured to set the calculated y% value as an updated adaptive threshold. [55] FIG. 9B illustrates a block diagram of an apparatus for updating an 25 adaptive threshold according to another embodiment of the invention. The apparatus for updating the adaptive threshold shown in FIG. 9B may be a separated module or unit in LTE TDD system or be incorporated with apparatus 800 of FIG. 8. In one embodiment, the apparatus for updating the adaptive threshold shown in FIG. 9B comprises a third calculating unit 960, a fourth calculating unit 970 and a 30 second setting unit 980. The third calculating unit 960 may be configured to calculate the average of the long-term CQIs or the short-term CQIs. The fourth calculating unit 980 may be configured to calculate z% value from the average, wherein z is a WO 2013/143074 PCT/CN2012/073146 predetermined value. The second setting unit 980 may be configured to set the calculated z% value as an updated adaptive threshold. [56] Based on the above description, the skilled in the art would appreciate that the present disclosure may be embodied in an apparatus, a method, or a computer 5 program product. In general, the various exemplary embodiments may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. For example, some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although the disclosure is not 10 limited thereto. While various aspects of the exemplary embodiments of this disclosure may be illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, 15 general purpose hardware or controller or other computing devices, or some combination thereof [57] The various blocks shown in FIGS. 5 and 6 may be viewed as method steps, and/or as operations that result from operation of computer program code, and/or as a plurality of coupled logic circuit elements constructed to carry out the associated 20 function(s). At least some aspects of the exemplary embodiments of the disclosures may be practiced in various components such as integrated circuit chips and modules, and that the exemplary embodiments of this disclosure may be realized in an apparatus that is embodied as an integrated circuit, FPGA or ASIC that is configurable to operate in accordance with the exemplary embodiments of the present disclosure. 25 [58] While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any disclosure or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular disclosures. Certain features that are described in this specification in the context of separate embodiments can also be implemented in 30 combination in a single embodiment, Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although WO 2013/143074 PCT/CN2012/073146 features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination. 5 [59] Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system 10 components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products. [60] Various modifications, adaptations to the foregoing exemplary 15 embodiments of this disclosure may become apparent to those skilled in the relevant arts in view of the foregoing description, when read in conjunction with the accompanying drawings. Any and all modifications will still fall within the scope of the non-limiting and exemplary embodiments of this disclosure. Furthermore, other embodiments of the disclosures set forth herein will come to mind to one skilled in the 20 art to which these embodiments of the disclosure pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. [61] Therefore, it is to be understood that the embodiments of the disclosure are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. 25 Although specific terms are used herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
权利要求:
Claims (16) [1] 1. A method for cancelling cross-subframe co-channel interference (CCI), comprising: receiving a channel quality indicator (CQI) of a cross-subframe from a user 5 equipment (UE), the cross-subframe is a downlink subframe that is interfered by an uplink subframe in a neighboring cell; determining if the UE should be scheduled during cross-subframes by comparing the CQI with an adaptive threshold; and scheduling the UE during the cross-subframes if the UE is determined to be 10 scheduled. [2] 2. The method of claim 1, wherein the adaptive threshold is updated based on a plurality of CQIs received from a plurality of UEs. 15 [3] 3. The method of claim 2, wherein the adaptive threshold is updated periodically. [4] 4. The method of claim 3, wherein the adaptive threshold is updated based on long-term CQIs or short-term CQIs, wherein long-term CQIs are all the previously received CQIs and short-term CQIs are CQIs previously received in a predetermined 20 time. [5] 5. The method of claim 4, further comprising: calculating a cumulative density function (CDF) of the long-term CQIs or the short-term CQIs; 25 calculating y% value from the CDF, wherein y is a predetermined value; and setting the calculated y% value as an updated adaptive threshold. [6] 6. The method of claim 4, further comprising: calculating the average of the long-term CQIs or the short-term CQIs; 30 calculating z% value from the average, wherein z is a predetermined value; and setting the calculated z% value as an updated adaptive threshold. WO 2013/143074 PCT/CN2012/073146 [7] 7. The method of any one of claims 4-6, wherein the short-term CQIs are used for updating the adaptive threshold when the number of the short-term CQIs is higher than a predetermined value. 5 [8] 8. The method of any one of claims 4-6, wherein the short-term CQIs are used for updating the adaptive threshold when the number of the long-term CQIs is higher than a predetermined value. [9] 9. An apparatus for cancelling cross-subframe co-channel interference (CCI), 10 comprising: a receiving unit for receiving a channel quality indicator (CQI) of a cross-subframe from a user equipment (UE), the cross-subframe is a downlink subframe that is interfered by an uplink subframe in a neighboring cell; a determining unit for determining if the UE should be scheduled during 15 cross-subframes by comparing the CQI with an adaptive threshold; and a scheduling unit for scheduling the UE during the cross-subframes if the UE is determined to be scheduled. [10] 10. The apparatus of claim 9, wherein the adaptive threshold is updated based on a 20 plurality of CQIs received from a plurality of UEs. [11] 11. The apparatus of claim 10, wherein the adaptive threshold is updated periodically. 25 [12] 12. The apparatus of claim 11, wherein the adaptive threshold is updated based on long-term CQIs or short-term CQIs, wherein long-term CQIs are all the previously received CQIs and short-term CQIs are CQIs previously received in a predetermined time. 30 [13] 13. The apparatus of claim 12, further comprising: a first calculating unit for calculating a cumulative density function (CDF) of the long-term CQIs or the short-term CQIs; WO 2013/143074 PCT/CN2012/073146 a second calculating unit for calculating y% value from the CDF, wherein y is a predetermined value; and a first setting unit for setting the calculated y% value as an updated adaptive threshold. 5 [14] 14. The apparatus of claim 12, further comprising: a third calculating unit for calculating the average of the long-term CQIs or the short-term CQIs; a fourth calculating unit for calculating z% value from the average, wherein z is a 10 predeternmined value; and a second setting unit for setting the calculated z% value as an updated adaptive threshold. [15] 15. The apparatus of any one of claims 12-14, wherein the short-term CQIs are 15 used for updating the adaptive threshold when the number of the short-term CQIs is higher than a predetermined value. [16] 16. The apparatus of any one of claims 12-14, wherein the short-term CQIs are used for updating the adaptive threshold when the number of the long-term CQIs is 20 higher than a predetermined value.
类似技术:
公开号 | 公开日 | 专利标题 CN102281638B|2014-07-09|Method and equipment for scheduling slot US9490946B2|2016-11-08|Interference coordination method and base station AU2012375907B2|2016-04-21|Method and apparatus for reporting and cancelling cross-subframe co-channel interference CN107005342B|2021-06-22|Heterogeneous network communication system US9794945B2|2017-10-17|Method, system, and device for confirming uplink-downlink configuration EP2995113B1|2020-12-02|Measurements in a wireless system EP2708075B1|2019-11-13|Methods and arrangements for transmitting and receiving sub - frame specific power offset information US9532371B2|2016-12-27|Method and apparatus for scheduling user equipment CN107409397B|2020-10-23|Interference coordination system and method in wireless communication system CA2910263A1|2014-10-30|Interference suppression method and related device and system US20150358836A1|2015-12-10|Method and apparatus for dl/ul resource configuration in a tdd system US9485008B2|2016-11-01|Intra cell interference mitigation in a wireless network employing relay nodes US20170222773A1|2017-08-03|Inter-Cell Interference Coordination in Heterogeneous Networks Ji et al.2013|Dynamic resource adaptation in beyond LTE-A TDD heterogeneous networks WO2015042818A1|2015-04-02|Clustering method and apparatus for cross-subframe interference elimination and traffic adaptation and communications mechanism between baseband units TWI592042B|2017-07-11|A method, system and device for determining a reference sub-frame WO2014110762A1|2014-07-24|Method and apparatus for cross-subframe interference coordination AU2016201575A1|2016-03-31|Method and apparatus for reporting and cancelling cross-subframe co-channel interference Jiang et al.2013|Cross-subframe co-channel interference mitigation scheme for LTE-advanced dynamic TDD system WO2008072055A2|2008-06-19|Apparatus and method providing signalling of call blocking for facilitating adaptive interference coordination through power control WO2016037317A1|2016-03-17|Method and apparatus for mitigating interference and associated computer-readable storage medium and computer program product WO2015042817A1|2015-04-02|Methods and apparatuses for cci mitigation and channel state condition measuring and reporting and a network central controller Lema et al.2015|Interference coordination method for CSI improvement in LTE uplink with Carrier Aggregation WO2014179351A1|2014-11-06|Method and system for interference coordination in a wireless lte-tdd system
同族专利:
公开号 | 公开日 WO2013143074A1|2013-10-03| CN103814612A|2014-05-21| EP2832165A4|2015-10-14| JP5827420B2|2015-12-02| EP2832165A1|2015-02-04| JP2015503299A|2015-01-29| US20140369281A1|2014-12-18| AU2012375907B2|2016-04-21|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 EP1724949A4|2004-03-30|2011-06-22|Panasonic Corp|Base station device, mobile station device, and data channel allocation method| KR100617835B1|2005-01-05|2006-08-28|삼성전자주식회사|Apparatus and method for transmitting/receiving a channel quality information in a communication system| JP4732924B2|2005-12-28|2011-07-27|株式会社エヌ・ティ・ティ・ドコモ|Mobile station apparatus, base station apparatus, and neighboring cell measurement control method| WO2008053553A1|2006-11-01|2008-05-08|Fujitsu Limited|Wireless communication system| CN101374004B|2007-08-23|2013-02-27|中兴通讯股份有限公司|Method for compressing upstream channel quality indication information| WO2010053119A1|2008-11-07|2010-05-14|京セラ株式会社|Wireless communication system, radio base station and wireless communication method| US9363038B2|2010-04-13|2016-06-07|Qualcomm Incorporated|Evolved node B channel quality indicator processing for heterogeneous networks| CN103650572A|2011-06-09|2014-03-19|美国博通公司|Interference control in time division duplex communication|GB2502274B|2012-05-21|2017-04-19|Sony Corp|Telecommunications systems and methods| GB2502275B|2012-05-21|2017-04-19|Sony Corp|Telecommunications systems and methods| US10009143B2|2016-03-03|2018-06-26|Futurewei Technologies, Inc.|System and method for multi-user full duplex link adaptation| CN105828445B|2016-05-23|2019-06-11|宇龙计算机通信科技有限公司|A kind of method of scheduling user's set and base station| CN107889140A|2016-09-30|2018-04-06|华为技术有限公司|Interference detecting method and device of a kind of terminal device to terminal device| WO2018147503A1|2017-02-13|2018-08-16|삼성전자주식회사|Apparatus and method for controlling inter-cell interference in time division duplex based wireless communication system|
法律状态:
2016-08-18| FGA| Letters patent sealed or granted (standard patent)| 2017-10-26| MK14| Patent ceased section 143(a) (annual fees not paid) or expired|
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 PCT/CN2012/073146|WO2013143074A1|2012-03-27|2012-03-27|Method and apparatus for reporting and cancelling cross-subframe co-channel interference| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|