专利摘要:
This invention provides a metabolically enhanced cyanobacterium for the production of a chemical compound of interest, having at least two first production genes encoding first biocatalysts for the production of the first chemical compound. One of the two first production genes is under the transcriptional control of a first promoter for the first production gene, whereas the other of the two first production genes is under the transcriptional control of a second promoter for the first production gene. The first promoter and second promoter are separately inducible under different conditions and the at least two first biocatalysts catalyze the same chemical reaction. Metabolically enhanced cyanobacteria according to the present invention allow prolonged production of first chemical compounds. Further provisions of the present invention include, inter alia, a method for producing the metabolically enhanced cyanobacterium and a method for producing a first chemical compound by culturing the metabolically enhanced cyanobacterium.
公开号:AU2012360932A1
申请号:U2012360932
申请日:2012-12-21
公开日:2014-07-31
发明作者:Kerstin Baier;Ulf Duhring;Heike Enke;Alexandra FRIEDRICH;Dan Kramer
申请人:Algenol Biofuels Inc;
IPC主号:C12N15-74
专利说明:
WO 2013/098265 PCT/EP2012/076786 Title of the Invention METABOLICALLY ENHANCED CYANOBACTERIUM WITH SEQUENTIALLY INDUCIBLE PRODUCTION GENES FOR THE PRODUCTION OF A FIRST 5 CHEMICAL COMPOUND Field of the Invention This invention is related to the field of production of 10 chemical compounds by using metabolically enhanced cyanobacterial cells. Definitions and General Explanations 15 The following explanation of terms and methods are provided to better describe the present invention disclosure and to guide those of ordinary skill in the art in the understanding, interpretation and practice of the present invention. Unless explained otherwise, all technical and 20 scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. The materials, methods and examples are illustrative only and not intended to be limiting. Other features and/or embodiments of the invention 25 disclosure are apparent from the detailed description and the claims. As used herein, the term "comprising" means "including". The singular forms "a" or "an" or "the" expressly include the 30 plural references unless the context clearly dictates otherwise. Referring to "at least one" or "at least two" objects) expressly includes additional objects falling into the specification of said at least one or at least two WO 2013/098265 PCT/EP2012/076786 -2 objects according to the present invention. For example, "at least two first production genes" can also include a third or further additional first production gene used inventively according to the criteria of the present invention. 5 Database entry numbers given in the following are from the NCBI database (National Center for Biotechnology Information; available on the world wide web at ncbi.nlm.nih.gov) or from the CyanoBase, the genome database for cyanobacteria 10 (available on the world wide web at bacteria.kazusa.or.jp/ cyanobase/index.html); Yazukazu et al. "CyanoBase, the genome database for Synechocystis sp. Strain PCC6803: status for the year 2000", Nucleic Acid Research, 2000, Vol. 18, page 72.) 15 The EC numbers cited throughout this patent application are enzyme commission numbers which is a numerical classification scheme for enzymes based on the chemical reactions which are catalyzed by the enzymes. 20 A promoter that is gradually inducible in a dose-dependent manner is a promoter that results in an inductor dose dependent expression of the corresponding promoter-controlled production gene. 25 As used herein, the term metabolicallyy enhanced" refers to any change in the endogenous genome of a wild type cyanobacterial cell or to the addition of endogenous and non endogenous, exogenous genetic code to a wild type cyanobacterial cell, for example the introduction of a 30 heterologous gene. More specifically, such changes are made by the hand of man through the use of recombinant DNA technology or mutagenesis. The changes can involve protein coding sequences or non-protein coding sequences in the WO 2013/098265 PCT/EP2012/076786 -3 genome such as regulatory sequences, non-coding RNA, antisense RNA, promoters or enhancers. Aspects of the invention utilize techniques and methods common to the fields of molecular biology, microbiology and cell culture. Useful 5 laboratory references for these types of methodologies are readily available to those skilled in the art. See, for example, Molecular Cloning: A Laboratory Manual (Third Edition), Sambrook, J., et al. (2001) Cold Spring Harbor Laboratory Press; Current Protocols in Microbiology (2007) 10 Edited by Coico, R., et al., John Wiley and Sons, Inc.; The Molecular Biology of Cyanobacteria (1994) Donald Bryant (Ed.), Springer Netherlands; Handbook Of Microalgal Culture: Biotechnology And Applied Phycology (2003) Richmond, A. (ed.), Blackwell Publishing; and "The cyanobacteria, 15 Molecular Biology, Genomics and Evolution", Edited by Antonia Herrero and Enrique Flores, Caister Academic Press, Norfolk, UK, 2008. It is well known to a person of ordinary skill in the art 20 that large plasmids can be produced using techniques such as the ones described in the US patents US 6,472,184 BI titled "method for producing nucleic acid polymers" and US 5,750,380 titled "DNA polymerase mediated synthesis of double stranded nucleic acid molecules", which are hereby incorporated in 25 their entirety. Denominations of genes are in the following presented in a three letter lower case name followed by a capitalized letter if more than one related gene exists, for example ziaA for 30 the gene encoding a zinc transporting ATPase. The respective protein encoded by that gene is denominated by the same name with the first letter capitalized, such as ZiaA.
WO 2013/098265 PCT/EP2012/076786 -4 Denominations for promoter sequences, which control the transcription of a certain gene in their natural environment are given by a capitalized letter "P" followed by the gene name according to the above described nomenclature, for 5 example "PziaA" for the promoter controlling the transcription of the ziaA gene. Denominations for enzyme names can be given in a two or three letter code indicating the origin of the enzyme, followed by 10 the above mentioned three letter code for the enzyme itself, such as SynAdh (Zn 2 dependent alcohol dehydrogenase from Synechocystis PCC6803), ZmPdc (pyruvate decarboxylase from Zymomonas mobilis). 15 The term "nucleic acid" is intended to include nucleic acid molecules, such as polynucleotides which include an open reading frame encoding a polypeptide, and can further include non-coding regulatory sequences of genes, such as promoters and enhancers as well as non-coding RNAs. In addition, the 20 terms are intended to include one or more genes that are part of a functional operon. In addition, the terms are intended to include a specific gene for a selected purpose. The gene can be endogenous to the host cell or can be recombinantly introduced into the host cell. 25 In a further embodiment, the invention also provides nucleic acids, which are at least 60%, 70%, 80%, 90% or 95% identical to the promoter nucleic acids or to the nucleic acids encoding either the first or second biocatalysts for the 30 production of the first chemical compound disclosed therein. With regard to the promoters, truncated versions of the promoters including only a small portion of the native promoters upstream of the transcription start point, such as WO 2013/098265 PCT/EP2012/076786 -5 the region ranging from -35 to the transcription start can often be used. Furthermore, introducing nucleotide changes in the untranslated region into the promoter sequence, e.g. into the TATA box, the operator sequence and/or the ribosomal 5 binding site (RBS) can be used to tailor or optimise the promoter for a certain purpose. The invention also provides amino acid sequences for enzymes for the production of the first chemical compounds, which are at least 60%, 70%, 80%, 90% or 95% identical to the amino acid sequences disclosed 10 therein. In yet a further embodiment, the invention also provides nucleic acids encoding first biocatalysts or second biocatalysts, wherein biocatalysts catalyzing the same 15 chemical reaction are encoded by non-identical gene sequences. The invention provides nucleic acid sequences for biocatalysts catalyzing the same chemical reaction which are less than 80%, 70%, 60% or 50% identical to each other. 20 The percentage of identity of two nucleic acid sequences or two amino acid sequences can be determined using the algorithm of Thompson et al. (Clustal W, 1994 Nucleic Acid Research 22: pages 4673 to 4680). A nucleotide sequence or an amino acid sequence can also be used as a so-called "query 25 sequence" to perform a nucleic acid or amino acid sequence search against public nucleic acid or protein sequence databases in order to, for example identify further unknown homologous promoters, or homologous protein sequences and nucleic acid sequences which can also be used in embodiments 30 of this invention. In addition, any nucleic acid sequences or protein sequences disclosed in this patent application can also be used as a "query sequence" in order to identify yet unknown sequences in public databases, which can encode for WO 2013/098265 PCT/EP2012/076786 -6 example new enzymes which could be useful in this invention. Such searches can be performed using the algorithm of Karlin and Altschul (1990 Proceedings of the National Academy of Sciences USA 87: pages 2264 to 2268), modified as in Karlin 5 and Altschul (1993 Proceedings of the National Academy of Sciences USA, 90: pages 5873 to 5877). Such an algorithm is incorporated in the Nblast and Xblast programs of Altschul et al. (1990 Journal of Molecular Biology 215, pages 403 to 410) Suitable parameters for these database searches with these 10 programs are, for example, a score of 100 and a word length of 12 for blast nucleotide searches as performed with the Nblast program. Blast protein searches are performed with the Xblast program with a score of 50 and a word length of 3. Where gaps exist between two sequences, gapped blast is 15 utilized as described in Altschul et al. (1997 Nucleic Acid Research, 25: pages 3389 to 3402). The term "genome" refers to the chromosomal genome as well as to extrachromosomal plasmids which are normally present in 20 the wild type cyanobacterium without having performed recombinant DNA technology. For example, cyanobacteria such as Synechococcus sp. PCC 7002 can include at least up to 6 extrachromosomal plasmids in their wild type form. 25 The term ""biocatalysts" in the following refers to biomolecules which catalyse a chemical reaction. A biocatalyst can be a protein with catalytic activity, e.g. an enzyme, or a nucleic acid with catalytic activity, e.g. a ribozyme. 30 The use of the term "uninduced state" of a promoter in the following refers to a state where only less than or equal to 20%, preferably less than or equal to 15%, more preferably WO 2013/098265 PCT/EP2012/076786 -7 less than or equal to 10%, most preferred less than or equal to 5% of the first chemical compound per OD 750 m (optical density of the cell suspension at 750 nm wavelength as a parameter of cell density) of the cyanobacteria are produced 5 compared to the induced state of said promoter. Likewise, referring to two or more promoters as being "different" or "separately inducible under different conditions" denotes promoters, wherein conditions for 10 induction of one promoter maintain a second or further promoter in an uninduced state according to the criteria detailed above. The same rule applies to numerated promoters, e.g. first, second, third or further promoters are considered different promoters according the invention and fulfil the 15 specifications detailed above. The induction factor is defined as the quotient of the production rate of the first chemical compound per OD75mm in the induced state divided by the production rate of the first 20 chemical compound per OD 75 0m in the uninduced state. The use of the term "temporally separated" method steps throughout the patent application refers to method steps which are sequentially initiated during the method for 25 producing the first chemical compound. According to the present invention, said sequential initiation requires a change of cultivation conditions, for example for the selective induction of the first, second or further promoter for the first production gene. Said change of cultivation 30 conditions can be decidedly made, either directly or indirectly. Alternatively, said change of cultivation conditions can be inherent to the cultivation, for example due to the consumption of a compound. Said temporal WO 2013/098265 PCT/EP2012/076786 -8 separation of method steps thus stipulates the incorporation of inducible promoters to meet the criteria detailed above for each method step, as opposed for instance to the incorporation of constitutive promoters. 5 Background of the Invention Various chemical compounds of interest, such as biofuels like fatty acid esters or alcohols, functional foods, vitamins, 10 pharmaceuticals such as lactams, peptides and polyketides or terpenes and terpenoids and also biopolymers such as polyhydroxyalkanoates can be produced via metabolically enhanced cyanobacteria. One of these compounds is ethanol. In this context, the PCT patent application WO 2009/098089 A2 15 discloses the use of ethanologenic genes, for example pyruvate decarboxylase and alcohol dehydrogenase for the production of ethanol. Typically, the cyanobacterial host cells for the production 20 of a specific chemical compound of interest are metabolically enhanced hybrid lines, which have been transformed with genetic elements containing corresponding production genes under the control of either constitutive or inducible promoters. In the case of inducible promoters, transcription 25 of the production genes is coupled to specific induction conditions, for instance the addition or depletion of certain metals such as Cu, Zn etc. to, or from, the culture medium. It is a known problem in the art that such metabolically 30 enhanced cyanobacteria produce such chemical compounds, e.g. ethanol, for a certain period of time, before the productivity decreases due to mutations in the respective production genes. For example, Takahama and colleagues (2003) WO 2013/098265 PCT/EP2012/076786 -9 investigated the time-related productivity of a recombinant Synechococcus elongatus PCC 7942 harboring a heterologous gene for an ethylene-forming enzyme. They found that the rate of ethylene production in the recombinant culture decreased 5 as a result of competition with faster growing ethylene-non forming mutants that carried short nucleotide insertions within the coding sequence of the gene for the ethylene forming enzyme. 10 Therefore, there is a need for improved cyanobacterial hybrid strains for prolonged production of first chemical compounds. This task is solved by providing a metabolically enhanced cyanobacterium according to base claim 1. Further claims are 15 directed to advantageous embodiments of the metabolically enhanced cyanobacteria, to a method of producing the metabolically enhanced cyanobacteria, and to a method of producing a first chemical compound by culturing the metabolically enhanced cyanobacteria. 20 Summary of the invention The invention described herein discloses a metabolically enhanced cyanobacterium for the production of a first 25 chemical compound, comprising: - at least two first production genes encoding first biocatalysts for the production of the first chemical compound; - wherein one of the two first production genes is under 30 the transcriptional control of a first promoter for the first production gene; WO 2013/098265 PCT/EP2012/076786 - 10 - wherein the other of the two first production genes is under the transcriptional control of a second promoter for the first production gene; - wherein the first promoter and second promoter are 5 separately inducible under different conditions; - wherein the at least two first biocatalysts catalyze the same chemical reaction. This invention further discloses a method for producing a 10 metabolically enhanced cyanobacterium as above, comprising the method steps of: a) Providing the following at least two transformable nucleic acid sequences: - said first production gene under the 15 transcriptional control of said first promoter for the first production gene; - said first production gene under the transcriptional control of said second promoter for the first production gene; 20 b) Transforming said at least two transformable nucleic acid sequences into the cyanobacteria cells. This invention also discloses a method for producing a first chemical compound using any of the metabolically enhanced 25 cyanobacterium as above, comprising the method steps of: A) Culturing the metabolically enhanced cyanobacterium under conditions for induction of the first promoter for the first production gene, the cyanobacterium producing the first chemical compound; 30 B) Culturing the metabolically enhanced cyanobacterium under conditions for induction of the second promoter for the first production gene, the cyanobacterium producing the first chemical compound; WO 2013/098265 PCT/EP2012/076786 - 11 - wherein method step A) and method step B) are temporally separated; - wherein the second promoter for the first production gene of method step B) is maintained in an uninduced 5 state during method step A). This invention further discloses a metabolically enhanced cyanobacterium for the production of a first chemical compound, comprising: 10 - at least a first and second first production gene encoding first biocatalysts for the production of the first chemical compound; - wherein both first production genes are under the transcriptional control of the same inducible promoter 15 for the first production genes; - wherein the inducible promoter for the first production genes is gradually inducible in a dose-dependent manner; - wherein said first biocatalysts catalyze the same chemical reaction. 20 Finally, this invention discloses a method for producing a first chemical compound using any of the metabolically enhanced cyanobacteria above, comprising the method steps of: Al)Culturing the metabolically enhanced cyanobacterium 25 under a first condition for induction of the promoter for the first production genes, the cyanobacterium producing the first chemical compound; A2)Culturing the metabolically enhanced cyanobacterium under a second condition for induction of the promoter 30 for the first production genes, the cyanobacterium producing the first chemical compound; - wherein method step Al) and method step A2) are temporally separated; WO 2013/098265 PCT/EP2012/076786 - 12 - wherein the first condition for induction results in a lower induction of the promoter for the first production genes than the second condition of induction. 5 Description of the Invention The first aspect of the invention provides a metabolically enhanced cyanobacterium for the production of a first chemical compound, comprising: 10 - at least two first production genes encoding first biocatalysts for the production of the first chemical compound; - wherein one of the two first production genes is under 15 the transcriptional control of a first promoter for the first production gene; - wherein the other of the two first production genes is under the transcriptional control of a second promoter for the first production gene; 20 - wherein the first promoter and second promoter are separately inducible under different conditions; - wherein the at least two first biocatalysts catalyze the same chemical reaction. 25 The use of a first and a second promoter for the first production gene allows for the first biocatalyst under the control of said first promoter to be expressed whereas at the same time the first biocatalyst under the control of the second promoter is not expressed, and vice versa. When the 30 first promoter is induced, the first biocatalyst is expressed and the first chemical compound is produced, whereupon genetic alterations can occur in the corresponding first production gene. At the same time, the second promoter for WO 2013/098265 PCT/EP2012/076786 - 13 the first production gene is maintained in an uninduced state and the corresponding second of the first biocatalysts is not expressed, thus better preserving the genetic integrity of the corresponding non-induced first production gene compared 5 to the induced one. The inventors of the present invention surprisingly found that metabolically enhanced hybrid strains of cyanobacteria can be genetically stably maintained for much longer periods 10 under non-inducing conditions than under induced cultivation conditions. The inventors discovered that under non-inducing conditions when the first biocatalysts, which divert fixed carbon-flux from the metabolic pathways for bacterial growth, are not expressed, the genes encoding these first 15 biocatalysts do not accumulate mutations in contrast to their induced state. The recurrent problem of such genetic instability of cyanobacterial hybrid strains and the corresponding decrease 20 of the production of the chemical compound is illustrated in Figure 1. Figure 1A schematically shows a cyanobacterial hybrid strain as conventionally used for the production of a first chemical compound. The cyanobacterial cell (CB) has been transformed with a vector (VC1), indicated by the 25 circles, carrying a heterologous production gene which is under the transcriptional control of a first inducible promoter, indicated by the horizontal bars on top of the circles, and maintains multiple copies of the vector within one cyanobacterial cell. The large oval in the cyanobacterial 30 cell indicates the bacterial chromosome (CH), whereas the smaller ovals indicate endogenous plasmids (EP). During cultivation, the promoter is induced, driving the expression of the corresponding heterologous production gene, the WO 2013/098265 PCT/EP2012/076786 - 14 cyanobacterial cell producing the first chemical compound. In the course of long-term cultivation (Figure 1B), mutations X (MT1) accumulate in copies of the heterologous production gene, resulting in a decreased expression of functional gene 5 products (e.g. enzymes), thus leading to a decrease of the production of the first chemical compound. At the same time, the revertants grow faster than the metabolically enhanced cyanobacterial cells due to the disposal of the additional metabolic burden that the synthesis of the first chemical 10 compound poses, eventually overgrowing the producing cells. Due to these mutations in the production genes the metabolically enhanced production strain reverts to the metabolic wild type version, i.e. a strain which is no longer 15 able to produce the first chemical compound. Importantly, these revertants can still carry the selection advantage of, for instance, antibiotic resistance or prototrophy in the case of auxotrophic host strains. For this reason, the revertants exhibit even under selection pressure a 20 significant growth advantage over the first chemical compound-producing metabolically enhanced cyanobacterium strain, since their fixed carbon-flux does not longer bypass anabolic reactions and cell growth for synthesis of the first chemical compound. As soon as this metabolic wild type 25 population overgrows the metabolically enhanced hybrid strain, the productivity in the culture decreases significantly. The inventors consequently concluded that in order to 30 overcome production decays for the first chemical compound and to prolong the synthesis of the first chemical compound, the solution is a metabolically enhanced cyanobacterial strain, which comprises two or more first production genes, WO 2013/098265 PCT/EP2012/076786 - 15 each of which transcriptionally driven by different inducible promoters. Each inducible promoter controls the transcription of an operably linked first production gene and is separately inducible under different conditions. For instance, the 5 metabolically enhanced cyanobacterial hybrid line comprises the first production genes encoding first biocatalysts for the production of the first chemical compound that are under the transcriptional control of a first promoter for the first production gene and a second promoter for the other first 10 production gene, and wherein the first promoter and second promoter are separately inducible under different conditions. Promoters that are separately inducible under different conditions can for example be promoters that require 15 different inductors for induction. Such promoters can for instance be different metal-ion inducible promoters, e.g. Zn , Ni2 or Co2 inducible promoters. Alternatively or in addition, such promoters can be inducible by the same inductor but require different concentrations of inductor 20 compared to each other. For instance, the first and second promoter are both Zn inducible promoters, but the first 2 promoter is induced in a concentration range of 1-10 pM Zn , whereas the second promoter is induced in a concentration 2+ range of 10-20 pM Zn , so that conditions for induction of 25 the first promoter can be chosen which maintain the second promoter in an uninduced state according to the definition of the present invention. Upon the specific induction of the first promoter for the first production gene, the corresponding first biocatalyst 30 directs the metabolic carbon flux of the photoautotrophic cyanobacterium towards the production of the first chemical compound, for instance ethanol. At the same time, the first biocatalyst under the transcriptional control of the second WO 2013/098265 PCT/EP2012/076786 - 16 promoter for the first production gene is not expressed and is better preserved from accumulating inactivating genetic alterations. Upon loss of activity of the first biocatalyst following the accumulation of mutations in the first 5 production gene, the second promoter for the first production gene which has not yet accumulated inactivating alterations can be induced, so that the second of the first biocatalysts is expressed which catalyzes the same reaction as the first of the two first biocatalysts, thus leading to a recovery of 10 the production of the first chemical compound and enabling the temporal extension of the production phase of the first chemical compound. In a preferred embodiment of the invention, the metabolically 15 enhanced cyanobacterium further comprises at least one second production gene encoding a second biocatalyst for the production of the first chemical compound. In such embodiments, the chemical reaction catalyzed by the first biocatalyst is different from the chemical reaction catalyzed 20 by the second biocatalyst. In this case, the first biocatalysts can produce an intermediate, which is further converted by the second biocatalyst to the first chemical compound. In a variant of the metabolically enhanced cyanobacterium, the at least one second production gene is 25 also under the transcriptional control of a first promoter for the second production gene. In some embodiments, said first promoter for the second production gene is inducible under the same conditions as the first promoter for the first production gene. In certain embodiments, the first promoter 30 for the second production gene and the first promoter for the first production gene are the same single promoter.
WO 2013/098265 PCT/EP2012/076786 - 17 Cyanobacteria according to certain embodiments of the invention can also comprise a whole sequence of recombinant genes coding for biocatalysts for the production of the first chemical compound in the case that a cascade, for example a 5 series of different enzymes, is necessary to produce the first chemical compound. In particular, the first biocatalyst encoded by the first production gene can produce a first intermediate which is further converted by the second biocatalyst encoded by the second production gene into 10 another second intermediate, which in turn is then further converted by a third biocatalyst encoded by a third production gene into a third intermediate, so that a sequence of consecutive recombinant biocatalysts, which provide intermediates for the next recombinant enzyme for the 15 production of the first chemical compound can be introduced into the cyanobacteria. In another preferred embodiment, the metabolically enhanced cyanobacterium comprises multiple first production genes, all 20 encoding first biocatalysts catalysing the same chemical reaction, wherein each of the multiple first production genes is under the transcriptional control of a promoter for the first production gene which is separately inducible under different conditions in comparison to the other promoters for 25 the first production gene. In one example, the metabolically enhanced cyanobacterium comprises a further third first production gene under the transcriptional control of a third promoter for the first production gene. In one example, the metabolically enhanced cyanobacterium comprises a fourth 30 first production gene under the transcriptional control of a fourth promoter for the first production gene. In one example, the metabolically enhanced cyanobacterium comprises at least a further fifth first production gene under the WO 2013/098265 PCT/EP2012/076786 - 18 transcriptional control of a fifth promoter for the first production gene. In another preferred embodiment, the metabolically enhanced 5 cyanobacterium comprises more than one second production gene, all encoding second biocatalysts catalysing the same chemical reaction. In one example, the metabolically enhanced cyanobacterium comprises two second production genes, wherein one of the two second production genes is under the 10 transcriptional control of a first promoter for the second production gene and the other of the two second production genes is under the transcriptional control of a second promoter for the second production gene. In another example, the metabolically enhanced cyanobacterium comprises a further 15 third second production gene under the transcriptional control of a third promoter for the second production gene. In another example, the metabolically enhanced cyanobacterium comprises a fourth second production gene under the transcriptional control of a fourth promoter for the second 20 production gene. In another example, the metabolically enhanced cyanobacterium comprises at least a further fifth second production gene under the transcriptional control of a fifth promoter for the second production gene. 25 In some preferred embodiments, the promoters for the first production genes and the promoters for the second production genes are inducible under the same conditions, so that the first production gene and the second production gene are co expressed under the same cultivation conditions. This ensures 30 that the first chemical compound can be produced via the enzymatic action of the first and second biocatalyst. In one example, the first promoter for the first production gene and the first promoter for the second production gene are WO 2013/098265 PCT/EP2012/076786 - 19 inducible under the same conditions. In another example, also the second promoter for the first production gene and the second promoter for the second production gene are inducible under the same conditions. In yet another example, at least a 5 further third promoter for the first production gene and a further third promoter for the second production gene are inducible under the same conditions. According to a preferred embodiment of the invention, 10 provided is the metabolically enhanced cyanobacterium with a first production gene and a second production gene which are transcriptionally controlled by the same single promoter. For example, a single first promoter is operably linked with a first production gene and a second production gene to form a 15 functional operon. An operon is a functional unit of DNA which contains a cluster of genes under the control of a single regulatory signal or promoter. Accordingly, both the first production gene and the second production gene of an operon are co-ordinately expressed upon induction of the 20 corresponding promoter. In one example, the metabolically enhanced cyanobacterium comprises one single first promoter controlling the transcription of both the first production gene and the second production gene, thus forming the first operon. In another example, the metabolically enhanced 25 cyanobacterium further comprises one single second promoter controlling the transcription of both a second first production gene and a second production gene, thus forming a second operon. In other examples, the metabolically enhanced cyanobacterium can comprise a third, fourth or further 30 additional operon under the transcriptional control of a third, fourth or further promoter controlling the transcription of a first production gene and a second production gene.
WO 2013/098265 PCT/EP2012/076786 - 20 In another preferred embodiment, the metabolically enhanced cyanobacterium comprises a second production gene that is endogenous. In some related examples, wherein the wild type 5 cyanobacterium endogeneously expresses the second biocatalyst that is required and sufficient to convert the intermediate produced by the first biocatalysts into the first chemical compound, the endogenous second production gene can also be non-recombinant, i.e. not affected by any manipulation. 10 In a further variant, the metabolically enhanced cyanobacterium comprises a second production gene encoding a biocatalyst that catalyzes a chemical reaction that is also present in the wild type cyanobacterium. The inventors 15 surprisingly discovered that under these conditions the genetic stability of the second production gene is much higher compared to the first production gene. Therefore, in some preferred embodiments, the second production gene encoding a biocatalyst that catalyzes a chemical reaction 20 that is also present in the wild type cyanobacterium is under the transcriptional control of a constitutive promoter. The inventors found that the constitutive expression of a second biocatalyst, which catalyzes a chemical reaction also present in the wild type cyanobacterium thereby converting a first 25 intermediate produced by the first biocatalyst into a second intermediate or into the first chemical compound, does not foster the accumulation of mutations in the second production gene. 30 In yet another preferred embodiment of the invention, the metabolically enhanced cyanobacterium comprises a second production gene that is recombinant. For example, the nucleotide sequence of an endogenous cyanobacterial gene can WO 2013/098265 PCT/EP2012/076786 - 21 be altered to form a recombinant second production gene. Such alterations include for instance degenerated variants of a production gene in order to minimise the risk of homologous recombination with other closely related genes in the same 5 strain, which might lead to the inactivation of the gene. In another example, an endogenous cyanobacterial gene is recombinantly put under the transcriptional control of a promoter that is different from the promoter transcriptionally controlling the gene in its native context 10 to form a recombinant second production gene. In a preferred embodiment, a recombinant second production gene comprises an altered nucleotide sequence of an endogenous cyanobacterial gene under the transcriptional control of a promoter that is different from the promoter transcriptionally controlling the 15 gene in its native context. In some examples, this promoter is a constitutive promoter. In yet other examples, an endogenous second production gene is operably linked to an inducible promoter to form a recombinant second production gene. In yet another example, 20 an endogenous second production gene is operably linked with a first production gene and an inducible promoter to form part of an operon comprising a recombinant second production gene. In some of these examples, the second production can also be heterologous instead of endogenous. For example, a 25 recombinant second production gene can comprises an altered nucleotide sequence of heterologous gene under the transcriptional control of a promoter, which can in some preferred instances be a constitutive promoter and in some other preferred instances an inducible promoter. 30 Some preferred embodiments comprise a combination of recombinant and non-recombinant second production genes. For example, additional copies of an endogenous second production WO 2013/098265 PCT/EP2012/076786 - 22 gene can be recombinantly introduced into the cyanobacterium to increase the gene copy number. In another example, the cyanobacterial genome harboring an endogenous second production gene can be complemented with one or more 5 additional heterologous second production genes. For instance, cyanobacteria known to endogenously harbor alcohol dehydrogenases could be complemented with a recombinant second production gene encoding an alcohol dehydrogenase enzyme derived from Synechocystis sp. PCC 6803. In preferred 10 related embodiments, recombinant second production genes comprise degenerated versions if one or more endogenous second production gene is present in order to avoid the risk of inactivation by homologous recombination. 15 In preferred embodiments, the first biocatalyst catalyzes a chemical reaction which is not present in the wild type cyanobacteria. For instance, the introduction of the recombinant first production gene re-directs the metabolic flux of the photoautotrophic cyanobacterium towards the 20 production of the first chemical compound. In preferred embodiments, the first biocatalyst is integrated with the natural metabolism of the cyanobacterium using primary or secondary metabolic products as substrate. In a preferred embodiment, the chemical reaction catalyzed by the first 25 biocatalyst diverts carbon flux for the production of the first chemical compound via pyruvate as a naturally occurring metabolite towards the production of the first chemical compound. In another preferred embodiment, the first biocatalyst diverts carbon flux for the production of the 30 first chemical compound via acetyl-CoA as a naturally occurring metabolite towards the production of the first chemical compound. In yet another preferred embodiment, the first biocatalyst utilizes secondary metabolites from valine WO 2013/098265 PCT/EP2012/076786 - 23 biosynthesis and non-mevalonate pathways from valine and isoprenoid synthesis as precursors for the production of the first chemical compound, for example isoprene or isobutanol. In yet another preferred embodiment, the first biocatalyst 5 catalyzes a chemical reaction which diverts acyl-ACP molecules from membrane biosynthesis to produce free fatty acids and alkanes. In some embodiments, only the at least two first production 10 genes encoding the first biocatalysts are under the transcriptional control of inducible promoters. This is based on the discovery by the inventors that in order to balance cell growth and production of the first chemical compound, and thus improve the genetic stability of the cyanobacterial 15 strain, the control of the metabolic carbon flux of the genetically enhanced cyanobacterium requires only to put such production genes under the control of the inducible promoters that encode biocatalysts catalyzing a chemical reaction that separates the carbon flux from the cell growth and biomass 20 accumulation, respectively, and is not present in the wild type cyanobacterium. If only the first production gene coding for a first biocatalyst catalysing a chemical reaction not present in the wild type cyanobacterium is put under the transcriptional control of a first inducible promoter, the 25 cyanobacterial culture in the uninduced state can accumulate biomass without being prone to inactivating alterations in the first production gene. Only when sufficient biomass is reached, the first production gene will be induced so that a high level of production of the first chemical compound can 30 be achieved. In a related embodiment, the second biocatalyst catalyzes a chemical reaction which is present in the wild type WO 2013/098265 PCT/EP2012/076786 - 24 cyanobacteria and has no influence on the carbon flux as it converts the intermediate produced by the first biocatalyst. In yet another related embodiment, the at least one second production gene encoding the second biocatalyst is under the 5 transcriptional control of a constitutive promoter. The inventors found that a cyanobacterial hybrid strain which is metabolically enhanced according to the embodiments detailed above is less prone to accumulation of mutations in the first and second production genes and allows for a particularly 10 prolonged production of the first chemical compound, for instance ethanol. The inventors concluded that the introduction of additional recombinant copies of biocatalysts which catalyze a chemical reaction present in the wild type cyanobacterium influences the metabolism of the 15 cyanobacterium to a lower extent in the absence of catalytic activity of the first biocatalyst, however, it can also reduce the accumulation of toxic precursors/intermediates, e.g. as it is the case for acetaldehyde if ethanol is produced, in the presence of catalytic activity of the first 20 biocatalyst. If ethanol is produced as the first chemical compound, the first biocatalyst could be a pyruvate decarboxylase, which is not present in wild type cyanobacteria. In contrast to that, most wild type cyanobacteria are known to harbor alcohol dehydrogenases, 25 which could be the second biocatalyst. Accordingly, the at least one second production gene encoding an alcohol dehydrogenase could therefore be put under the transcriptional control of a constitutive promoter. 30 In some embodiments, the first production genes are co located on the same genetic element. According to the invention, a genetic element is selected from a group comprising a vector, an endogenous plasmid, a chromosome and WO 2013/098265 PCT/EP2012/076786 - 25 combinations thereof. For example, two first production genes, one of the two first production genes under the transcriptional control of a first promoter for a first production gene, the other first production gene under the 5 transcriptional control of a second promoter for the first production gene, respectively, are co-located on the same genetic element. In another example, a third, fourth or further first production gene under the transcriptional control of a third, fourth or further promoter for the first 10 production gene is co-located with said two first production genes on the same genetic element. Figure 2 shows an exemplary embodiment wherein three first production genes are co-located on the same genetic element. In this example, the cyanobacterial cells (CB) have been transformed with self 15 replicating vectors (VC123), indicated by the circles, harboring three first production genes, indicated by the three interconnected horizontal bars with different hachures on top of the circles, each of which is under the control of a different inducible promoter. The cyanobacterial cell 20 maintains multiple copies of the vector. The large oval in the cyanobacterial cell indicates the bacterial chromosome (CH), whereas the smaller ovals indicate endogenous plasmids EP). Figure 2A shows the cyanobacterial cell prior to, or at the beginning of, the cultivation. Upon induction of the 25 first inducible promoter for the first production gene, the corresponding first production genes are expressed and the cyanobacterial cell commences production of the first chemical compound. Figure 2B shows the situation of the culture after long-term cultivation. Mutations (MT1) have 30 accumulated in the first production genes that have been expressed, indicated by the X in the respective first small horizontal bar depicting the first production genes, consequently leading to a decrease of the productivity of the WO 2013/098265 PCT/EP2012/076786 - 26 cyanobacterial culture, as revealed by culture monitoring. At this stage, the second inducible promoter for the second of the first production genes is induced, driving the expression of the second of the first production genes, thus leading to 5 a recovery of the production of the first chemical compound. Figure 2C depicts the final phase of this example. Mutations (MT2) have now also accumulated in the second of the first production genes, indicated by the X in the respective second small horizontal bar depicting the second first production 10 genes, and the third inducible promoter of the first production gene is now induced in order to recover the production of the first chemical compound. Note that the figures serve illustrative purposes only. It is for example evident to those skilled in the art that the production genes 15 of Figure 2 could also be harbored by a bacterial chromosome (CH) or one or more endogenous plasmids (EP). Furthermore, said different versions of the first production genes of Figure 2 could, for instance, be different operons instead, each comprising a first and a second production gene which 20 are operably linked and under the transcriptional control of a single promoter driving the expression of the respective operon. In some embodiments, the at least one second production gene is located on a different genetic element, distinct from the genetic element harboring the first 25 production genes. For instance, the first production genes are co-located on a vector, whereas the at least one second production gene is located on a bacterial chromosome. In another example, the first production genes are co-located on an endogenous plasmid. In yet another example, the first 30 production genes are co-located on a bacterial chromosome. In a typical cyanobacterial cell, a plurality of said genetic elements is present. In certain preferred embodiments, the at least one second production gene is also co-located with the WO 2013/098265 PCT/EP2012/076786 - 27 first production genes on the same genetic element. In a related embodiment, said genetic element comprises at least one first production gene which is operably linked with a second production gene and wherein the first and second 5 production gene are under the transcriptional control of one single first promoter to form an operon. In another example, the genetic element comprises one first operon under the transcriptional control of a first promoter and at least one second operon under the transcriptional control of a second 10 inducible promoter. In another embodiment, the genetic element comprises at least one further third operon under the transcriptional control of a third inducible promoter. In other variants of the invention, said first production 15 genes are located on different genetic elements (Figure 3). For instance, a metabolically enhanced cyanobacterium (CB) comprises multiple identical copies of a self-replicating vector (VC1), indicated by the circles, harboring a first production gene under the control of the first inducible 20 promoter for the first production gene, indicated by the horizontal bar on top of the circles. The cell has been further transformed with a second first production gene under the transcriptional control of the second inducible promoter for the first production which has been recombined into the 25 bacterial chromosome (CH2), indicated by the horizontal bar on top of the large oval; and a third first production gene under the transcriptional control of the third inducible promoter for the first production gene which has been recombined into several copies of an endogenous plasmid 30 (EP3), indicated by the horizontal bars on top of the small ovals. Figure 3A shows the metabolically enhanced cyanobacterial strain prior to, or at the start of, the cultivation. Upon induction of the first promoter, the first WO 2013/098265 PCT/EP2012/076786 - 28 production gene is expressed, which is in this case located on the vectors (VC1), and the bacterial culture commences production of the first chemical compound. After a certain period of time (Fig. 3B), mutations (MT1) have accumulated in 5 the first production genes driven by the first promoter for the first production genes, indicated by the X, as determined by continuous culture monitoring, thus leading to a decrease of the production of the first chemical compound. In this phase, the second promoter is initiated, driving the 10 expression of the alternative second first production gene on the bacterial chromosome (CH2), thus leading to a recovery of the production of the first chemical compound. In the course of further long-term cultivation (Fig. 3C), mutations (MT2) also accumulate in the second first production gene on the 15 bacterial chromosome, indicated by the X, which is detected by continuous culture monitoring. A final cultivation phase is then initiated by inducing the third promoter for the third first production gene driving the expression of the first production genes located on the endogenous plasmids 20 (EP3). In related embodiments, the at least one second production gene can be either co-located with one or more of the first production genes, or distinct from the first production genes on one or more different genetic element. Said genetic elements are selected from a group comprising a 25 vector, an endogenous plasmid or a bacterial chromosome and combinations thereof. The metabolically enhanced cyanobacterium can comprise multiple copies of one or more of said genetic elements, thus increasing the gene dosage of the first and/or second production genes. In one example, at 30 least one first production gene and one second production gene are operably linked and are under the transcriptional control of one single first inducible promoter to form a first operon. In certain preferred examples, the WO 2013/098265 PCT/EP2012/076786 - 29 metabolically enhanced cyanobacterium comprises two or more of said operons, each of which is under the transcriptional control of a different inducible promoter, and wherein said operons are located on different genetic elements. For 5 instance, a first operon is located on a vector, a second operon is located on an endogenous plasmid, and a third operon is located on the bacterial chromosome. In certain examples, the copy number of said operons is increased due to the presence of multiple copies of said genetic elements. The 10 inventors discovered that the genetic stability of a metabolically enhanced cyanobacterium, comprising first production genes that are located on different genetic elements is improved so that cyanobacterial hybrid strains according to the embodiments above allow for a particularly 15 prolonged production of the first chemical compound. In yet another preferred embodiment, the metabolically enhanced cyanobacterium comprises combinations of first production genes that are co-located on the same genetic 20 element as well as first production genes that located on different genetic elements. For example, the cyanobacterium can comprise two first production genes that are located on the same genetic element, e.g. multiple identical copies of a self-replicating plasmid, and at least a further third first 25 production gene that is located on a different genetic element, e.g. integrated into endogenous plasmids or bacterial chromosomes, as well as combinations thereof if more than a third first production gene is present. As another example, the cyanobacterium comprises two first 30 production genes that are co-located on endogenous plasmids and at least a further third first production gene that is located on the bacterial chromosomes or on a self-replicating plasmid, as well as combinations thereof if more than a third WO 2013/098265 PCT/EP2012/076786 - 30 first production gene is present. Likewise, the at least one second production gene can be co-located with at least one of the first production genes, or be located on different genetic elements, as well as combinations thereof if more 5 than one second production gene is present. The inventors found these embodiments are also particularly suitable to counteract genetic instability as well as intramolecular and intermolecular recombination of the production genes compared to the co-location of all first production genes, and thus 10 aid prolonged production of the first chemical compound. Preferred vectors for the transformation of cyanobacteria comprise for instance self-replicating broad-host range vectors based on RSF1010, such as pVZ and pDAG vectors. In 15 some examples, vectors based on pDU1 can be advantageous. Preferred genetic elements for integration of first and second production genes are for instance the chromosome, and the endogenous cyanobacterial plasmids. 20 In some preferred embodiments, at least one first production gene is located on at least one type of endogenous plasmid present in cyanobacterial host cells. For instance, in Synechococcus sp. PCC 7002 the inventors found that particularly productive and genetically stable hybrid strains 25 could be produced if at least one of the plasmids pAQ1, pAQ3, pAQ4, pAQ5, pAQ6 and/or pAQ7 was implemented as genetic element to harbor at least one first production gene and/or second production gene. In certain preferred examples, the endogenous plasmids comprise the pAQ4 plasmid, the pAQ3 30 plasmid and/or the pAQl plasmid. In some favourable embodiments, the endogenous plasmid comprises the pAQ4 plasmid. The inventors specifically created a novel integration site for homologous recombination of production WO 2013/098265 PCT/EP2012/076786 - 31 genes into pAQ4 (Figure 4 left). They designed two regions of homology, pAQ4-FA and pAQ4-FB, flanking the respective genetic construct, which recombine with homologous regions in pAQ4 between gene loci SYNPCC7002_D0017 (hypothetical 5 protein, 237 nt, 78 aa) and SYNPCC7002_D0018 (CRISPR associated protein Cas2, 294 nt, 97 aa). The inventors found particularly good production characteristics of Synechococcus sp. PCC 7002 strains which were metabolically enhanced in this way. In yet other favourable embodiments, the endogenous 10 plasmid comprises the pAQ3 plasmid. The inventors implemented a method described by Xu and colleagues (2011) for homologous recombination of production genes into pAQ3 (Figure 4 right) and found particularly good production characteristics of Synechococcus sp. PCC 7002 strains which were metabolically 15 enhanced in this way. In yet other favourable embodiments, the endogenous plasmid comprises the pAQ1 plasmid. The inventors modified a method described by Xu and colleagues (2011), to accomplish an improved homologous recombination of production genes into pAQ1 between gene loci SYNPCC7002_BOO01 20 and SYNPCC7002_B0002 (Figure 5), which leads only to a minor deletion of 57 bp in the plasmid. Synechococcus sp. PCC 7002 strains metabolically enhanced in this way exhibited particularly good production characteristics. In certain related instances, the inventors discovered that the 25 implementation of more than one type of these endogenous plasmids as a carrier for the production gene(s) in the same strain resulted metabolically enhanced hybrid strains with unexpectedly good production properties. For example, a combination comprising the pAQ4 plasmid harboring at least 30 one first production gene with the pAQ3 plasmid harboring at least one further first production gene, in addition to at least one additional genetic element harboring at least one further first production gene, e.g. a self-replicating WO 2013/098265 PCT/EP2012/076786 - 32 plasmid, pAQ1 plasmid and/or bacterial chromosome, resulted in Synechococcus sp. PCC 7002 hybrid strains with particularly good production characteristics. 5 Likewise, the inventors found for Synechocystis sp. PCC 6803 that particularly productive and genetically stable hybrid strains could be produced if at least one type of endogenous plasmid was implemented as genetic element to harbor at least one first production gene and/or second production gene. In 10 certain preferred examples, the endogenous plasmids comprise the pSYSG plasmid endogenous to Synechocystis sp. PCC 6803. For example, the inventors found that metabolically enhanced Synechocystis sp. PCC 6803 comprising the pSYSG plasmid harboring at least one first production gene in addition to 15 at least one additional genetic element harboring at least one further first production gene, e.g. a self-replicating plasmid and/or bacterial chromosome, resulted in hybrid strains with particularly good production characteristics. 20 In a preferred embodiment, the first biocatalysts and the second biocatalysts are ethanologenic enzymes. For instance, the first production genes encode a pyruvate decarboxylase enzyme catalyzing the reaction from pyruvate to acetaldehyde. In another example, the first production genes encode an AdhE 25 enzyme (alcohol dehydrogenase E) which directly converts acetyl coenzyme A to ethanol. If the first production genes encode an AdhE enzyme, only the first production genes encoding first biocatalysts are required to produce ethanol. In another example, the second production gene encodes an Adh 30 enzyme (alcohol dehydrogenase), catalyzing the reaction from acetaldehyde to ethanol. For instance, the pyruvate decarboxylase enzyme as first biocatalyst catalyzes the conversion of pyruvate to acetaldehyde, whereas the alcohol WO 2013/098265 PCT/EP2012/076786 - 33 dehydrogenase Adh enzyme as second biocatalyst catalyzes the further conversion of acetaldehyde to the final first chemical compound ethanol. 5 Regarding the nucleic acid sequences, protein sequences and properties of these above-mentioned ethanologenic enzymes, reference is made to the PCT patent application WO 2009/098089 A2, which is incorporated for this purpose. The pyruvate decarboxylase can, for example, be from 10 Zymomonas mobilis, Zymobacter palmae, Sarcina ventriculi or the yeasts Saccharomyces cerevisiae, Pichia pastoris and Klyveromyces lactis. Moreover, pdc enzymes of plant origin like Populus deltroides, Ipomea batatas or Zea mays and pdc enzymes from other host species capable of expression in 15 cyanobacteria can be used. The Adh enzyme can, for example, be the Adh enzyme from Synechocystis sp. PCC 6803 (SynAdh), a Zn2 dependent alcohol dehydrogenase such as AdhI from Zymomonas mobilis (ZmAdh), or 20 the Adh from other cyanobacteria. Alternatively or in addition, the enzyme can also be an iron-independent alcohol dehydrogenase (for example AdhII from Zymomonas mobilis). Both native and degenerated Adh enzymes can be used. Degenerated enzymes denote enzymes encoded by gene sequences 25 which have been altered without changing the encoded amino acid sequence. Degenerated gene sequences include for instance changes in the wobble bases in the triplet codon which do not change the amino acid encoded by this triplet. The Zn dependent alcohol dehydrogenase can, for example, be 30 an alcohol dehydrogenase enzyme having at least 60%, 70%, preferably 80% and most preferred 90% or even more than 90% sequence identity to the amino acid sequence of Zn 2 dependent Synechocystis Adh.
WO 2013/098265 PCT/EP2012/076786 - 34 Experiments have shown that in particular Synechocystis alcohol dehydrogenase (slr1192) is able to ensure a high ethanol production in metabolically enhanced cyanobacteria 5 due to the fact that the forward reaction, the reduction of acetaldehyde to ethanol is much more preferred for Synechocystis alcohol dehydrogenase enzyme than the unwanted back reaction from ethanol to acetaldehyde. In certain other embodiments, other alcohol dehydrogenase enzymes from other 10 host species can be used that are capable of expression in cyanobacteria. The AdhE is an iron-dependent, bifunctional enzyme containing a CoA-depending aldehyde dehydrogenase and an alcohol 15 dehydrogenase activity. One characteristic of iron-dependent alcohol dehydrogenases (for example AdhE and AdhII) is the sensitivity to oxygen. In the case of the AdhE from E. coli a mutant was described that shows in contrast to the wild type also Adh activity under aerobic conditions. The site of the 20 mutation was determined in the coding region at the codon position 568. The G-to-A nucleotide transition in this codon results in an amino acid exchange from glutamic acid to lysine (E568K). The E568K derivative of the E. coli AdhE is active both aerobically and anaerobically (Holland-Staley et 25 al., Aerobic Activity of Escherichia coli Alcohol Dehydrogenase is determined by a single amino acid, J Bacteriology 2000, 182, 6049-54). Adh enzymes directly converting acetyl coenzyme A to ethanol can preferably be from a thermophilic source thereby conferring an enhanced 30 degree of stability. The AdhE can be from Thermosynechococchus elongatus BP-1 or also can be a non thermophilic AdhE enzyme from E. coli.
WO 2013/098265 PCT/EP2012/076786 - 35 The invention further provides biocatalysts catalyzing the same chemical reaction which are encoded by non-identical gene sequences. By this means, multiple versions of e.g. first production genes can be transformed into the 5 cyanobacterial host cell, yet reducing the genes' risk of inactivation via homologous recombination after genetic alterations have occurred in some of these genes. In a related embodiment, such non-identical gene sequences share less than 80%, less than 70%, less than 60% or less than 50% 10 sequence identity, or combinations thereof. Such non identical sequences comprise, for instance, enzyme isoforms, gene sequences comprising conservative mutations, degenerated sequences comprising codon usage bias based on tRNA wobble bases, and combinations thereof. For example, enzyme isoforms 15 of the first biocatalyst can comprise a pyruvate decarboxylase from Zymomonas mobilis, a second pyruvate decarboxylase from Zymobacter palmae, and a third pyruvate decarboxylase of the yeast Saccharomyces cerevisiae. Non identical gene sequences comprising conservative mutations 20 denote DNA or RNA sequences wherein a change in the nucleotide sequence leads to the replacement of one amino acid with a biochemically similar one, for instance a glutamic acid for an aspartic acid or an isoleucine for a valine. Gene sequences which are degenerated in order to 25 reduce the risk of homologous recombination include in particular changes in the wobble bases in the triplet codon for the amino acids of the protein encoded by these genes which do not change the amino acid encoded by this triplet (Table 1). For instance, a specific nucleotide in the triplet 30 can be replaced by another nucleotide so that the base triplet still codes for the same amino acid in the first or second biocatalysts. In this context, the term "SynADHdeg" denotes a degenerated DNA sequence having a sequence identity WO 2013/098265 PCT/EP2012/076786 - 36 of 61% to the wild type Synechocystis adh gene coding for the Synechocystis sp. PCC 6803 alcohol dehydrogenase enzyme, the terms "zmPDCdeg" and "zpPDCdeg" denote degenerated DNA sequences having a sequence identity of 63.6% and 64.8% to 5 the wild type Zymomonas mobilis pdc and Zymobacter palmae pdc, respectively. In other embodiments, the biocatalysts catalyzing the same chemical reaction can also be encoded by identical gene sequences. 10 Table 1: Codon usage of Synechocystis sp. PCC 6803 implemented to generate degenerated and/or codon-optimised gene sequences encoding the first or second production genes. UUU Phe .60 29 UCU Ser .19 11 UAU Tyr .45 12 UGU Cys .57 5 UUC Phe .40 19 UCC Ser .37 22 UAC Tyr .55 2 UGC Cys .43 4 UUA Leu .16 17 UCA Ser .05 3 UAA END .36 2 UGA END .24 1 UUG Leu .30 33 UCG Ser .06 3 UAG END .40 2 UGG Trp 1.00 15 CUU Leu .10 11 CCU Pro .18 9 CAU His .39 7 CGU Arg .24 11 CUC Leu .16 18 CCC Pro .52 26 CAC His .61 11 CGC Arg .23 10 CUA Leu .09 10 CCA Pro .10 5 CAA Gin .58 23 CGA Arg .07 3 CUG Leu .20 22 CCG Pro .19 10 CAG Gin .42 17 CGG Arg .30 14 AUU Ile .60 40 ACU Thr .21 12 AAU Asn .46 16 AGU Ser .17 10 AUC Ile .36 24 ACC Thr .55 32 AAC Asn .54 18 AGC Ser .17 10 AUA Ile .04 2 ACA Thr .09 5 AAA Lys .68 28 AGA Arg .07 3 AUG Met 1.00 27 ACG Thr .14 8 AAG Lys .32 13 AGG Arg .09 4 GUU Val .26 20 GCU Ala .31 30 GAU Asp .60 25 GGU Gly .38 29 GUC Val .18 14 GCC Ala .44 43 GAD Asp .40 17 GGC Gly .28 21 GUA Val .17 13 GCA Ala .10 10 GAA Glu .75 41 GGA Gly .14 11 GUG Val .39 30 GCG Ala .15 15 GAG Glu .25 14 GGG Gly .20 15 15 A variety of suitable cyanobacterial host organisms can be metabolically enhanced to produce the first chemical compound according to the principles of the invention. In preferred embodiments, suitable cyanobacteria include but are not limited to genera of the group comprising Synechocystis, 20 Synechococcus, Anabaena, Chroococcidiopsis, Chlorogloeopsis, Cyanothece, Lyngbya, Phormidium, Nostoc, Spirulina, Arthrospira, Trichodesmium, Leptolyngbya, Plectonema, WO 2013/098265 PCT/EP2012/076786 - 37 Myxosarcina, Pleurocapsa, Oscillatoria, Pseudanabaena. Cyanobacterium, Geitlerinema, Euhalothece, Calothrix, Scytonema. In more preferred embodiments, the cyanobacterial host organisms comprise Synechococcus sp. PCC 7002 and other 5 Synechococcus strains, Synechocystis sp. PCC 6803 strains, Chlorogloeopsis strains, and Chroococcidiopsis strains. In particularly preferred embodiments, the cyanobacterial host organisms comprise Synechococcus sp. PCC 7002 strains and Synechocystis sp. PCC 6803 strains. 10 A variety of suitable inducible promoters and promoter combinations are devised within the invention. Certain aspects and preferred embodiments of the invention require orthogonally inducible promoters in order to allow for the 15 separate, sequential induction of the expression of the corresponding promoter-controlled first and/or second production genes by means of a change in the cultivation conditions. In some embodiments, rather than being orthogonally inducible, the different inducible promoters are 20 inducible by the same inductor, but require inductor concentrations which are so different that the different promoters can be separately induced. Preferably, the induction conditions for different inducible promoters are so different from each other that a cross-induction is minimized 25 or ideally eliminated. For instance, a first and second promoter that are separately inducible under different conditions means that whilst the first promoter is induced, the second promoter is maintained in an uninduced state, i.e. only less than or equal to 20%, preferably less than or equal 30 to 15%, more preferably less than or equal to 10%, most preferred less than or equal to 5% of the first chemical compound per OD75Pm of the cyanobacteria are produced via the corresponding uninduced gene compared to the induced state of WO 2013/098265 PCT/EP2012/076786 - 38 the second promoter. The inventors discovered that with such a tight control of the expression of production genes which direct the metabolic flux away from the wild type cyanobacterial metabolism the genetic stability of the 5 cyanobacterial hybrid strain can be greatly enhanced, thus enabling particularly long-termed production of the first chemical compound. The first and second promoters and/or further promoters can be inducible using different inductors such as different metal ions, different external stimuli such 10 as heat, cold or light. In preferred embodiments, the inducible promoters are induced under conditions selected from a group comprising: by nutrient starvation, by stationary growth phase, by heat shock, by cold shock, by oxidative stress, by salt stress, by light, by darkness, by 15 metal ions, by organic chemical compounds, and combinations thereof. For example, a particularly tight control of the expression of the first production genes can be achieved if these genes are under the transcriptional control of a Zn, Ni, or Co inducible promoter. In some preferred examples, the 20 Co and Ni inducible promoters can be used for the transcriptional control of the first production genes if the cultivation of the cyanobacteria is done in mBG11 medium. According to a further embodiment of the invention, the metabolically enhanced cyanobacteria can further comprise at 25 least one recombinant regulator gene that is co-transformed with the corresponding inducible promoter, encoding a transcription factor such as a repressor or an activator binding to the inducible promoter in the case that the respective inducible promoter is heterologous to the 30 metabolically enhanced cyanobacterium. For example, if a regulator gene codes for a repressor protein binding to the respective promoter in its uninduced state and said promoter WO 2013/098265 PCT/EP2012/076786 - 39 is recombinantly introduced into a cyanobacterium as heterologous gene without the respective regulator gene, the promoter would be a constitutive promoter. Likewise, in the case that the recombinant regulator gene is an activator 5 protein which binds to the respective promoter in the induced state and promotes binding of RNA polymerase to initiate transcription, these promoters would not be functional without the activator protein when they are heterologous to the metabolically enhanced cyanobacterium. 10 In certain preferred embodiments, the inducible promoters are selected from a group comprising: PntcA, PnblA, PisiA, PpetJ, PpetE, PggpS, PpsbA2, PpsaA, PsigB, PlrtA, PhtpG, PnirA, PnarB, PnrtA, PhspA, PclpBl, PhliB, PcrhC, PziaA, PsmtA, PcorT, PnrsB, PnrsB916, PaztA, PbmtA, Pbxal, PzntA, PczrB, 15 PnmtA. In certain other preferred embodiments, truncated or partially truncated versions of these promoters including only a small portion of the native promoters upstream of the transcription start point, such as the region ranging from 35 to the transcription start can often be used. Furthermore, 20 introducing nucleotide changes into the promoter sequence, e.g. into the TATA box, the operator sequence, 5' untranslated region and/or the ribosomal binding site (RBS) can be used to tailor or optimise the promoter strength and/or its induction conditions, e.g. the concentration of 25 inductor required for induction. In some preferred variants, the different inducible promoters are inducible by different metal ions. For example, the first promoter for a first and/or second production gene can be the PpetE or PpetJ promoter, such that the induction occurs under copper 30 addition or copper-depletion. The second promoter for the first and/or second production gene can then be the Zn-_ inducible promoter PziaA, PsmtA or PaztA. A further third WO 2013/098265 PCT/EP2012/076786 - 40 promoter for the first and/or second production gene can be the Co2 -inducible promoter PcorT. A further fourth promoter for the first and/or second production gene can be the Ni2 inducible promoter PnrsB. 5 In certain embodiments, the second production gene encodes a biocatalyst that does not affect the metabolic carbon flow of the cyanobacterial cell by its expression and therefore has no influence on the metabolic competition between cell growth and production of the chemical compound. Accordingly, genetic 10 alterations in this gene do not provide a selection advantage and do not lead to overgrowing of the culture by corresponding revertants. For this reason, in some preferred embodiments, such second production genes can be put under the control of promoters different from the inducible 15 promoters, for example constitutive promoters such as the Prbc promoter or an improved variant therof. This promoter controls the transcription of the genes encoding the ribulose biphosphate carboxylase/oxygenase (rbcLXS genes: slrOO09, slrOOll and slrOO12), which is a constitutive and strong 20 promoter. Similarly, also a third or further production gene encoding biocatalysts such as enzymes which catalyze metabolic reactions that do not affect the metabolic carbon flow of the cyanobacterial cell by their expression can be put under the control of a constitutive promoter. In some 25 further examples, said second or further production gene can for instance encode a biocatalyst which catalyzes metabolic reactions already present in the wild type cyanobacterium. Some preferred examples of metabolically enhanced cyanobacteria comprise a first production gene which is under 30 the transcriptional control of the Zn-inducible promoter PziaA or the Zn-inducible promoter PsmtA, a second first WO 2013/098265 PCT/EP2012/076786 - 41 production gene under the transcriptional control of the nickel-inducible promoter PnrsB and a third first production gene under the transcriptional control of the cobalt inducible promoter PcorT, whereas the second production gene 5 is under the transcriptional control of the constitutive Prbc promoter or an improved veriant thereof. In other preferred examples, the metabolically enhanced cyanobacterium can comprise two or more first production genes under the transcriptional control of a first, second or 10 further promoter, wherein the promoters are inducible by the same inductor, but wherein the concentration of inductor required for induction of the first promoter is different from the concentration of inductor required for induction of the second or further promoter, and the concentration of 15 inductor required for induction of the second promoter is different from the concentration of inductor required for the further promoter. In typical examples, the concentration of inductor required for the induction of the first promoter is lower compared to the concentration of inductor required for 20 induction of the second promoter, and the concentration of inductor required for the induction of the second promoter is lower compared to the concentration of inductor required for induction of the third promoter. In some other examples, wherein the promoter responds to a depletion of the 25 corresponding inductor, the concentration of inductor required for the induction of the first promoter is higher compared to the concentration of inductor required for induction of the second promoter and the concentration of inductor required for the induction of the second promoter is 30 higher compared to the concentration of inductor required for induction of the third promoter. According criteria can be applied to a fourth or further promoter. For instance, the WO 2013/098265 PCT/EP2012/076786 - 42 first, second and a further third promoter are all Zn inducible promoters, but the first promoter requires a concentration of 1-5 pM Zn for induction, the second promoter requires a concentration of 5-10 pM Zn2 for 5 induction, and the third promoter requires a concentration of >10 pM Zn2 for induction, such that these promoters can be used inventively using distinct concentrations of the same inductor for sequential induction of the first production genes. Suitable different promoters which require different 10 concentrations of inductor could be for instance the Zn inducible promoters PziaA, PsmtA and PaztA. Alternatively, modified variants of the same promoter could be used, for instance recombinantly modified versions of the Zn-inducible PziaA promoter, which have been tailored to respond to 15 different concentrations of the inductor. The first chemical compound according to the present invention can be selected for example from the group of alcohols, alkanes, polyhydroxyalkanoates, e.g. PHB, fatty acids, fatty acid esters, carboxylic acids, such as amino 20 acids, terpenes and terpenoids, peptides, polyketides, hydrogen, alkaloids, lactams, such as pyrrolidone, alkenes and ethers, such as THF and combinations thereof. In a preferred variant the first chemical compound comprises a biofuel. In a further variant of the genetically enhanced 25 cyanobacteria provided by the invention, the first chemical compound comprises a hydrocarbon-based biofuel which is selected from the group comprising ethanol, isobutanol, fatty acid esters, alkanols, alkenes and alkanes. In another preferred variant, the first chemical compound comprises 30 ethanol. The first chemical compound can also comprise ethylene or isoprene.
WO 2013/098265 PCT/EP2012/076786 - 43 Depending on the first valuable chemical compound to be produced, the respective first production genes encoding enzymes for the production of these first chemical compounds have to be introduced into the cyanobacteria. For example, if 5 the first chemical compound is ethanol, the first production gene encoding enzymes for ethanol production can be Pdc enzymes catalyzing the reaction from pyruvate to acetaldehyde or an AdhE enzyme which directly converts acetyl coenzyme A to ethanol. The second production gene can for instance be an 10 Adh enzyme catalyzing the conversion of acetaldehyde to the first chemical compound ethanol. Two other alcohols which are relatively widespread are propanol and butanol. Similar to ethanol, they can be 15 produced by fermentation processes. The following enzymes are involved in isopropanol fermentation and can be encoded first and/or second production genes according to the present invention: acetyl-CoA acetyltransferase (EC:2.3.1.9), acetyl CoA:acetoacetyl-CoA transferase (EC:2.8.3.8), acetoacetate 20 decarboxylase (EC:4.1.1.4) and isopropanol dehydrogenase (EC:1.1.1.80). The following enzymes are involved in isobutanol fermentation and can constitute first and/or second production genes 25 according to the present invention: acetolactate synthase (EC:2.2.1.6), acetolactate reductoisomerase (EC:1.1.1.86), 2,3-dihydroxy-3-methylbutanoate dehydratase (EC:4.2.1.9), I ketoisovalerate decarboxylase (EC:4.1.1.74), and alcohol dehydrogenase (EC:1.1.1.1). 30 In the case that ethylene is to be produced as a first chemical compound, the first production gene encodes an enzyme for ethylene formation, in particular the ethylene- WO 2013/098265 PCT/EP2012/076786 - 44 forming enzyme 1-aminocyclopropane-1-carboxylate oxidase (EC 1.14.17.4), which catalyzes the last step of ethylene formation, the oxidation of 1-aminocyclopropane-1-carboxylic acid to ethylene. The substrate for the ethylene-forming 5 enzyme is synthesized by the enzyme 1-aminocyclopropane-1 carboxylic acid synthase (EC 4.4.1.14) from the amino acid methionine. If the first chemical compound is an isoprenoid such as 10 isoprene, the first production gene encodes an enzyme such as isoprene synthase. Isoprene synthase (EC 4.2.3.27) catalyzes the chemical reaction from dimethylallyl diphosphate to isoprene and diphosphate. 15 Terpenes are a large and very diverse class of organic compounds, produced primarily by a wide variety of plants, particularly conifers. Terpenes are derived biosynthetically from units of isoprene and are major biosynthetic building blocks in nearly every living organism. For example, steroids 20 are derivatives of the triterpene squalene. When terpenes are chemically modified, for instance by oxidation or rearrangement of the carbon skeleton, the resulting compounds are generally referred to as terpenoids. Terpenes and terpenoids are the primary constituents of the essential oils 25 for many types of plants and flowers. Examples of biosynthetic enzymes are farnesyl pyrophosphate synthase (EC 2.5.1.1), which catalyzes the reaction of dimethylallylpyrophosphate and isopentenyl pryrophosphate yielding farnesyl pyrophosphate. Another example is 30 geranylgeranyl pyrophosphate synthase (EC 2.5.1.29), which catalyzes the reaction between transfarnesyl diphosphate and isopentenyl diphosphate yielding diphosphate and geranylgeranyl diphosphate.
WO 2013/098265 PCT/EP2012/076786 - 45 In the case that the first chemical compound is hydrogen, the first production genes can for example code for hydrogenase, an enzyme catalyzing the following reaction: 5 12H+ + 1 2 Xreduced -> 6 H 2 + 1 2 X~oxidized, wherein X is an electron carrier such as ferredoxin. 10 Another example of first chemical compounds are the so-called non-ribosomal peptides (NRP) and the polyketides (PK). These compounds are synthesized by plants, fungi and only a few bacteria such as actinomycetes, myxobacteria and cyanobacteria. They are a group of structurally diverse 15 secondary metabolites and often possess bioactivities of high pharmacological relevance. Hybrids of non-ribosomal peptides and polyketides also exist, exhibiting both a peptide and a polyketide part. First production genes for the production of non-ribosomal peptides as the first chemical compounds are 20 for example gene clusters encoding for non-ribosomal peptide synthetases (NRPS). NRPS are characteristic modular multidomain enzyme complexes encoded by modular non-ribosomal peptide synthetases gene clusters. Examples for non-ribosomal peptide synthetases are actinomycin synthetase and gramicidin 25 synthetase. In general there are two distinct groups of polyketides (PK), the reduced polyketides of type I, the so-called macrolides and the aromatic polyketides of type II. Type I polyketides 30 are synthesized by modular polyketide synthases (PKS), which are characteristic modular multidomain enzyme complexes encoded by modular PKS gene clusters. Examples for first production genes for the production of type I polyketides are WO 2013/098265 PCT/EP2012/076786 - 46 the rapamycin synthase gene cluster and the cleandomycin synthase gene cluster. One example for a first production gene for type II polyketides is the actinorhodin polyketide synthase gene cluster. 5 Examples for first production genes for the production of hybrids of polyketides and non-ribosomal peptides are the microcystin synthetase gene cluster, microginin synthetase gene cluster, myxothiazole synthetase gene cluster. 10 Further examples of first chemical compounds are alkaloids. Alkaloids are a compound group which is synthesized by plants. Alkaloids have highly complex chemical structures and pronounced pharmacological activities. An example for 15 biosynthetic enzymes for alkaloids which can be encoded by first production genes for the production of the chemical compound according to the present invention is strictosidine synthase, which catalyzes the stereoselective Pictet-Spengler reaction of tryptamine and secologanin to form 3a(S) 20 strictosidine. The primary importance of strictosidine is not only its precursor role for the biosynthetic pathway of ajmaline but also because it initiates all pathways leading to the entire monoterpene indol alkaloid family. Another example of an enzyme encoded by a first production gene is 25 strictosidine glucosidase from the ajmaline biosynthetic pathway. This enzyme is able to activate strictosidine by deglycosylation thus generating an aglycon. This aglycon of strictosidine is the precursor for more than 2,000 monoterpenoid indol alkaloids. 30 Further examples of enzymes encoded by first production genes are: WO 2013/098265 PCT/EP2012/076786 - 47 - (R,S)-3'-hydroxy-N-methylcoclaurine 4'-0-methyl transferase (4'OMT) central to the biosynthesis of most tetrahydrobenzylisoquinolin-derived alkaloids; - Berberine bridge enzyme (BBE) specific to the 5 sanguinarine pathway; - (R,S)-reticuline 7-0-methyltransferase (70MT) specific to laudanosine formation; - Salutaridinol 7-0-acetyltransferase (SalAT) and codeinone reductase that lead to morphine. 10 Vitamins, as yet further examples of first chemical compounds, are organic compounds that are essential nutrients for certain organisms and act mainly as cofactors in enzymatic reactions but can also have further importance, 15 e.g. as anti oxidants in case of vitamin C. Vitamin C can be synthesized via the L-Ascorbic acid (L-AA) biosynthetic pathway from D-glucose in plants. The following enzymes are involved in vitamin C synthesis and can be encoded by first and/or second production genes according to the present 20 invention: Hexokinase, Glucose-6-phosphate isomerase, Mannose-6-phosphate isomerase, Phosphomannomutase, Mannose-1 phosphate guanylyltransferase, GDP-mannose-3,5-epimerase, GDP-L-galactose phosphorylase, L-Galactose 1-phosphate phosphatase, L-galactose dehydrogenase, L-galactono-1,4 25 lactone dehydrogenase. Lactams, as another example of first chemical compounds, are cyclic amides wherein the prefixes indicate how many carbon atoms (apart from the carbonyl moiety) are present in the 30 ring: p-lactam (2 carbon atoms outside the carbonyl, 4 ring atoms in total), y-lactam (3 and 5), 6-lactam (4 and 6). One example for a y-lactam is pyrrolidone, a colorless liquid which is used in industrial settings as a high-boiling, non- WO 2013/098265 PCT/EP2012/076786 - 48 corrosive, polar solvent for a wide variety of applications. It is also an intermediate in the manufacture of polymers such as polyvinylpyrrolidone and polypyrrolidone. 5 Yet another example of first chemical compounds according to the present invention are ethers, a class of organic compounds that contain an ether group - an oxygen atom connected to two alkyl or aryl groups - of general formula R O-R. A well-known example is tetrahydrofuran (THF), a 10 colorless, water-miscible organic liquid. This heterocyclic compound is one of the most polar ethers with a wide liquid range, it is a useful solvent. Its main use, however, is as a precursor to polymers. 15 One example for the natural occurring ethers are the divinyl ether oxylipins. The main enzymes involved in their bio synthesis are the lipoxygenase and especially the divinyl ether synthase. 20 Alkanes, also known as saturated hydrocarbons, are chemical compounds that consist only of the elements carbon and hydrogen (i.e., hydrocarbons), wherein these atoms are linked together exclusively by single bonds (i.e., they are saturated compounds). Each carbon atom must have 4 bonds 25 (either C-H or C-C bonds), and each hydrogen atom must be joined to a carbon atom (H-C bonds). The simplest possible alkane is methane, CH 4 . There is no limit to the number of carbon atoms that can be linked together. Alkanes, observed throughout nature, are produced directly from fatty acid 30 metabolites. A two-gene pathway widespread in cyanobacteria is responsible for alkane biosynthesis and can be included in the first and/or second production genes. An acyl-ACP reductase (EC: 1.3.1.9) converts a fatty acyl-ACP into a WO 2013/098265 PCT/EP2012/076786 - 49 fatty aldehyde that is subsequently converted into an alkane/alkene by an aldehyde decarbonylase (EC:4.1.99.5.). Further examples of the first chemical compound include 5 biopolymers such as polyhydroxyalkanoates or PHAs which are linear polyesters produced in nature by bacterial fermentation of sugar or lipids. They are produced by the bacteria to store carbon and energy. The simplest and most commonly occurring form of PHA is the fermentative production 10 of poly-3-hydroxybutyrate (P3HB), but many other polymers of this class are produced by a variety of organisms: these include poly-4-hydroxybutyrate (P4HB), polyhydroxyvalerate (PHV), polyhydroxyhexanoate (PHH), polyhydroxyoctanoate (PHO) and their copolymers. The main enzymes involved in PHA 15 synthesis are as follows: For P3HB synthesis two molecules of acetyl-CoA were condensed by a S-ketothiolase (EC:2.3.1.9) to synthesize acetoacetyl-CoA, which is converted to (R)-3 hydroxybutyryl-CoA (3HBCoA) by NADPH-dependent acetoacetyl CoA reductase (EC:1.1.1.36). The 3HBCoA is subsequently 20 polymerized by poly(3-hydroxyalkanoate) synthase (EC:2.3.1.-) and converted to (P3HB). These can be included in the first and/or second production genes according to the present invention. 25 About 100,000 metric tons of the natural fatty acids are consumed in the preparation of various fatty acid esters. The simple esters with lower chain alcohols (methyl-, ethyl-, n propyl-, isopropyl-, and butyl esters) are used as emollients in cosmetics and other personal care products and as 30 lubricants. Esters of fatty acids with more complex alcohols, such as sorbitol, ethylene glycol, diethylene glycol and polyethylene glycol are consumed in foods, personal care, paper, water treatment, metal working fluids, rolling oils WO 2013/098265 PCT/EP2012/076786 - 50 and synthetic lubricants. Fatty acids are typically present in the raw materials used for the production of biodiesel. A fatty acid ester (FAE) can be created by a transesteri fication reaction between fats or fatty acids and alcohols. 5 The molecules in biodiesel are primarily fatty acid methyl esters FAMEs, usually obtained from vegetable oils by transesterification with methanol. The esterification of the ethanol with the acyl moieties of coenzyme A thioesters of fatty acids can be realized enzymatically by an unspecific 10 long-chain-alcohol 0-fatty-acyltransferase (EC 2.3.1.75) from Acinetobacter baylyi strain ADP1. In preferred embodiments, the metabolically enhanced cyanobacteria allow for a long-term production of the first 15 chemical compound of at least or more than 60 days. Metabolically enhanced cyanobacteria according to some other embodiments of the present invention can also include another production pathway for a second chemical compound so that 20 these cyanobacteria produce the first and the second chemical compound. The second chemical compound differs from the first chemical compound and can also be selected from the above mentioned chemicals 25 The second aspect of the present invention is directed to a method for producing metabolically enhanced cyanobacteria according to the first aspect of the invention, comprising the following method steps: 30 a) Providing the following at least two transformable nucleic acid sequences: WO 2013/098265 PCT/EP2012/076786 - 51 - said first production gene under the transcriptional control of said first promoter for the first production gene; - said first production gene under the 5 transcriptional control of said second promoter for the first production gene; b) Transforming said at least two transformable nucleic acid sequences into the cyanobacteria cells. 10 In some embodiments, the at least two transformable nucleic acid sequences are provided on one genetic construct which is transformed into the cyanobacterial cell. In other embodiments, the at least two transformable nucleic acid sequences are provided on different genetic constructs which 15 are separately transformed into the cyanobacterial cell. In yet other embodiments, a third or further transformable nucleic acid sequence is provided, either on one genetic construct with at least one of said at least two transformable nucleic acid sequences, or as one or more 20 separate genetic constructs, and is transformed into the cyanobacterial cell. The laboratory procedures in cell culture, molecular cloning and nucleic acid chemistry which are required to provide a 25 transformable nucleic acid sequence according to method step a) are those well-known and commonly employed in the art. The techniques and procedures are generally performed according to conventional methods in the art and various general references, see, for example: Molecular Cloning: A Laboratory 30 Manual (Third Edition), Sambrook, J., et al. (2001) Cold Spring Harbor Laboratory Press; Current Protocols in Microbiology (2007) Edited by Coico, R, et al., John Wiley and Sons, Inc.; The Molecular Biology of Cyanobacteria (1994) WO 2013/098265 PCT/EP2012/076786 - 52 Donald Bryant (Ed.), Springer Netherlands; which are hereby incorporated in their entirety. A transformable nucleic acid sequence as used herein means a 5 nucleotide sequence (DNA sequence) capable of directing expression of a particular nucleotide sequence in the cyanobacterial host cell. Nucleic acid sequences of interest can, for instance, be obtained from the GenBank database or derived from protein databases. The sequence information may, 10 for instance, be used to amplify the nucleic acid sequence of interest from a host organism using the polymerase chain reaction (PCR) technique. Suitable primer pairs for the PCR can be designed on the basis of the available sequence information using design algorithms or design rules which are 15 known to those skilled in the art. The design of the primers can also accommodate non-coding flanking sequences which can facilitate the cloning and expression of the nucleic acid sequence. For example, restriction endonuclease recognition sites can be incorporated into the primers to enable the 20 specific ligation of the nucleic acid sequence into a cloning and/or expression vector. In addition, the design can incorporate nucleic acid sequences which facilitate the insertion of the genetic construct into genetic elements via homologous recombination. Alternatively, the nucleic acid 25 sequences can be synthetically produced. In providing the nucleic acid sequence for transformation, additional features can be considered, for instance incorporating an optimized codon-usage for cyanobacteria, introducing conservative mutations, elimination of restriction sites, or incorporating 30 degenerated nucleic acid sequences. The nucleic acid sequence may further be inserted into a suitable cloning or expression vehicle to provide the transformable genetic construct of method step a). To this end, the restriction sites WO 2013/098265 PCT/EP2012/076786 - 53 incorporated into the design of the nucleic acid sequence are preferably designed to match appropriate restriction sites of the vehicle of choice. Alternatively, the nucleic acid sequences can for example also be inserted into vehicles by 5 recombination, if their design incorporates a suitable recombination site and the vehicle of choice contains a cognate recombination site as well. Vehicles of choice may, for instance, be vectors suitable for amplification and/or expression in cyanobacterial cells. Such vectors may also be 10 used to facilitate further cloning steps, shuttling between vector systems, expression of the inserted product in cyanobacterial host cells, or integration of the inserted product into the genome of the cyanobacterial host cell. 15 Numerous methods can be used to transform the transformable nucleic acid sequence into the cyanobacterial cells in method step b). For instance, the insertion of the genetic construct into the host cell can be accomplished by methods of direct uptake, conjugation or electroporation. According to the 20 present invention, transforming the cyanobacteria cells means that the genetic construct may be maintained as a non integrated, self-replicating vector, for example a plasmid, or alternatively may be integrated into the host cell genome, for instance an endogenous plasmid or a bacterial chromosome. 25 Transformation by direct uptake is possible for several cyanobacterial species that are naturally competent, i.e. capable of transporting DNA across the cell membrane. For instance, Synechocystis sp. PCC6803, Synechococcus elongatus PCC 7942, Synechococcus sp. PCC 7002 and Thermosynechococcus 30 elongatus BP-1 are naturally transformable. Alternatively, transformation of cyanobacterial cells can be accomplished by conjugation. For instance, transformation by conjugation has been successfully for Anabaena sp. PCC 7120, Anabaena WO 2013/098265 PCT/EP2012/076786 - 54 variabilis ATCC 29413, Nostoc punctiforme ATCC 290133, Nostoc sp. PCC 7422, Synecococcus sp. MA19, Synechococcus sp. NKBG15041c, Synechococcus leopoliensis UTCC 100 and Synechocystis sp. PCC 6803. Cyanobacterial transformation has 5 also been accomplished by electroporation, for instance of Synechocystis sp. PCC 6803. For laboratory references for these types of methodologies see, for example, A.M. Puffing, Bioengineered Bugs 2011, 2, 136-149, and references cited therein, which are hereby incorporated in their entirety. 10 A selection marker is required to screen for successful transformation events. In a preferred embodiment, the transformable genetic construct therefore further comprises an individual selection marker which allows selection of 15 positive transformants carrying said transformable genetic construct. In addition, since according to the present invention the cyanobacterial cells can comprise different transformed genetic constructs located on the same as well as different genetic elements, these transformable genetic 20 constructs have to carry different selective markers to accordingly select positive transformation events with each genetic construct and each genetic element. In a preferred embodiment, the transformable genetic construct further comprises a ubiquitous selection marker, i.e. a selection 25 marker which is common to all the different transformable genetic constructs transformed into the cyanobacterium. The ubiquitous selection marker allows for selection of positive transformants carrying any of said transformable genetic constructs. In a preferred embodiment, the method comprises 30 the use of selection markers that are based on antibiotic resistance, selection markers independent of antibiotic resistance, as well as combinations thereof. A variety of antibiotic resistance cassettes can be used as selective WO 2013/098265 PCT/EP2012/076786 - 55 markers with cyanobacteria, for instance ABR cassettes for ampicillin, kanamycin, neomycin, gentamycin, streptomycin, spectinomycin, chloramphenicol, erythromycin, zeozin. Antibiotic resistance-free systems comprise, for example, 5 selection markers that confer prototrophy to an auxotrophic cyanobacterial strain, or confer resistance against certain heavy metal ions as cobalt or zinc. In a third aspect of the present invention, the invention 10 provides a method for producing a first chemical compound using a metabolically enhanced cyanobacterium comprising the method steps of: A) Culturing the metabolically enhanced cyanobacterium under conditions for induction of the first promoter 15 for the first production gene, the cyanobacterium producing the first chemical compound; B) Culturing the metabolically enhanced cyanobacterium under conditions for induction of the second promoter for the first production gene, the cyanobacterium 20 producing the first chemical compound; - wherein method step A) and method step B) are temporally separated; - wherein the second promoter for the first production gene of method step B) is maintained in an uninduced 25 state during method step A). Suitable growth media for cyanobacteria comprise, for instance, the BGll medium, which can be prepared with fresh water (BG11), sea water (mBG11) or brackish water. 30 The recipe for the cyanobacterial growth medium mBGll is as follows: WO 2013/098265 PCT/EP2012/076786 - 56 NaNO3: 1.5 g
K
2 HPO4: 0.04 g MgSO4-7H 2 0: 0.075 g CaCl 2 -2H 2 0: 0.036 g 5 Citric acid: 0.006 g Ferric ammonium citrate: 0.006 g EDTA (disodium salt): 0.001 g NaCO 3 : 0.02 g Trace metal mix A5: 1.0 ml 10 Distilled water: 1.0 L (pH 7.1 adjusted after sterilization) Herein, the recipe for the trace metal mix A5 is: 15 H 3 B0 3 : 2.86 g MnCl 2 -4H 2 0: 1.81 g *ZnSO 4 -7H 2 0: 0.222 g NaMoO4-2H 2 0: 0.39 g CuSO4-5H 2 0: 0.079 g 20 *Co(NO3)2-6H 2 0: 49.4 mg Distilled water or seawater (35 practical salinity units = psu; see Unesco (1981a). The Practical Salinity Scale 1978 and the International Equation of State of Seawater 1980. Tech. Pap. Mar. Sci., 36: 25 25 pp.): 1.0 L The asterisk (*) denotes those metal supplements that can be either omitted or used in reduced amounts if these metals are also used as inductor for 30 corresponding metal-inducible promoters in the metabolically enhanced cyanobacterial strain.
WO 2013/098265 PCT/EP2012/076786 - 57 Due to the first production genes being under the control of inducible promoters, the cyanobacteria can be grown to a high density prior to method step A) in the uninduced state, since the flux of fixed-carbon is not diverted from the cells' 5 natural metabolism, i.e. cell growth. According to the present invention, the conditions for induction of the first promoter for the first production gene in method step A) can be, for instance, the depletion of copper, copper addition, the addition of Zn 2, Co2 or Ni2 to the culture medium, iron 10 starvation, nitrogen starvation, selected nitrogen sources in the medium, or any other suitable induction condition. In method step A), the cyanobacteria can for example be induced by adding at least 2 pM Zn 2, Co2 or Ni2 to the growth medium. The concentration of the inducing agent in the growth 15 medium for an induction of the promoters can be for instance between 5 pM and 20 pM. The high cell density of the cyanobacterial culture together with the strength of the inducible promoter allows for a high production rate of the first chemical compound during method step A). If for example 20 a drop in the production rate of the first chemical compound during method step A) is registered, method step B) is initiated by a change in the cultivation conditions, so that the second promoter for the first production gene is induced. Typically, induction of method step B) leads to a recovery of 25 the production of the first chemical compound. According to the teaching of the present invention, a fundamental feature of the method is that the method step A) and method step B) are temporally separated. This means that 30 the method steps are sequentially initiated during the method for producing the first chemical compound by a change of cultivation conditions for selective induction of the first and second promoter for the first production gene. In this WO 2013/098265 PCT/EP2012/076786 - 58 sense, method step B) is initiated after method step A). However, it is possible that during method step B) the conditions for induction of the first promoter for the first production gene of method step A) are maintained. For 5 instance, if a Zn 2 salt was added for induction of the first promoter for the first production gene in method step A), it is not required that this Zn salt is removed from the cultivation medium in method step B). The temporal separation of method steps A) and B) only requires that the second 10 promoter for the first production gene of method step B) is maintained in an uninduced state during method step A). The inventors found that under these conditions the likelihood of reverted non-producing cells that can enrich and finally overgrow non-reverted producing cells is reduced, thereby 15 enabling the long-term production of the first chemical compound according to the principle of the invention by a temporarily separated sequential induction of production genes encoding biocatalysts catalyzing the same reaction for the production of the first chemical compound. 20 In a preferred embodiment, the method comprises at least one further method step C) of.culturing the metabolically enhanced cyanobacterium under conditions for induction of at least one further third promoter for the first production 25 gene, the cyanobacterium producing the first chemical compound; wherein method step A), method step B) and method step C) are temporally separated from each other; wherein the third promoter for the first production gene of method step C) is maintained in an uninduced state during method steps A) 30 and B). It is evident to those skilled in the art that the method provided by the invention can also comprise additional method steps which can be easily derived following the same principles as detailed for method steps A), B) and C).
WO 2013/098265 PCT/EP2012/076786 - 59 In certain preferred embodiments, method steps A), B) and if present - C) and further method steps comprise the expression of the at least one second production gene 5 encoding the second biocatalyst for the production of the first chemical compound. The expression of the at least one second production gene in the respective method step can be controlled by an inducible promoter or can be constitutive. In preferred embodiments, the method steps comprise the 10 constitutive expression of the at least one second production gene. For example, the inventors discovered that if the second biocatalyst catalyzes a reaction that does not affect the metabolic carbon flow of the cyanobacterial cell and therefore has no influence on the metabolic competition 15 between cell growth and production of the chemical compound, the genetic pressure on the second production encoding the second biocatalyst is significantly lower compared to the genetic pressure on the first production gene encoding a biocatalyst that separates the carbon flux from the cell 20 growth and biomass accumulation, respectively. Accordingly, genetic alterations in this gene do not provide a selection advantage and do not lead to overgrowing of the culture by corresponding revertants. According to this preferred embodiment, the second production gene can for instance 25 encode an alcohol dehydrogenase, whereas the first production genes encode a pyruvate decarboxylase enzyme, in the case the first chemical compound is ethanol. In certain embodiments, wherein the at least one second 30 production gene is under the transcriptional control of the first, second or further promoter for the second production gene, also the first promoter for the second production gene is induced in method step A). In a related preferred WO 2013/098265 PCT/EP2012/076786 - 60 embodiment, also the second promoter for the second production gene is induced in method step B). In yet another preferred embodiment, at least a further third promoter for the second production gene is induced in at least one further 5 method step C). Herein, the second promoter for the second production gene of method step B) is maintained in an uninduced state during method step A), and the third promoter for the second production gene of method step C) is maintained in an uninduced state during method steps A) and 10 B). The simultaneous induction of the first, second and - if present - third or further promoters for the first and second production gene can be realized in different ways. For 15 instance, the first, second and, if present, third promoter or further promoter for the first and second production gene, are either the same promoters or are promoters which are inducible under the same conditions. For instance, the first promoter for the first production gene is the zinc-inducible 20 promoter PziaA, whereas the first promoter for the second production gene is the zinc-inducible promoter PsmtA, and the cultivation conditions in method step A) comprise a zinc concentration which is sufficient to induce both the first promoter for the first production gene and the first promoter 25 for the second production gene. In yet another preferred embodiment, the promoters for the first and second production gene are the same promoters, for instance the first promoter for the first production gene and the first promoter for the second production gene are both the zinc-inducible promoter 30 PziaA or the zinc-inducible promoter PsmtA. In certain preferred embodiments, both the first production genes and the second production genes of method step A) and/or method step B) and/or method step C) are transcriptionally WO 2013/098265 PCT/EP2012/076786 - 61 controlled by the same single promoter. According to this embodiment, the first production gene and second production gene of the respective method step are operably linked and under the control of the same single promoter to form a 5 functional operon. For example, a first production gene and a second production gene of a particular method step are operably linked in an operon and are co-ordinately expressed by induction of a single promoter which could be, for instance, a zinc-inducible promoter PziaA. 10 In a preferred embodiment of the method the metabolically enhanced cyanobacteria are subjected to sunlight and CO 2 during method steps A), B) and, if present, during method step C) and further method steps. Cyanobacteria are 15 photoautotrophic prokaryotes that perform oxygen photosynthesis. The cyanobacteria interconnect atmospheric levels of carbon dioxide through photosynthesis according to the following generic equation: 20
CO
2 + H 2 0 -> (CH 2 0), + O2 Herein, (CH 2 0)r represents organic matter with fixed carbon that is fed into the metabolic pathways of the cyanobacteria and can subsequently be also converted into the first 25 chemical compound. In a preferred embodiment of the method, culture monitoring is applied during the method steps. For example, the culturing conditions of method step A) are maintained for a 30 period of time and/or until monitoring indicates a threshold productivity decrease of the first chemical compound, before the next method step B) is initiated. In another preferred embodiment, the culturing conditions of method step B) are WO 2013/098265 PCT/EP2012/076786 - 62 maintained for a period of time and/or until monitoring indicates a threshold productivity decrease of the first chemical compound, before the next method step C) is initiated. Furthermore, it is evident to those skilled in the 5 art that the same procedural method can be applied to further additional method steps according to the same rules specified above. In a preferred embodiment, the monitoring of the cyanobacterial culture is selected from at least one method of the group comprising: biocatalyst activity tests, 10 determining of the concentration of the first chemical compound in the growth medium and/or in the space above the growth medium, gene expression analysis on mRNA and/or protein level, detection of mutations e.g. by enzymatic mismatch detection using a mismatch-specific DNA endonuclease 15 (CEL-I) from celery rods as described by Qiu et al. (Qiu P, Shandilya H, D'Alessio JM, O'Connor K, Durocher J, Gerard GF.: Mutation detection using Surveyor nuclease, Biotechniques 36 (2004), 702-7), or by real-time PCR in combination with melting curve analysis and/or by sequencing, 20 and combinations thereof. For example, biocatalysts activity tests comprise testing the enzymatic activity of the pyruvate decarboxylase enzyme when the first chemical compound is ethanol. Alternatively, the concentration of ethanol can be determined in the growth medium or in the space above the 25 growth medium using gas chromatography. Furthermore, real time PCR assays have proven to be a powerful tool for rapid monitoring of the genetic condition of cyanobacterial hybrid strains. For instance, amplification of a core sequence within the production gene in question, followed by melt 30 curve analysis of the amplificates can provide qualitative information about the genetic integrity of the production genes. Suitable real-time PCR routines can be devised by those skilled in the art. For additional laboratory WO 2013/098265 PCT/EP2012/076786 - 63 references, see, for example, Real-Time PCR in Microbiology: From Diagnosis to Characterization, by Ian M. Mackay (ed.), Caister Academic Press 2007. 5 A threshold productivity decrease according to the present invention can for example be indicated by stagnation of the content of the first chemical compound during cultivation; i.e. even though the culture might be still growing, the total concentration of the first chemical compound (e.g. 10 ethanol) in the culture does not increase anymore. Alternatively, if for instance the content of the first chemical compound for three subsequent days increases 0.05%(v/v) or less, 0.03%(v/v) or less, 0.01%(v/v) or less compared to the content of the previous day, a threshold 15 productivity decrease has set in. These values are exemplary only, because they can vary depending on the produced chemical compound, the bioreactor design and culture conditions, the scale and the cell density. A threshold productivity decrease according to the present invention can 20 also be defined by decrease of the content of the first chemical compound during cultivation. A threshold productivity decrease as determined by biocatalyst activity tests can for example be constituted by a decrease in PDC activity of at least or under 0.5 pmol min-' mg-1 protein, at 25 least or under 0.4 pmol min' mg-1 protein, at least or under 0.3 pmol min-' mg-1 protein or at least or under 0.2 pmol min' mg protein. In the case that nucleic acid mismatches are determined as the means of culture monitoring, the next method step is initiated if for instance if at least or more 30 than 10%, at least or more than 20%, or at least or more than 40% of the cyanobacterial population are reverted.
WO 2013/098265 PCT/EP2012/076786 - 64 In a preferred embodiment of the method, the cyanobacterium is selected from a group comprising Synechocystis, Synechococcus, Anabaena, Chroococcidiopsis, Chlorogloeopsis, Cyanothece, Lyngbya, Phormidium, Nostoc, Spirulina, 5 Arthrospira, Trichodesmium, Leptolyngbya, Plectonema, Myxosarcina, Pleurocapsa, Oscillatoria, Pseudanabaena. Cyanobacterium, Geitlerinema, Euhalothece, Calothrix. In more preferred embodiments, the cyanobacterial host organisms comprise Synechococcus sp. PCC 7002 and other Synechococcus 10 strains, Synechocystis sp. PCC 6803 and other Synechocystis strains, Chlorogloeopsis strains, Chroococcidiopsis strains, and Cyanobacterium strains. In particularly preferred embodiments, the cyanobacterial host organisms comprise Synechococcus sp. PCC 7002 strains and Synechocystis sp. PCC 15 6803 strains. In a fourth aspect of the invention, the invention provides a metabolically enhanced cyanobacterium for the production of a first chemical compound, comprising: 20 - at least a first and second first production gene encoding first biocatalysts for the production of the first chemical compound; - wherein both first production genes are under the 25 transcriptional control of the same inducible promoter for the first production genes; - wherein the inducible promoter for the first production genes is gradually inducible in a dose-dependent manner; - wherein said first biocatalysts catalyze the same 30 chemical reaction. According to this aspect of the invention, the use of the same inducible promoter for the first production genes allows WO 2013/098265 PCT/EP2012/076786 - 65 for the first biocatalysts under the control of said promoter to be cumulatively expressed under the same induction conditions. Moreover, since said promoter for the first production genes is gradually inducible in a dose-dependent 5 manner, the choice of induction conditions allows modulating the expression level of the first biocatalysts in an incrementing way. For example, conditions for induction can be employed that do not induce the full activity of the promoter but still lead to a cumulative expression level of 10 the first biocatalysts that is suitable to produce the first chemical compound. Thus, the overall expression of the first biocatalysts remains high because all corresponding first production genes are expressed and the higher gene copy number compensates for the lower induction level. Hereupon, 15 genetic alterations can occur in the corresponding first production genes. However, the inventors found that after genetic alterations occurred in one or more copies of the first production genes, the optimal expression level can yet be assured by a subsequent higher induction of the promoter 20 for the first production genes that then increasedly drives the remaining non-altered copies of the first production genes. The inventors concluded that in order to overcome the problem 25 of production decays for the first chemical compound and to prolong the synthesis of the first chemical compound, the solution is a metabolically enhanced cyanobacterial strain, which comprises two or more first production genes which are transcriptionally driven by the same promoter, and wherein 30 this promoter allows for a stepwise induction depending on the concentration of the inductor, thereby enabling the systematic modulation of the expression level of the first biocatalysts. At the same time, increasing the dose of the WO 2013/098265 PCT/EP2012/076786 - 66 first production genes in conjunction with the cumulative expression of said genes, allows compensating the shortfall of expression of the first biocatalysts even though each individual of the first production gene might not be fully 5 induced. For example, the metabolically enhanced cyanobacterial strain can comprise two first production genes encoding first biocatalysts for the production of the first chemical 10 compound that are under the transcriptional control of the corresponding gradually inducible promoter for the first production genes. Upon induction of the promoter, for instance to an induction level of approximately 50% compared to the full induction, the bacterial culture commences 15 producing the first chemical compound. Upon loss of activity of the first biocatalysts following the accumulation of alterations in a statistical proportion of the first production genes, a full induction of the promoter follows to now use the full capacity of the available first production 20 genes, i.e. to increase the chance of transcription of those gene copies which have not accumulated inactivating alterations yet and thus maintain an optimal expression level for production of the first chemical compound. In this way, a temporal extension of the production phase of the first 25 chemical compound can be accomplished. In preferred embodiments of the fourth aspect of the invention, the metabolically enhanced cyanobacterium comprises at least one further first production gene under 30 the transcriptional control of the same inducible promoter for the first production genes. In this way, the accumulated expression level of the first production genes can be maintained sufficiently high under even lower starting doses WO 2013/098265 PCT/EP2012/076786 - 67 of induction of the promoter. Consequently, this allows including additional discrete induction steps to further prolong the productive phase of the bacterial culture according to the principles detailed above. For example, an 5 induction level of approximately 33% compared to the full induction at the start of the production of the first chemical compound, followed by an induction level of approximately 66%, and finally a full induction level towards the end of the production. It will be obvious from these 10 teachings to those skilled in the art that additional first production genes can be included according to the present invention in order to be able to further reduce the starting dose of induction and/or to be able to include additional doses of induction, i.e. to choose smaller increments between 15 the doses of different induction steps. In certain preferred embodiments, the same single inducible promoter controls the transcription of the first production genes. For example, the first production genes are operably 20 linked to form an operon, which is transcriptionally controlled by a single gradually inducible promoter. In preferred embodiments, the gradually inducible promoter is chosen from a group comprising dose-dependent metal-ion 25 inducible promoters. In further variants of the fourth aspect of the invention, the metabolically enhanced cyanobacterium can further comprise any metabolic enhancement according to the first 30 aspect of the invention. Furthermore, all independent and dependent claims 1-38 of the first aspect of the invention can also be applied to the claims of the fourth aspect of the invention. For example, a cyanobacterium comprising a first WO 2013/098265 PCT/EP2012/076786 - 68 set of at least two first production genes according to the fourth aspect of the invention can further comprise a second or further set of first production genes according to the first aspect of the invention, i.e. each of said first, 5 second or further set of first production genes is under the transcriptional control of (a) different gradually inducible promoter, such that each set is separately inducible under different conditions. 10 In a fifth aspect of the present invention, the invention provides a method for producing a first chemical compound using a metabolically enhanced cyanobacterium comprising the method steps of: 15 Al)Culturing the metabolically enhanced cyanobacterium under a first condition for induction of the promoter for the first production genes, the cyanobacterium producing the first chemical compound; A2)Culturing the metabolically enhanced cyanobacterium 20 under a second condition for induction of the promoter for the first production genes, the cyanobacterium producing the first chemical compound; - wherein method step Al) and method step A2) are temporally separated; 25 - wherein the first condition for induction results in a lower induction of the promoter for the first production genes than the second condition of induction. According to the present invention, a first fundamental 30 feature of the method is that in method step Al) the first production genes are simultaneously expressed, but under conditions that effect only partial induction of the promoter for the first production genes. Thus, the expression level of WO 2013/098265 PCT/EP2012/076786 - 69 each of the first biocatalysts alone is lower compared to conditions for full induction of the respective first production gene, but is compensated by the cumulative expression of the first production genes, so that suitable 5 amounts of the first biocatalysts are produced for the production of the first chemical compound. A second fundamental feature of the method is that method step Al) and method step A2) are temporally separated, meaning that the method steps are sequentially initiated during the method for 10 producing the first chemical compound. In this sense, method step A2) is initiated after method step Al). This is realized by a change of cultivation conditions, which are characterized by an increased promoter induction in method step A2) relatively compared to the promoter induction in 15 method step Al). For instance, for dose-dependent gradually inducible promoters, the concentration of the inductor in the culture is different in method step A2) compared to method step Al) to accomplish a higher induction level. The higher induction level of the promoter in method step A2) 20 consequently increases the transcription level of all first production genes, therefore also increasing the expression level of functional biocatalysts. This enables to counteract the loss of part of the first production genes as a result of their genetic alteration, and therefore to extend the 25 productive phase of a culture of metabolically enhanced cyanobacteria according to the principle of the invention by means of a temporarily separated and sequentially increased induction of the promoter controlling the first production genes. 30 In preferred embodiments, the method comprises at least one further method step A3) of culturing the metabolically enhanced cyanobacterium under a third condition for induction WO 2013/098265 PCT/EP2012/076786 - 70 of the promoter for the first production genes, the cyanobacterium producing the first chemical compound; wherein method step Al), method step A2) and method step A3) are temporally separated from each other and wherein the second 5 condition for induction results in a lower induction of the promoter for the first production genes than the third condition of induction. In preferred embodiments, the addition of a third or further method steps can be balanced with the number of first production genes being 10 simultaneously induced, i.e. also involve a third or further first production gene. In this way, the starting dose of induction of the gradually inducible promoter for the first production genes in method step Al) can be further reduced because the corresponding loss of expression is compensated 15 by the higher number of the first production genes. Correspondingly, additional levels of induction, i.e. smaller increments of induction levels between consecutive method steps can be chosen. It is evident to those skilled in the art that the method provided by the invention can also 20 comprise additional method steps which can be easily derived following the same principles as detailed for method steps Al), A2) and A3). In a variant of the fifth aspect of the invention, the method 25 comprises additional method steps according to the features of the third aspect of the invention. In preferred embodiments, the method steps Al), A2) and, if present, A3) or further method steps of the fifth aspect of the invention form substeps of method step A) of the third aspect of the 30 invention. In related preferred embodiments, the steps Al), A2) and, if present, A3) or further method steps of the fifth aspect of the invention can be used inventively as substeps WO 2013/098265 PCT/EP2012/076786 - 71 BI), B2) and, if present, B3) or further substep of method step B) of the third aspect of the invention. For instance, a first set of first production genes under the transcriptional control of a gradually inducible promoter 5 according to the fifth aspect of the invention can be used inventively to form substeps Al) to A3) of method step A) of the third aspect of the invention. When said first set of first production genes eventually becomes unproductive, a second set of first production genes under the 10 transcriptional control of a different gradually inducible promoter according to the fifth aspect of the invention can be used inventively to form substeps B1) to B3) of method step B) of the third aspect of the invention. For this purpose, the gradually inducible promoter of said second set 15 of first production genes of method step B) is separately inducible under different conditions compared to the gradually inducible promoter of said first set of first production genes of method step A). This variant allows for a particularly prolonged production of the first chemical 20 compound, and can be extended to even further method steps following the principles detailed above. In further variants of the fifth aspect of the invention, all the examples and embodiments of the method of the third 25 aspect of the invention can also be applied to the method of the fifth aspect of the invention. Furthermore, all independent and dependent claims of the third aspect of the invention can also be applied to the claims of the fifth aspect of the invention. 30 WO 2013/098265 PCT/EP2012/076786 - 72 Brief Description of the Figures The following figures schematically show, inter alia, several maps of plasmids used in representative embodiments of the 5 present invention. Some of these plasmids harbour only one first production gene under the transcriptional control of an inducible promoter for the first production gene, for example the plasmids shown in Figures 7-9, 14-16 and 19. The use of one of these plasmids for generating a metabolically enhanced 10 cyanobacterium according to the present invention therefore requires that at least a second first production gene under the transcriptional control of a second inducible promoter for the first production gene is present in the cyanobacteria, e.g. on a different genetic element, to obtain 15 a metabolically enhanced cyanobacterium according to the present invention. In contrast, some other plasmids harbor already two first production genes under the transcriptional control of a first 20 and a second inducible promoter for the first production gene according to the present invention, for instance plasmids shown in Figures 10, 17 and 18. For production of ethanol as the first chemical compound, however, the corresponding metabolically enhanced cyanobacteria have to comprise at 25 least one second production gene encoding an alcohol dehydrogenase enzyme located on another genetic element in addition to the first production genes encoding pyruvate decarboxylases shown in Figures 10, 17 and 18. 30 Plasmid maps shown in the following include restriction sites for the correspondingly denoted restriction endonucleases. "Gm" denotes a gene conferring resistance to Gentamycin, and "aph (KanR2)" denotes a gene coding for aminoglycoside (3') WO 2013/098265 PCT/EP2012/076786 - 73 phosphotransferase conferring resistance to Kanamycin. "Sp/Sm" designates a gene imparting resistance for spectinomycin/streptomycin and "Cm" depicts a gene conferring resistance to Chloramphenicol. The bold circumferential 5 arrows in the plasmid maps illustrate the position and the orientation of inserted genes. Note that the regulator genes generally run in antisense orientation from 3' to 5'. The protruding angled arrows illustrate the position of the specified promoter sequence. 10 In general, plasmids were generated by inserting DNA constructs comprising the promoters and the production genes into the plasmids pVZ322a, pVZ324 and pVZ325a as well as pGEM via the multiple cloning site using corresponding 15 restriction/ligation protocols. The shown plasmids can, however, alternatively be synthetically produced by gene synthesis. Figure 1 schematically illustrates the problem of genetic 20 instability and the corresponding decrease of production of the first chemical compound under long-term cultivation conditions using conventional cyanobacterial hybrid strains. Figure 2A schematically shows a metabolically enhanced 25 cyanobacterial cell according to the principles of the present invention, wherein the production genes are co located on one genetic element prior to, or at the start of, method step A). 30 Figure 2B shows the cyanobacterial cell with the production genes co-located on one genetic element in the transition phase from method step A) to method step B).
WO 2013/098265 PCT/EP2012/076786 - 74 Figure 2C shows the cyanobacterial cell with the production genes co-located on one genetic element in the transition phase from method step B) to method step C). 5 Figure 3A schematically illustrates a metabolically enhanced cyanobacterium according to the principles of the present invention, wherein the different production genes are located on different genetic elements, prior to, or at the start of, method step A). 10 Figure 3B shows the cyanobacterial cell with the different production genes located on different genetic elements in the transition phase from method step A) to method step B). 15 Figure 3C shows the cyanobacterial cell with the different production genes located on different genetic elements in the transition phase from method step B) to method step C). Figure 4 illustrates the chosen integration site for 20 homologous recombination of genetic constructs into the endogenous plasmid pAQ4, and a previously published integration site into the endogenous plasmid pAQ3 of Synechococcus PCC7002/ABCC 1535 via recombined flanking regions FA and FB. 25 Figure 5 illustrates the chosen integration site for homologous recombination of genetic constructs into the endogenous plasmid pAQ1 of Synechococcus PCC7002 via recombined flanking regions FA2 and FB2. 30 Figure 6 illustrates the generation of a transformable genetic construct harboring an operon comprising a first production gene encoding a Pdc enzyme and a second production WO 2013/098265 PCT/EP2012/076786 - 75 gene enoding an Adh enzyme under the control of an inducible promoter as well as an antibiotic resistance cassette C.K3. The construct is ligated into the cloning vector pGEM-TK in between flanking regions FA and FB, amplified, cut-out at 5 restriction sites NsiI and SpeI to incorporate the flanking regions and can then be transformed via homologous recombination into e.g. pQ4, pAQ3 or pAQ1 depending on the chosen flanking regions. 10 Figure 7A depicts the map of construct #1145 for chromosomal integration comprising a pdc gene from Zymomonas mobilis under the transcriptional control of the Zn2+ t -inducible promoter ziaR-PziaA and a degenerated adh from Synechocystis PCC 6803 under the transcriptional control of the 15 constitutive promoter Prbc. Figure 7B shows the ethanol production per OD of Synechocystis PCC 6803 strain #1145 after induction with Co, Ni or Zn as well as a control without addition of these metal 20 ions. Figure 8A depicts the map of the self-replicating broad host range vector pVZ325 #1217 comprising a pdc from Zymomonas mobilis under the transcriptional control of the C02+_ 25 inducible promoter corR-PcorT and a degenerated adh from Synechocystis PCC 6803 under the transcriptional control of the constitutive promoter Prbc*. Figure 8B shows the ethanol production per OD75Opm of 30 Synechocystis PCC 6803 strain #1217 after induction with Co, Ni or Zn as well as a control without addition of these metals.
WO 2013/098265 PCT/EP2012/076786 - 76 Figure 9A depicts the map of self-replicating broad host range vector pVZ325 #1227 comprising a pdc from Zymomonas mobilis under the transcriptional control of the Ni-_ inducible promoter nrsR-PnrsB and a degenerated adh from 5 Synechocystis PCC 6803 under the transcriptional control of the constitutive promoter Prbc*. Figure 9B shows the ethanol production per OD of Synechocystis PCC 6803 strain #1227 after induction with Co, 10 Ni or Zn as well as a control without addition of these metal ions. Figure 10A depicts the map of self-replicating broad host range vector pVZ325 #1329 comprising a first production gene 15 encoding a pdc from Zymomobacter palmae under the transcriptional control of the Ni 2 -inducible promoter nrsR PnrsB and a second first production gene encoding a codon optimised pdc from Zymomonas mobilis under the transcriptional control of the Co 2 1_-inducible promoter corP 20 PcorT. Figure 10B depicts the map of self-replicating broad host range vector pVZ325 #1379 comprising a first production gene encoding a pdc from Zymomobacter palmae under the 25 transcriptional control of the Ni2 -inducible promoter nrsR PnrsB and a second first production gene encoding a degenerated pdc from Zymomonas mobilis under the transcriptional control of the C 2 +_-inducible promoter corR PcorT. 30 Figure 11A illustrates the genetic constructs used to generate the Synechocystis PCC 6803 strain #1145/#1329. Strain #1145 harboring a first production gene encoding a pdc WO 2013/098265 PCT/EP2012/076786 - 77 enzyme from Zymomonas mobilis under the transcriptional control of the Zn2- inducible first promoter ziaR-PziaA and a second production gene which is a degenerated adh-gene from Synechocystis PCC 6803 under the transcriptional control of 5 the constitutive Prbc promoter recombined into its chromosome was further transformed with the self-replicating broad host range vector pVZ325 #1329 comprising a second first production gene encoding a Pdc enzyme from Zymobacter palmae under the transcriptional control of the Ni 2 -inducible 10 second promoter nrsR-PnrsB and a third first production gene which is a codon-optimised pdc gene from Zymomonas mobilis under the transcriptional control of the Co 2-inducible third promoter corR-PcorT. 15 Figure 11B shows the ethanol production per OD of a wild type Synechocystis PCC 6803 transformed with construct #1329 after selective induction with Zn, Co and Ni as well as a control without addition of these metal ions. 20 Figure 11C shows the ethanol production per OD of Synechocystis PCC 6803 strain #1145/#1329 after selective induction with Zn, Co and Ni as well as a control without addition of these metal ions. 25 Figure 12A shows the ethanol production per OD of Synechocystis PCC 6803 strain #1145/#1329 without induction, after induction with Ni" , after induction with Co2, and after combined induction with Ni 2 + and Co 2 . 30 Figure 12B shows the ethanol production per OD of Synechocystis PCC 6803 strain #1145/#1329 without induction, 2+ 2+ after induction with Co , after induction with Zn , and after combined induction with Zn 2 and Co2.
WO 2013/098265 PCT/EP2012/076786 - 78 Figure 13 shows the specific Pdc activities of Synechocystis PCC 6803 #1145/#1329 without induction, after selective induction with Zn 2, Zn2+ Co2 , and Zn+ + Co2 + Ni2. 5 Figure 14A depicts the map of construct TK115 for integration into the endogenous pAQ4 plasmid comprising a first production gene encoding a pdc from Zymomonas mobilis under the transcriptional control of the Zn v-inducible promoter 10 smtB-PsmtA and a degenerated adh-encoding gene from Synechocystis PCC 6803 as second production gene under the transcriptional control of the constitutive promoter Prbc. Figure 14B shows the ethanol production per OD of 15 Synechococcus PCC 7002 strain TK115 without induction and after selective induction with Zn, Co or Ni, respectively. Figure 15A depicts the map of the self-replicating pVZ325a vector #1217.4 comprising a first production gene encoding a 20 pdc from Zymomonas mobilis under the transcriptional control of the Co2-inducible promoter corR-PcorT and a degenerated adh-encoding gene from Synechocystis PCC 6803 as second production gene under the transcriptional control of the constitutive promoter Prbc*. 25 Figure 15B shows the ethanol production per OD of Synechococcus PCC 7002 strain #1217.4 without induction and after selective induction with Zn, Co or Ni, respectively. 30 Figure 16A depicts the map of the self-replicating pVZ325a vector #1356 comprising a first production gene encoding a pdc from Zymobacter palmae under the transcriptional control of the Ni2_-inducible promoter nrsRS-PnrsB* and a degenerated WO 2013/098265 PCT/EP2012/076786 - 79 adh-encoding gene from Synechocystis PCC 6803 as second production gene under the transcriptional control of the constitutive promoter Prbc*. 5 Figure 16B shows the ethanol production per OD of Synechococcus PCC 7002 strain #1356 without induction and after selective induction with Zn, Co or Ni, respectively. Figure 17A depicts the map of self-replicating pVZ325a vector 10 #1375 comprising a first production gene encoding a pdc from Zymobacter palmae under the transcriptional control of the Ni" -inducible first promoter nrsRS-PnrsB and a second first production gene which is a degenerated pdc-encoding gene from Zymomonas mobilis under the transcriptional control of the 15 Co2-inducible second promoter corR-PcorT*. Figure 17B depicts the map of self-replicating pVZ325a vector #1376 comprising a first production gene encoding a pdc from Zymobacter palmae under the transcriptional control of the 20 Ni" -inducible first promoter nrsRS-PnrsB* and a second first production gene which is a degenerated pdc-encoding gene from Zymomonas mobilis under the transcriptional control of the Co2-inducible second promoter corR-PcorT*. 25 Figure 18A depicts the map of self-replicating pVZ325a vector #1381 comprising a first production gene encoding a pdc from Zymobacter palmae under the transcriptional control of the Ni2-inducible first promoter nrsRS-PnrsB and a second first production gene which is a degenerated pdc-encoding gene from 30 Zymomonas mobilis under the transcriptional control of the Co2-inducible second promoter corR-PcorT.
WO 2013/098265 PCT/EP2012/076786 - 80 Figure 18B depicts the map of self-replicating pVZ325a vector #1383 comprising a first production gene encoding a pdc from Zymobacter palmae under the transcriptional control of the Ni" -inducible first promoter nrsRS-PnrsB* and a second first 5 production gene which is a degenerated pdc-encoding gene from Zymomonas mobilis under the transcriptional control of the Co2 -inducible second promoter corR-PcorT. Figure 19A depicts the map of construct #1389 for integration 10 into the endogenous pSYSG plasmid comprising a first production gene which is a degenerated pdc-encoding gene from Zymobacter palmae under the transcriptional control of the Ni 2 +_-inducible promoter nrsRS-PnrsB. 15 Figure 19B depicts the map of self-replicating pVZ324 vector #1391 comprising a first production gene which is a pdc from Zymomobacter palmae under the transcriptional control of the Co2 -inducible promoter corR-PcorT. 20 Figure 20A depicts the map of self-replicating broad host range vector pVZ322a with Gm (gentamycin), Cm (chloramphenicol) and aph (kanamycin/neomycin) antibiotic resistance cassettes, based on the RSF1010 plasmid backbone. 25 Figure 20B depicts the map of self-replicating broad host range vector pVZ325a with Gm (gentamycin), Cm (chloramphenicol) and Sp/Sm (spectinomycin/streptomycin) antibiotic resistance cassettes, based on the RSF1O1O plasmid backbone. 30 Figure 21 illustrates the genetic constructs used to generate the Synechocystis PCC 6803 strain #1145/#1391/#1389. Strain #1145 harboring a first production gene encoding a pdc enzyme WO 2013/098265 PCT/EP2012/076786 - 81 from Zymomonas mobilis under the transcriptional control of the Zn 2-inducible first promoter ziaR-PziaA and a second production gene which is a degenerated adh-encoding gene from Synechocystis PCC 6803 under the transcriptional control of 5 the constitutive Prbc promoter recombined into its chromosome was further transformed with the self-replicating vector pVZ324 #1391 comprising a second first production gene encoding a pdc enzyme from Zymobacter palmae under the transcriptional control of the Co 2 +inducible second promoter 10 corR-PcorT and with the plasmid pSYSG #1389 for integration into the endogenous pSYSG plasmid comprising a third first production gene which is a degenerated gene encoding the pdc enzyme from Zymobacter palmae under the transcriptional control of the Ni2 -inducible third promoter nrsRS-PnrsB. 15 Figure 22 illustrates the genetic constructs used to generate the Synechococcus PCC 7002 strain TK115/#1391/TK193. Strain TK115 harboring a first production gene encoding a pdc enzyme from Zymomonas mobilis under the transcriptional control of 20 the Zi" -inducible first promoter smtB-PsmtA and a second production gene which is a degenerated adh-encoding gene from Synechocystis PCC 6803 under the transcriptional control of the constitutive Prbc promoter recombined into its endogenous pAQ4 plasmid was further transformed with the self 25 replicating vector pVZ324 #1391 comprising a second first production gene encoding a pdc enzyme from Zymobacter palmae under the transcriptional control of the Co 2-inducible second promoter corR-PcorT and with a further third first production gene which is a degenerated gene encoding the pdc 30 enzyme from Zymobacter palmae under the transcriptional control of the Ni 2 inducible third promoter nrsRS-PnrsB integrated into its endogenous pAQ3 plasmid.
WO 2013/098265 PCT/EP2012/076786 - 82 Figure 23 shows the map of the plasmid TK193 pGEM-AQ3::nrsRS PnrsB-zpPDC(deg)-Gm designed for integration into the endogenous plasmid pAQ3 of Synechococcus sp. PCC 7002, comprising a first production gene encoding a pdc from 5 Zymobacter palmae under the transcriptional control of the Ni2 -inducible promoter nrsRS-PnrsB. This plasmid is used with other constructs to generate Synechococcus PCC 7002 strain TK115/#1391/TK193. 10 Figure 24 depicts the map of construct TK162 pGEM-AQ3::smtB PsmtA-zmPDCoop-PrbcL-synADHdegoop for integration into the endogenous pAQ3 plasmid of Synechococcus sp. 7002, comprising a first production gene encoding a pdc from Zymomonas mobilis under the transcriptional control of the Zn _-inducible 15 promoter smtB-PsmtA and a degenerated adh-encoding gene from Synechocystis sp. PCC 6803 as second production gene under the transcriptional control of the constitutive promoter Prbc. 20 Figure 25 depicts the map of construct #1233 pGEM-AQ4::smtB PsmtA-zpPDC-PrbcL*-synADHdeg for integration into the endogenous pAQ4 plasmid of Synechococcus sp. 7002, comprising a first production gene encoding a pdc from Zymomobacter palmae under the transcriptional control of the Zn 25 inducible promoter smtB-PsmtA and a degenerated adh-encoding gene from Synechocystis sp. PCC 6803 as second production gene under the transcriptional control of the constitutive promoter Prbc. 30 Figure 26 depicts the map of self-replicating broad host range vector pVZ325a-based construct #1374 pVZ325a-nrsR PnrsB-zpPDC ter-corR-PcorT*1-zmPDCdeg spf ter for transformation of Synechocystis sp. PCC6803 comprising a WO 2013/098265 PCT/EP2012/076786 - 83 first production gene encoding a pdc from Zymomobacter palmae under the transcriptional control of the Ni2 -inducible promoter nrsR-PnrsB and a second first production gene encoding a degenerated pdc from Zymomonas mobilis under the 5 transcriptional control of the Co 2 +-inducible promoter corR PcorT*l construct having an optimised RBS in comparison to the native corR-PcorT. Figure 27A schematically illustrates the genetic constructs 10 used to generate the Synechocystis PCC 6803 strain #1145/#1374. Strain #1145 harboring, recombined into its chromosome, a first production gene encoding a pdc enzyme from Zymomonas mobilis under the transcriptional control of the Zn 2-inducible first promoter ziaR-PziaA and a second 15 production gene which is a degenerated adh-gene from Synechocystis PCC 6803 under the transcriptional control of the constitutive Prbc promoter was further transformed with the self-replicating vector pVZ325a #1374 comprising a second first production gene encoding a Pdc enzyme from Zymobacter 20 palmae under the transcriptional control of the Ni inducible second promoter nrsR-PnrsB and a third first production gene which is a codon-degenerated pdc gene from Zymomonas mobilis under the transcriptional control of the Co 2-inducible third promoter corR-PcorT*1. 25 Figure 27B shows the specific ethanol production per OD of the metabolically enhanced Synechocystis sp. PCC 6803 strain #1145/#1374 as a function of time after selective induction with Zn, Co and Ni as well as a control without addition of 30 these metal ions. Figure 27C illustrates the specific activity of the three different Pdc enzymes of Synechocystis PCC 6803 strain WO 2013/098265 PCT/EP2012/076786 - 84 #1145/#1374 in terms of pmol per min and mg protein after selective induction with Ni, Co and Zn in comparison to a control without addition of these metal ions. 5 Figure 28A shows the results of culture growth monitoring of Synechocystis PCC 6803 strain #1145/#1374 in 0.5L photobioreactor scale in terms of culture OD at 750 nm as a function of cultivation time in days during sequential selective induction with Zn 2, Co and Ni2V of the 10 corresponding Pdc genes. Figure 28B shows the results of culture growth monitoring of Synechocystis PCC 6803 strain #1145 in 0.5L photobioreactor scale in terms of culture OD at 750 nm as a function of 15 cultivation time in days during sequential selective addition of Zn , Co2 and Ni V to the culture medium. Figure 29A shows the results of ethanol production of Synechocystis PCC 6803 strain #1145/#1374 in 0.5L 20 photobioreactor scale in %(v/v) as a function of cultivation 2+ time in days during sequential selective induction with Zn , Co2 and Ni2- of the corresponding Pdc genes. Figure 29B shows the results of ethanol production of 25 Synechocystis PCC 6803 strain #1145 in 0.5L photobioreactor scale in % (v/v) as a function of cultivation time in days during sequential selective addition of Zn 2, Co2 and Ni V to the culture medium. 30 Figure 30A shows the results of ethanol production of Synechocystis PCC 6803 strain #1145/#1374 in 0.5L photobioreactor scale in %(v/v) normalised per culture OD at 750 nm as a function of cultivation time in days during WO 2013/098265 PCT/EP2012/076786 - 85 sequential selective induction with Zn 2, Co2 and Ni2V of the corresponding Pdc genes. Figure 30B shows the results of ethanol production of 5 Synechocystis PCC 6803 strain #1145 in 0.5L photobioreactor scale in % (v/v) normalised per culture OD at 750 nm as a function of cultivation time in days during sequential selective addition of Zn , Co2 and Ni V to the culture medium. 10 Figure 31A depicts the map of self-replicating broad host range vector pVZ325a-based construct #1460 pVZ325a-nrsRS PnrsB916-PDCdsrA-Prbc*-synADHdeg for transformation of Synechococcus sp. PCC7002 comprising a first production gene 15 encoding a Pdc from Zymomonas mobilis under the transcriptional control of the Ni 2 -inducible promoter nrsRS PnrsB916 and a degenerated adh-encoding gene from Synechocystis sp. PCC 6803 as second production gene under the transcriptional control of the constitutive promoter 20 Prbc*. Figure 31B shows the ethanol production in %(v/v) per OD of Synechococcus sp. PCC 7002 strain #1460 without induction and after selective induction with Zn, Co or Ni, respectively. 25 Figure 32 depicts the vector map of construct #1470 pAQ3 corR-PcorT*1-zmPDCdegspf-Prbc*-synADHoop for integration into the endogenous pAQ3 plasmid of Synechococcus sp. PCC7002, comprising a codon-degenerated Pdc from Zymomonas 30 mobilis as a first production gene under the transcriptional control of the Co- inducible promoter corR-PcorT*1 and an adh-encoding gene from Synechocystis sp. PCC 6803 as second WO 2013/098265 PCT/EP2012/076786 - 86 production gene under the transcriptional control of the constitutive promoter Prbc*. Figure 33 depicts the vector map of construct #1473 5 pAQ1::nrsRS-PnrsB193-PDC-PrbcL*-synADHoop-Sp for integration into the endogenous pAQI plasmid of Synechococcus sp. PCC7002, comprising a first production gene encoding Pdc from Zymomonas mobilis under the transcriptional control of the Ni2+- inducible promoter nrsRS-PnrsB193 and an adh-encoding 10 gene from Synechocystis sp. PCC 6803 as second production gene under the transcriptional control of the constitutive Prbc* promoter. Figure 34 depicts the vector map of construct #1332 pGEM 15 AQ4::corR-PcorT-zpPDCter-PrbcL*-synADHoop-Nm for integration into the endogenous pAQ4 plasmid of Synechococcus sp. PCC7002, comprising a first production gene encoding Pdc from Zymobacter palmae under the transcriptional control of the Co2-inducible promoter corR-PcorT and an adh-encoding 20 gene from Synechocystis sp. PCC 6803 as second production gene under the transcriptional control of the constitutive PrbcL* promoter. Figure 35 depicts the vector map of self-replicating broad 25 host range vector pVZ325-based construct #1627 pVZ326a PnrsB(ABCC916)-PDC dsrA-Prbc* (optRBS)-synADHoop nrsRSBAD(ABCC916) for transformation of Synechococcus sp. PCC7002, comprising a first production gene encoding Pdc from Zymomonas mobilis under the transcriptional control of the 30 Ni2 -inducible promoter PnrsB(ABCC916) along with the nickel resistance conferring nrsRSBAD gene cluster derived from a Synechococcus species closely related to Synechococcus PCC7002, an adh-encoding gene from Synechocystis sp. PCC 6803 WO 2013/098265 PCT/EP2012/076786 - 87 as second production gene under the transcriptional control of the constitutive Prbc* promoter. Figure 36A schematically illustrates the metabolic 5 enhancements incorporated in Synechococcus sp. PCC7002 strain TK115/#1470/#1473. The strain harbors a first production gene encoding Pdc from Zymomonas mobilis under the transcriptional control of the Zn2+_inducible promoter smtB-PsmtA and a degenerated adh-gene from Synechocystis sp. PCC6803 under the 10 transcriptional control of the constitutive Prbc promoter integrated into the endogenous plasmid pAQ4, a second first production gene encoding a degenerated pdc from Zymomonas mobilis under the transcriptional control of the Co 2
+
inducible promoter corR-PcorT*l and a second production gene 15 which is an adh-gene from Synechocystis sp. PCC6803 under the transcriptional control of the constitutive Prbc* promoter integrated into the endogenous pAQ3 plasmid, and a pdc gene from Zymomonas mobilis as the third first production gene under the transcriptional control of the Ni 2 -inducible 20 promoter nrsRS-PnrsB916 as well as an adh-gene from Synechocystis sp. PCC6803 under the transcriptional control of the constitutive Prbc* promoter integrated into the endogenous pAQ1 plasmid. 25 Figure 36B shows digital images of agarose gels after electrophoretic analysis of PCR products from amplification of promoter constructs smtB-PsmtA integrated in pAQ4, corR PcorT integrated in pAQ3 and nrsRS-PnrsB integrated in pAQ1, and combinations thereof, in metabolically enhanced 30 Synechococcus sp. PCC7002 strain TK115/#1470/#1473 and controls.
WO 2013/098265 PCT/EP2012/076786 - 88 Figure 36C shows the results of ethanol production of Synechococcus sp. PCC7002 strain TK115/#1470/#1473 in %(v/v) normalised per culture OD at 750 nm as a function of cultivation time in hours during selective induction with 5 either Zn2, C2+ or Ni , as well as a control without induction. Figure 36D shows the results of ethanol production of Synechococcus sp. PCC7002 strain TK115/#1470 in %(v/v) 10 normalised per culture OD at 750 nm as a function of cultivation time in hours during selective induction with either Zn2+, Co2 or Ni , as well as a control without induction. 15 Figure 37A schematically illustrates the metabolic enhancements incorporated in Synechococcus sp. PCC7002 strain #1332/TK162. The strain harbors a first production gene encoding Pdc from Zymobacter palmae under the transcriptional control of the Co 2-inducible promoter corR-PcorT and a 20 second production gene which is an adh-gene from Synechocystis sp. PCC6803 under the transcriptional control of the constitutive Prbc* promoter integrated into the endogenous pAQ4 plasmid, and a second first production gene encoding Pdc from Zymomonas mobilis under the transcriptional 25 control of the Zn _-inducible promoter smtB-PsmtA and a degenerated adh-gene from Synechocystis sp. PCC6803 under the transcriptional control of the constitutive Prbc promoter integrated into the endogenous plasmid pAQ3. 30 Figure 37B shows DNA agarose gel images from PCR analysis for confirmation of successful transformation of Synechococcus sp. PCC7002 hybrid strain #1332/TK162.
WO 2013/098265 PCT/EP2012/076786 - 89 Figure 37C shows the results of ethanol production in %(v/v) per OD of Synechococcus sp. PCC 7002 strain #1332/TK162 without induction and after selective induction with Zn 2 and two different concentrations of Co2. 5 Figure 38A depicts the vector map of construct #1480 pAQ3 aztR-PaztA-zmPDCdegspf-Prbc*-synADHoop for integration into the endogenous pAQ3 plasmid of Synechococcus sp. PCC7002, comprising a degenerated version of the gene encoding Pdc 10 from Zymomonas mobilis under the transcriptional control of the Zn 2-inducible promoter aztR-PaztA (regulator gene/promoter) and an adh-encoding gene from Synechocystis sp. PCC6803 as second production gene under the transcriptional control of the constitutive PrbcL* promoter. 15 Figure 38B schematically illustrates the metabolic enhancements incorporated in Synechococcus sp. PCC7002 strain TK115/#1480. The strain harbors a first production gene encoding Pdc from Zymomonas mobilis under the transcriptional 20 control of the Zn V-inducible promoter smtB-PsmtA and a second production gene which is a degenerated adh-gene from Synechocystis sp. PCC6803 under the transcriptional control of the constitutive Prbc6803 promoter integrated into the endogenous pAQ4 plasmid. The strain further harbors a second 25 first production gene which is a degenerated version of the gene encoding Pdc from Zymomonas mobilis under the transcriptional control of the Zn 2 v-inducible promoter aztR PaztA and an adh-gene from Synechocystis sp. PCC6803 under the transcriptional control of the constitutive Prbc* 30 promoter integrated into the endogenous plasmid pAQ3.
WO 2013/098265 PCT/EP2012/076786 - 90 Figure 38C shows DNA agarose gel images from PCR analysis for confirmation of successful transformation of Synechococcus sp. PCC7002 hybrid strain TK115/#1480. 5 Figure 38D shows the results of ethanol production in %(v/v) per OD over cultivation time in hours of Synechococcus sp. PCC 7002 strains TK115, #1480 and TK115/#1480 under selective 2induction with 5 pM Zn 10 Figure 38E shows the results of ethanol production in %(v/v) per OD over cultivation time in hours of Synechococcus sp. PCC 7002 strains TK115, #1480 and TK115/#1480 under selective induction with 10 pM Zn. 15 Figure 39A depicts the vector map of construct #1563 pGEM gpA::smtB-PsmtA-zmPDCdsrA-Prbc*-synADHoop for chromosomal integration in Synechococcus sp. PCC7002 between gene loci A0124 and A0125 (integration site A), comprising a first production gene encoding Pdc from Zymomonas mobilis under the 20 transcriptional control of the Zn2 tm -inducible promoter smtB PsmtA (regulator gene/promoter) and an adh-encoding gene from Synechocystis sp. PCC6803 as second production gene under the transcriptional control of the constitutive Prbc* promoter. 25 Figure 39B depicts the vector map of construct #1568 pGEM gpB::smtB-PsmtA-zmPDCdegspf-Prbc*-synADHoop for chromosomal integration in Synechococcus sp. PCC7002 between gene loci A1330 and A1331 (integration site B), comprising a degenerated version of the gene encoding Pdc from Zymomonas 30 mobilis as a first production gene under the transcriptional control of the Zn 2 m -inducible promoter smtB-PsmtA (regulator gene/promoter) and an adh-encoding gene from Synechocystis WO 2013/098265 PCT/EP2012/076786 - 91 sp. PCC6803 as second production gene under the transcriptional control of the constitutive Prbc* promoter. Figure 39C depicts the vector map of construct #1692 pGEM 5 gpC::smtB-PsmtA-zmPDC oop-PrbcL-synADHdeg oop for chromosomal integration in Synechococcus sp. PCC7002 between gene loci A2578 and A2579 (integration site C), comprising a first production gene encoding Pdc from Zymomonas mobilis under the transcriptional control of the Zn 2 -inducible promoter smtB 10 PsmtA (regulator gene/promoter) and a degenerated version of the adh-encoding gene from Synechocystis sp. PCC6803 as second production gene under the transcriptional control of the constitutive PrbcL promoter. 15 Figure 40A schematically illustrates chromosomal integration sites A-C for constructs #1563, #1568 and #1692 in Synechococcus sp. PCC7002, each construct harbouring a Pdc gene under the transcriptional control of the same Zn 2 inducible promoter smtB-PsmtA. 20 Figure 40B shows DNA agarose gel images from PCR analysis for confirmation of successful transformation of Synechococcus sp. PCC7002 hybrid strain 1563/#1568/#1692. 25 Figure 40C shows the results of ethanol production in %(v/v) per OD over cultivation time in hours of Synechococcus sp. PCC 7002 strain #1563 under selective induction with 5 pM Zn 2 and 10 pM Zn . 30 Figure 40D shows the results of ethanol production in %(v/v) per OD over cultivation time in hours of Synechococcus sp. PCC 7002 strain #1568 under selective induction with 5 pM Zn 2 and 10 pM ZnV.
WO 2013/098265 PCT/EP2012/076786 - 92 Figure 40E shows the results of ethanol production in %(v/v) per OD over cultivation time in hours of Synechococcus sp. PCC 7002 strain #1563/#1568 under selective induction with 5 5 pM Znv and 10 pM Zn2. Figure 40F shows the results of ethanol production in %(v/v) per OD over cultivation time in hours of Synechococcus sp. PCC 7002 strain #1563/#1568/#1692 under selective induction 10 with 5 pM Zn and 10 pM Zn2. Figure 41A shows the vector map of construct #1564 pGEM gpA::corR-PcorT-zmPDCdsrA-Prbc*synADHoop for chromosomal integration in Synechococcus sp. PCC7002 between gene loci 15 A0124 and A0125 (integration site A), comprising a first production gene encoding Pdc from Zymomonas mobilis under the transcriptional control of the Co2-inducible promoter corR PcorT (regulator gene/promoter) and an adh-encoding gene from Synechocystis sp. PCC6803 as second production gene under the 20 transcriptional control of the constitutive Prbc* promoter. Figure 41B shows the vector map of construct #1633 pGEM gpB::corR-PcorT*1-zmPDCdegspf-Prbc*-synADHoop for chromosomal integration in Synechococcus sp. PCC7002 between 25 gene loci A1330 and A1331 (integration site B), comprising a degenerated version of the gene encoding Pdc from Zymomonas mobilis as a first production gene under the transcriptional control of the Co 2-inducible promoter corR-PcorT (regulator gene/promoter) and an adh-encoding gene from Synechocystis 30 sp. PCC6803 as second production gene under the transcriptional control of the constitutive Prbc* promoter.
WO 2013/098265 PCT/EP2012/076786 - 93 Figure 41C shows the vector map of construct #1574 pGEM gpC::corR-PcorT-zpPDC ter-Prbc*-synADHdegoop for chromosomal integration in Synechococcus sp. PCC7002 between gene loci A2578 and A2579 (integration site C), comprising a first 5 production gene encoding Pdc from Zymobacter palmae under the transcriptional control of the Co2--inducible promoter corR PcorT (regulator gene/promoter) and a degenerated version of the adh-encoding gene from Synechocystis sp. PCC6803 as second production gene under the transcriptional control of 10 the constitutive Prbc* promoter. Figure 42A schematically illustrates chromosomal integration sites A-C for constructs #1564, #1633 and #1574 in Synechococcus sp. PCC7002, each construct harbouring a 15 different Pdc gene under the transcriptional control of the same Co 2-inducible promoter corR-PcorT. Figure 42B shows DNA agarose gel images from PCR analysis for confirmation of successful transformation of Synechococcus 20 sp. PCC7002 hybrid strain #1564/#1633/#1574.
WO 2013/098265 PCT/EP2012/076786 - 94 Brief Description of the Nucleotide Sequences In the following sequence descriptions, inducible promoters are denominated as "regulator gene-promoter sequence", as for 5 example in "ziaR-PziaA", wherein ziaR denotes the regulator gene and PziaA denotes the promoter sequence of the zinc inducible promoter. In gene names, the term "deg" denotes degenerated versions of the corresponding wild type genes, and the terms "deg" and "fco" denote codon-degenerated and 10 full-codon optimised versions, respectively, of the corresponding wild type genes. The asterisk (*) in promoter names denotes promoters with optimised ribosome binding site. SEQ ID NO:1: Construct comprising zinc-inducible promoter 15 ziaR-PziaA from Synechocystis PCC6803 (ziaR-sll0792, ziaA slr0798) and SalI/EcoRI restriction sites. SEQ ID NO:2: Construct comprising cobalt-inducible promoter corR-PcorT from Synechocystis PCC6803 (corR-sll0794, corT 20 slr0797) and SalI/EcoRI restriction sites. SEQ ID NO:3: Construct comprising nickel-inducible promoter nrsRS-PnrsB from Synechocystis PCC6803 (nrsS-sll0798, nrsR s110797, nrsB-slr0793) and SalI/EcoRI restriction sites. 25 SEQ ID NO:4: Construct comprising zinc-inducible promoter smtB-PsmtA from Synechococcus PCC7002 (smtB-SYNPCC7002_A2564, smtA-SYNPCC7002_A2563) and SalI/EcoRI restriction sites. 30 SEQ ID NO:5: Forward primer ziaR/PziaA-SalI-fw for the amplification of the construct comprising the ziaR-PziaA promoter sequence (SEQ ID NO:1).
WO 2013/098265 PCT/EP2012/076786 - 95 SEQ ID NO:6: Forward primer PziaA-SalI-fw for the amplification of the construct comprising the PziaA promoter sequence, i.e. without the ziaR regulator gene. 5 SEQ ID NO:7: Reverse primer PziaA-EcoRI-rev for the amplification of the construct comprising the comprising the ziaR-PziaA promoter sequence. SEQ ID NO:8: Forward primer corR/PcorT-SalI-fw for the 10 amplification of the construct comprising the corR-PcorT promoter sequence (SEQ ID NO:2). SEQ ID NO:9: Reverse primer PcorT-EcoRI-rev for the amplification of the construct comprising the corR-PcorT 15 promoter sequence. SEQ ID NO:10: Forward primer nrsRS/PnrsB-SalI-fw for the amplification of the construct comprising the nrsRS-PnrsB promoter sequence (SEQ ID NO:3). 20 SEQ ID NO:11: Forward primer nrsR/PnrsB-SalI-fw for the amplification of the construct comprising the nrsR-PnrsB promoter sequence, i.e. without the nrsS regulator gene. 25 SEQ ID NO:12: Reverse primer PnrsB-EcoRI-rev for the amplification of the construct comprising the nrsRS-PnrsB promoter sequence. SEQ ID NO:13: Forward primer smtB/PsmtA-SalI-fw for the 30 amplification of the construct comprising the smtB-PsmtA promoter sequence (SEQ ID NO:4).
WO 2013/098265 PCT/EP2012/076786 - 96 SEQ ID NO:14: Forward primer PsmtA-SalI-fw for the amplification of the construct comprising the PsmtA promoter sequence, i.e. without the smtB regulator gene. 5 SEQ ID NO:15: Reverse primer PsmtA-EcoRI-rev for the amplification of the construct comprising the smtB-PsmtA promoter sequence. SEQ ID NO:16: Native PDC gene from Zymomonas mobilis (ZmPDC). 10 SEQ ID NO:17: Native PDC gene from Zymobacter palmae (ZpPDC). SEQ ID NO:18: Codon-degenerated PDC gene from Zymomonas mobilis (ZmPDCdeg). 15 SEQ ID NO:19: Codon-degenerated PDC gene from Zymobacter palmae (ZpPDCdeg). SEQ ID NO:20: Self-replicating broad host range vector 20 pVZ322a with aph (KanR2), GmR and CmR antibiotic resistance cassettes. CmR is eliminated in ethanologenic constructs due to insertion of ethanologenic genes via SalI/SbfI into this locus. 25 SEQ ID NO:21: Self-replicating broad host range vector pVZ325a with Sp/Sm, GmR and CmR antibiotic resistance cassettes. CmR is eliminated in ethanologenic constructs due to insertion of ethanologenic genes via SalI/SbfI into this locus. 30 SEQ ID NO:22: Nucleotide sequences of ethanologenic gene cassette from plasmid #1121 pVZ322a-smtB-PsmtA-ZmPDCoop PrbcL-synADH(deg) integrated via SalI/SbfI into pVZ322a.
WO 2013/098265 PCT/EP2012/076786 - 97 SEQ ID NO:23: Nucleotide sequences of ethanologenic gene cassette from plasmid #1217 pVZ325a-corR-PcorT-ZmPDCdsrA/oop PrbcL*-synADH(deg) integrated via SalI/SbfI into pVZ325a. 5 SEQ ID NO:24: Nucleotide sequences of ethanologenic gene cassette from plasmid #1227 pVZ325a-nrsR-PnrsB-ZmPDCdsrA/oop PrbcL*-synADH(deg) integrated via SalI/SbfI into pVZ325a. 10 SEQ ID NO:25: Nucleotide sequences of ethanologenic gene cassette from plasmid #1356 pVZ325a-nrsRS-PnrsB* ZpPDCdsrA/oop-PrbcL*-synADH(deg) integrated via SalI/SbfI into pVZ325a. 15 SEQ ID NO:26: Nucleotide sequences of ethanologenic gene cassette from plasmid #1329 pVZ325a-nrsR-PnrsB-zpPDC-corR PcorT-zmPDC(fco) integrated into pVZ325a. SEQ ID NO:27: Nucleotide sequences of ethanologenic gene 20 cassette from plasmid #1375 pVZ325a-nrsRS-PnrsB-zpPDC-corR PcorT*-zmPDCdeg integrated into pVZ325a. SEQ ID NO:28: Nucleotide sequences of ethanologenic gene cassette from plasmid #1376 pVZ325a-nrsRS-PnrsB*-zpPDC-corR 25 PcorT*-zmPDCdeg integrated into pVZ325a. SEQ ID NO:29: Nucleotide sequences of ethanologenic gene cassette from plasmid #1379 pVZ325a-nrsR-PnrsB-zpPDC-corR PcorT-zmPDCdeg integrated into pVZ325a. 30 SEQ ID NO:30: Nucleotide sequence of plasmid #1145 pJET glgA::ziaR-PziaA-ZmPDC-PrbcL-synADH(deg)-Cm used for WO 2013/098265 PCT/EP2012/076786 - 98 transformation of Synechocystis PCC6803 via integration into the glgA1 gene locus in the genome. SEQ ID NO:31: Nucleotide sequence of plasmid TK115 pGEM 5 AQ4::smtB-PsmtA-ZmPDC-PrbcL-synADH(deg)-Nm used for transformation of Synechococcus PCC7002 via integration into the endogenous pAQ4 plasmid. SEQ ID NO:32: Nucleotide sequence of flanking region pAQ4-FA 10 with NsiI/SalI restriction sites for pAQ4 integration via homologous recombination. SEQ ID NO:33: Forward primer #323 for amplification of flanking region pAQ4-FA. 15 SEQ ID NO:34: Reverse primer #324 for amplification of flanking region pAQ4-FA. SEQ ID NO:35: Nucleotide sequence of flanking region pAQ4-FB 20 with NotI/SpeI restriction sites for pAQ4 integration via homologous recombination. SEQ ID NO:36: Forward primer #325 for amplification of flanking region pAQ4-FB. 25 SEQ ID NO:37: Reverse primer #326 for amplification of flanking region pAQ4-FB. SEQ ID NO:38: Forward primer #327 for amplification of 30 flanking region pAQ3-FA (as published by Xu et al, 2011) with NsiI/SalI restriction sites.
WO 2013/098265 PCT/EP2012/076786 - 99 SEQ ID NO:39: Reverse primer #328 for amplification of flanking region pAQ3-FA (as published by Xu et al, 2011). SEQ ID NO:40: Forward primer #329 for amplification of 5 flanking region pAQ3-FB (as published by Xu et al, 2011). SEQ ID NO:41: Reverse primer #330 for amplification of flanking region pAQ3-FB (as published by Xu et al, 2011) with NotI/SpeI restriction sites. 10 SEQ ID NO:42: Nucleotide sequence of flanking region pAQ1-FA2 with NsiI/SalI restriction sites for pAQ1 integration via homologous recombination. 15 SEQ ID NO:43: Forward primer #336 for amplification of flanking region pAQ1-FA2. SEQ ID NO:44: Reverse primer #337 for amplification of flanking region pAQ1-FA2. 20 SEQ ID NO:45: Nucleotide sequence of flanking region pAQ1-FB2 with NotI/SpeI restriction sites for pAQ1 integration via homologous recombination. 25 SEQ ID NO:46: Forward primer #338 for amplification of flanking region pAQ1-FB2. SEQ ID NO:47: Reverse primer #339 for amplification of flanking region pAQ1-FB2. 30 SEQ ID NO:48: Nucleotide sequences of ethanologenic gene cassette from #1381 pVZ325a-nrsRS-PnrsB-zpPDC-corR-PcorT zmPDCdeg integrated into pVZ325a.
WO 2013/098265 PCT/EP2012/076786 - 100 SEQ ID NO:49: Nucleotide sequences of ethanologenic gene cassette from #1383 pVZ325a-nrsRS-PnrsB*-zpPDC-corR-PcorT zmPDCdeg integrated into pVZ325a. 5 SEQ ID NO:50: Nucleotide sequences of ethanologenic gene construct from #1389 pJet-pSYSG::nrsRS-PnrsB-zpPDC(deg)-Gm for homologous integration into Synechocystis PCC 6803 endogenous pSYSG plasmid. 10 SEQ ID NO:51: Nucleotide sequences of ethanologenic gene cassette from #1391 pVZ324a-corR-PcorT-ZpPDC integrated into pVZ325a. 15 SEQ ID NO:52: Nucleotide sequence of plasmid TK193 pGEM AQ3::nrsRS-PnrsB-zpPDC(deg)-Gm used for transformation of Synechococcus PCC7002 via integration into the endogenous pAQ3 plasmid. 20 SEQ ID NO:53: Reverse primer PcorT*-EcoRI-rev for the amplification of the construct comprising the corR-PcorT promoter sequence (SEQ ID NO:2) incorporating an optimised RBS. 25 SEQ ID NO:54: Reverse primer PnrsB*-EcoRI-rev for the amplification of the construct comprising the nrsRS-PnrsB promoter sequence (SEQ ID NO:3) incorporating an optimised RBS. 30 SEQ ID NO:55: SynADH gene (slr1192) from Synechocystis sp. PCC 6803.
WO 2013/098265 PCT/EP2012/076786 - 101 SEQ ID NO:56: Codon-degenerated SynADH gene (slr1192) from Synechocystis sp. PCC 6803. SEQ ID NO:57: Nucleotide sequences of ethanologenic gene 5 cassette from plasmid #1356 pVZ325a-nrsRS-PnrsB*-ZpPDC PrbcL*-synADH(deg) integrated via SalI/SbfI into pVZ325a. SEQ ID NO:58: Full codon-optimized pdc gene from Zymomonas mobilis (ZmPDCfco). 10 SEQ ID NO:59: Forward primer pSYSG-Pl-XbaI-fw for amplification of pSYSG-P1 (SEQ ID NO:61). SEQ ID NO:60: Reverse primer pSYSG-P1-XmaI-rev for 15 amplification of pSYSG-P1 (SEQ ID NO:61). SEQ ID NO:61: Nucleotide sequence of engineered flanking region pSYSG-P1 for pSYSG integration via homologous recombination. 20 SEQ ID NO:62: Forward primer pSYSG-P2-XhoI-fw for amplification of pSYSG-P2 (SEQ ID NO:64). SEQ ID NO:63: Reverse primer pSYSG-P2-NotI-fw for 25 amplification of pSYSG-P2 (SEQ ID NO:64). SEQ ID NO:64: Nucleotide sequence of engineered flanking region pSYSG-P2 for pSYSG integration via homologous recombination. 30 SEQ ID NO:65: Nucleotide sequence of plasmid TK162 pGEM AQ3::smtB-PsmtA-zmPDCoop-PrbcL-synADHdegoop used for transformation of Synechococcus sp. PCC 7002 via integration into the endogenous pAQ3 plasmid. 35 WO 2013/098265 PCT/EP2012/076786 - 102 SEQ ID NO:66: Nucleotide sequence of plasmid #1233 pGEM AQ4::smtB-PsmtA-zpPDC-PrbcL*-synADHdeg for transformation of Synechococcus sp. PCC 7002 via integration into the endogenous pAQ4 plasmid. 5 SEQ ID NO:67: Nucleotide sequence of plasmid #1374 pVZ325a nrsR-PnrsB-zpPDCter-corR-PcorT*1-zmPDCdegspfter for transformation of Synechocystis sp.PCC6803. 10 SEQ ID NO:68: Nucleotide sequence of plasmid #1460 pVZ325a nrsRS-PnrsB916-PDCdsrA-Prbc*-synADHdeg for transformation of Synechococcus sp. PCC7002. SEQ ID NO:69: Nucleotide sequence of plasmid #1470 pAQ3-corR 15 PcorT*1-zmPDCdeg_spf-Prbc*-synADHoop for transformation of Synechococcus sp. PCC7002 via integration into the endogenous pAQ3 plasmid. SEQ ID NO:70: Nucleotide sequence of plasmid #1473 20 pAQI::nrsRS-PnrsB193-PDC-PrbcL*-synADHoop-Sp for transformation of Synechococcus sp. PCC7002 via integration into the endogenous pAQ1 plasmid. SEQ ID NO:71: Nucleotide sequence of plasmid #1332 pGEM 25 AQ4::corR-PcorT-zpPDC*_ter-PrbcL*-synADHoop-Nm for integration into the endogenous pAQ4 plasmid of Synechococcus sp. PCC7002. SEQ ID NO:72: Nucleotide sequence of plasmid #1627 pVZ326a 30 PnrsB(ABCC916)-PDCdsrA-Prbc* (optRBS)-synADHoop nrsRSBAD(ABCC916) for transformation of Synechococcus sp. PCC7002.
WO 2013/098265 PCT/EP2012/076786 - 103 SEQ ID NO:73: Nucleotide sequence of plasmid #1329 pVZ325a nrsR-PnrsB-zpPDC ter-corR-PcorT-zmPDC(fco)_oop for transformation of Synechocystis sp. PCC6803. 5 SEQ ID NO:74: Nucleotide sequence of plasmid #1379 pVZ325a nrsR-PnrsB-zpPDC ter-corR-PcorT-zmPDCdegspf for transformation of Synechocystis sp. PCC6803. SEQ ID NO:75: Nucleotide sequence of plasmid #1356 pVZ325a 10 nrsRS-PnrsB*-zpPDCter-Prbc*-synADHdegoop for transformation of Synechococcus sp. PCC7002. SEQ ID NO:76: Nucleotide sequence of plasmid #1217 pVZ325a corR-PcorT-zmPDC dsrA-Prbc*-synADHdeg oop for transformation 15 of Synechococcus sp. PCC7002. SEQ ID NO:77: Nucleotide sequence of plasmid #1227 pVZ325a corR-PcorT-zmPDCdsrA-Prbc*-synADHdegoop for transformation of Synechocystis sp. PCC6803. 20 SEQ ID NO:78: Nucleotide sequence of plasmid #1480 pAQ3-aztR PaztA-zmPDCdegspf-Prbc*-synADHoop for transformation of Synechococcus sp. PCC7002 via integration into the endogenous pAQ3 plasmid. 25 SEQ ID NO:79: Nucleotide sequence of plasmid #1563 pGEM gpA::smtB-PsmtA-zmPDCdsrA-Prbc*-synADHoop for transformation of Synechococcus sp. PCC7002 by chromosomal integration between gene loci A0124 and A0125. 30 SEQ ID NO:80: Nucleotide sequence of plasmid #1568 pGEM gpB::smtB-PsmtA-zmPDCdegspf-Prbc*-synADHoop for WO 2013/098265 PCT/EP2012/076786 - 104 transformation of Synechococcus sp. PCC7002 by chromosomal integration between gene loci A1330 and A1331. SEQ ID NO:81: Nucleotide sequence of plasmid #1692 pGEM 5 gpC::smtB-PsmtA-zmPDC oop-PrbcL-synADHdeg oop for transformation of Synechococcus sp. PCC7002 by chromosomal integration between gene loci A2578 and A2579. SEQ ID NO:82: Nucleotide sequence of plasmid #1564 pGEM 10 gpA::corR-PcorT-zmPDCdsrA-Prbc*synADHoop for transformation of Synechococcus sp. PCC7002 by chromosomal integration between gene loci A0124 and A0125. SEQ ID NO:83: Nucleotide sequence of plasmid #1633 pGEM 15 gpB::corR-PcorT*1-zmPDCdeg_spf-Prbc*-synADHoop for transformation of Synechococcus sp. PCC7002 by chromosomal integration between gene loci A1330 and A1331. SEQ ID NO:84: Nucleotide sequence of plasmid #1574 pGEM 20 gpC::corR-PcorT-zpPDCter-Prbc*-synADHdegoop for transformation of Synechococcus sp. PCC7002 by chromosomal integration between gene loci A2578 and A2579. 25 WO 2013/098265 PCT/EP2012/076786 - 105 References Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool. J Mol Biol. 215 5 (1990), 403-10. Altschul, S.F., Madden, T.L., Schdffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI BLAST: a new generation of protein database search programs. 10 Nucleic Acids Res. 25 (1997), 3389-402. Bryant, D. (Ed.), The Molecular Biology of Cyanobacteria (1994), Kluwer Academic Publishers. 15 Coico, R., Emerging Technologies. Current Protocols in Microbiology. (2007) 17:1.0.1-1.0.4., John Wiley and Sons, Inc. Hegemann, P., Method for producing nucleic acid polymers. US 20 patent US 6,472,184 Bl. Herrero, A. and Flores, E. (Eds.), The Cyanobacteria, Molecular Biology, Genomics and Evolution (2008), Caister Academic Press, Norfolk, UK. 25 Holland-Staley, C.A., Lee, K., Clark, D.P., Cunningham, P.R., Aerobic Activity of Escherichia Coli Alcohol Dehydrogenase is determined by a single amino acid. J Bacteriology 182 (2000), 6049-54. 30 Hoppner, T. C. and Doelle, H. W., Purification and kinetic characteristics of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol WO 2013/098265 PCT/EP2012/076786 - 106 production. Eur. J. Apple. Microbiol. Biotechnol. 17 (1983), 152-157. Karlin, S., Altschul, S.F., Applications and statistics for 5 multiple high-scoring segments in molecular sequences. Proc Natl Acad Sci USA 90 (1993), 5873-7. Karlin, S., Altschul, S.F., Methods for assessing the statistical significance of molecular sequence features by 10 using general scoring schemes. Proc Natl Acad Sci USA 87 (1990), 2264-8. Keiichi, I., Rossi, J., DNA polymerase mediated synthesis of double stranded nucleic acids. US patent 5,750,380 A. 15 Mackay I.M. (ed.), Real-Time PCR in Microbiology: From Diagnosis to Characterization, Caister Academic Press (2007). Nakamura, Y., Kaneko, T. and Tabata, S., CyanoBase, the 20 genome database for Synechocystis sp. Strain PCC6803: status for the year 2000. Nucleic Acid Research 28 (2000), 72. Richmond, A. (Ed.), Handbook Of Microalgal Culture: Biotechnology And Applied Phycology (2003), Blackwell 25 Publishing. Ruffing, A.M., Engineered cyanobacteria. Teaching an old bug new tricks. Bioengineered Bugs 2 (2011), 136-149. 30 Sambrook, J., Russel, D., Molecular Cloning: A Laboratory Manual (Third Edition), (2001) Cold Spring Harbor Laboratory Press.
WO 2013/098265 PCT/EP2012/076786 - 107 Takahama, K., Matsuoka, M., Nagahama, K., Ogawa, A., Construction and Analysis of a Recombinant Cyanobacterium Expressing a Chromosomally Inserted Gene for an Ethylene Forming Enzyme at the psbAI Locus. J Bioscience 5 Bioengineering 95 (2003), 302-305. Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap 10 penalties and weight matrix choice. Nucleic Acids Res. 22 (1994), 4673-80. Ziegler, K., Woods, R.P., Kramer, D., Grfindel, M., Dfhring, U., Baier, K., Coleman, J., Smith C.R., Oesterheld, C., 15 Lockau, W., Enke, H., Selection of ADH In Genetically Modified Cyanobacteria For The Production Of Ethanol. PCT patent application WO 2009/098089 A2.
WO 2013/098265 PCT/EP2012/076786 - 108 Examples In the following, certain embodiments of the invention will be explained in more detail with reference to figures and 5 experimental data. The figures and examples are not intended to be limiting with respect to specific details. Individual features can be identified with a reference numeral. This does not exclude that more than one of such feature can be present. 10 Example 1: Plasmid Construction for Synechocystis sp. PCC 6803 15 NB: Asterisks (*) mark promoter variants with optimised ribosome binding site. Construction of plasmid #1145: The pJET base plasmid was designed for genomic integration into Synechocystis sp. PCC 20 6803. Two regions of homology, glgA-P1 and glgA-P2, corresponding to adjacent upstream and downstream regions of glgAl (s111393) gene flank the genetic construct to allow for homologous integration into the glgAl locus of the Synechocystis sp. PCC 6803 genome. The plasmid was designed 25 with two antibiotic resistance cassettes, the Cm and Amp cassettes, to confer resistance against chloramphenicol and ampicillin, respectively. A genetic insert was generated, comprising the pyruvate decarboxylase gene from Zymomonas mobilis (zmPDC, SEQ ID NO:16) under the transcriptional 30 control of the ziaR-PziaA promoter-regulator gene construct (ziaR-sll0792, ziaA-slr0798, SEQ ID NO:1), to give the first production gene under the transcriptional control of a zinc inducible promoter. The insert further comprised the second WO 2013/098265 PCT/EP2012/076786 - 109 production gene, which was the degenerated gene encoding the alcohol dehydrogenase from Synechocystis sp. PCC 6803 (synADHdeg, SEQ ID NO:56) under the transcriptional control of the constitutive Prbc promoter. The insert was ligated 5 into the plasmid via SalI and SbfI restriction endonuclease sites. The map of plasmid #1145 is depicted in Figure 7A, and the sequence is deposited under SEQ ID NO:30. Plasmid annotations are as follows: 3614..3644 terminator oop; 2603..3613 CDS synADHdeg; 2308..2340 terminator oop; 10 2341..2599 promoter PrbcL; 8465..9124 marker Gm; 6774..7565 recombination insert glgA-P1; 4830..5687 marker Amp; 567..2267 CDS zmPDC; 10..408 CDS ziaR; 416..559 promoter PziaA; 3651..4233 recombination insert glgA-P2. 15 Construction of plasmid #1217: The pVZ325a base plasmid (Figure 20B, SEQ ID NO:21) was designed for self-replication in Synechocystis sp. PCC 6803. The plasmid was designed with two antibiotic resistance cassettes, the Sp/Sm and the Gm cassettes, to confer resistance against spectinomycin, 20 streptomycin and gentamycin, respectively. A genetic insert was generated (SEQ ID NO:23), comprising the pyruvate decarboxylase gene from Zymomonas mobilis (zmPDC) under the transcriptional control of the corR-PcorT promoter-regulator gene construct (corR-sll0794, PcorT-slr0797, SEQ ID NO:2) as 25 a first production gene under the transcriptional control of a cobalt-inducible promoter, and a second production gene, which was the degenerated gene encoding the alcohol dehydrogenase from Synechocystis sp. PCC 6803 (synADHdeg) under the transcriptional control of the constitutive Prbc* 30 promoter. The insert was cloned into the plasmid via SailI and SbfI restriction endonuclease sites. The map of plasmid #1217 is depicted in Figure 8A, and the plasmid sequence is deposited under SEQ ID NO:76. Plasmid annotations are as WO 2013/098265 PCT/EP2012/076786 - 110 follows: 3068..3132 promoter Prbc*; 10317..10847 CDS Gm; 11185..12195 CDS Sp/Sm; 1255..2955 CDS zmPDC; 2981..3026 dsrA; 4145..4175 terminator oop; 3134..4144 CDS synADHdeg; 57..1166 CDS corR(6803); 1167..1249 promoter PcorT(6803). 5 Construction of plasmid #1227: This construct is also based on the pVZ325a base plasmid. A genetic insert was generated (SEQ ID NO:24), comprising the pyruvate decarboxylase gene from Zymomonas mobilis (zmPDC) under the transcriptional 10 control of the nrsR-PnrsB promoter-regulator gene construct (nrsS-sll0798, nrsR-sll0797, nrsB-sll0793, SEQ ID NO:3) as a first production gene under the transcriptional control of a nickel-inducible promoter, and a second production gene, which was the degenerated gene encoding the alcohol 15 dehydrogenase from Synechocystis sp. PCC 6803 (SynADHdeg) under the transcriptional control of the constitutive Prbc* promoter. The insert was cloned into the plasmid via SalI and SbfI restriction endonuclease sites. The map of plasmid #1227 is depicted in Figure 9. The plasmid sequence is deposited 20 under SEQ ID NO:77. Plasmid annotations are as follows: 2676..2740 promoter Prbc*; 9925..10455 CDS Gm; 10793..11803 CDS Sp/Sm; 863..2563 CDS zmPDC; 2589..2634 dsrA; 3753..3783 terminator oop; 2742..3752 CDS synADHdeg; 33..734 CDS nrsR(6803); 736..855 promoter PnrsB(6803). 25 Construction of plasmid #1329: This construct is also based on the pVZ325a base plasmid. A genetic insert was generated (SEQ ID NO:26), comprising a first production gene encoding the pyruvate decarboxylase gene from Zymobacter palmae 30 (zpPDC, SEQ ID NO:17) under the transcriptional control of the nickel-inducible nrsR-PnrsB promoter-regulator gene construct, and a second first production gene which was a codon-optimised (for cyanbacterial hosts) version of the gene WO 2013/098265 PCT/EP2012/076786 - 111 encoding the pyruvate decarboxylase from Zymomonas mobilis (zmPDC(fco), SEQ ID NO:58) under the transcriptional control of the cobalt-inducible corR-PcorT promoter-regulator gene construct. The codon-optimised zmPDC shares approximately 80 5 90% sequence identity with the native zmPDC. The map of plasmid #1329 is depicted in Figure 10A, and the sequence is deposited under SEQ ID NO:73. Plasmid annotations are as follows: 3852..5561 CDS zmPDC(fco); 5565..5593 terminator cop; 2661..3770 CDS corR; 3771..3853 promoter PcorT; 10 821..2500 CDS zpPDC; 11745..12275 CDS Gm; 12613..13623 CDS Sp/Sm; 1..702 CDS nrsR; 2501..2597 terminator ter; 703..831 promoter PnrsB. Plasmid #1329 is particularly designed to be transformed into cyanobacterial host cells which harbor at least one additional copy of a recombinant pdc gene in their 15 genome. Construction of plasmid #1379: This construct is also based on the pVZ325a base plasmid. A genetic insert was generated (SEQ ID NO:29), comprising a first production gene encoding 20 the pyruvate decarboxylase gene from Zymobacter palmae (zpPDC) under the transcriptional control of the nickel inducible nrsR-PnrsB promoter-regulator gene construct, and a second first production gene which was a degenerated version of the gene encoding the pyruvate decarboxylase from 25 Zymomonas mobilis (zmPDCdeg, SEQ ID NO:18) under the transcriptional control of the corR-PcorT promoter-regulator gene construct. The codon-optimised zmPDC shares approximately 60-65% sequence identity with the native zmPDC. The map of plasmid #1379 is depicted in Figure lOB, and the 30 sequence is deposited under SEQ ID NO:74. Plasmid annotations are as follows: 5594..5641 terminator spf; 3887..5590 CDS zmPDCdeg; 2693..3802 CDS corR; 3803..3885 promoter PcorT; 735..858 promoter PnrsB; 853..2532 CDS zpPDC; 11788..12318 WO 2013/098265 PCT/EP2012/076786 - 112 CDS Gm; 12656..13666 CDS Sp/Sm; 33..734 CDS nrsR; 2533..2629 terminator ter. Plasmid #1379 is particularly designed to be transformed into cyanobacterial host cells which harbor at least one additional copy of a recombinant pdc gene in their 5 genome. Construction of plasmid #1389: The plasmid is based on the pJET base vector and was designed as a cloning vector for amplification of constructs to be integrated into the 10 endogenous pSYSG plasmid of Synechocystis sp. PCC 6803 by homologous recombination. A genetic insert was generated (SEQ ID NO:50), comprising a first production gene which was a degenerated version of the gene encoding the encoding the pyruvate decarboxylase gene from Zymobacter palmae (zpPDCdeg, 15 SEQ ID NO:19) under the transcriptional control of the nickel-inducible nrsRS-PnrsB promoter-regulator gene construct. The insert was flanked by two regions of homology, pSYSG-P1 and pSYSG-P2, corresponding to positions slr1816 and s111817 of pSYSG, to allow for homologous integration into 20 the corresponding endogenous plasmid. The plasmid further harbored Amp and Gm antibiotic resistance cassettes. The map of plasmid #1389 is depicted in Figure 19A. Construction of plasmid #1391: The cloning vector for #1391 25 was generated by first removing the gentamycin resistance cassette Gm from the base vector pVZ325a by a MluI restriction endonuclease digestion/re-ligation, to give the pVZ324a plasmid with remaining Sp/Sm resistance cassette. A genetic insert was generated (SEQ ID NO:51), comprising a 30 first production gene encoding the pyruvate decarboxylase gene from Zymobacter palmae (zpPDC) under the transcriptional control of the cobalt-inducible corR-PcorT promoter-regulator gene construct. The insert was cloned into the plasmid via WO 2013/098265 PCT/EP2012/076786 - 113 SalI and SbfI restriction endonuclease sites. The map of plasmid #1391 is depicted in Figure 19B. Construction of plasmid #1374: This construct is also based 5 on the pVZ325a base plasmid. A genetic insert was generated, comprising a first production gene encoding the pyruvate decarboxylase gene from Zymobacter palmae (zpPDC, SEQ ID NO:17) under the transcriptional control of the nickel inducible nrsR-PnrsB promoter-regulator gene construct, and a 10 second first production gene which was a degenerated version of the gene encoding the pyruvate decarboxylase from Zymomonas mobilis (zmPDCdeg, SEQ ID NO:18) under the transcriptional control of the corR-PcorT*1 promoter regulator gene construct incorporating an optimised ribosome 15 binding site for Synechocystis sp. PCC6803. The map of plasmid #1374 is depicted in Figure 26. The sequence of plasmid #1374 is deposited under SEQ ID NO:67. Plasmid annotations are as follows: 3858..3937 promoter PcorT*l; 5648..5695 terminator spfter; 3938..5644 CDS zmPDCdeg; 20 2744..3856 CDS corR; 909..2582 CDS zpPDC; 785..908 promoter PnrsB; 11842..12372 CDS Gm; 12710..13720 CDS Sp/Sm; 2583..2679 terminator ter. 25 Example 2: Plasmid Construction for Synechococcus sp. PCC 7002 NB: Asterisks (*) mark promoter variants with optimised ribosome binding site. 30 Construction of plasmid TK115: The pGEM-TK base plasmid was tailored as a cloning vector for amplification of constructs to be homologously recombined into the endogenous plasmid WO 2013/098265 PCT/EP2012/076786 - 114 pAQ4 of Synechococcus sp. PCC 7002 (see also Figure 4 and Figure 6). Two regions of homology, flanking region pAQ4-FA (751 nt) incorporating NsiI/SalI endonuclease restriction sites (SEQ ID NO:32) and flanking region pAQ4-FB (551 nt) 5 incorporating NotI/SpeI endonuclease restriction sites (SEQ ID NO:35) were designed to integrate into pAQ4 between gene loci SYNPCC7002_D0017 (hypothetical protein, 237 nt, 78 aa) and SYNPCC7002_D0018 (CRISPR-associated protein Cas2, 294 nt, 97 aa). The flanking regions were amplified from pAQ4 by PCR 10 using the primer pairs #323 and #324 (SEQ ID NOs:33 and 34) and #325 and #326 (SEQ ID NOs:36 and 37). The flanking regions pAQ4-FA and pAQ4-FB were then cloned into the pGEM-TK vector via the restriction endonuclease sites NsiI/SalI or NotI/SpeI, respectively. A genetic insert was generated, 15 comprising a first production gene encoding the pyruvate decarboxylase from Zymomonas mobilis (zmPDC) under the transcriptional control of the zinc-inducible smtB-PsmtA promoter-regulator gene construct (SEQ ID NO:4), and a second production gene which was the degenerated gene encoding the 20 alcohol dehydrogenase from Synechocystis sp. PCC 6803 (synADHdeg) under the transcriptional control of the constitutive Prbc promoter, as well as a neomycin (Nm) resistance cassette. The insert was cloned in between flanking regions pAQ4-FA and pAQ4-FB via restriction 25 endonuclease sites SalI and NotI into the modified pGEM-TK plasmid. The map of plasmid TK115 is depicted in Figure 14A, and the sequence is deposited under SEQ ID NO:31. Plasmid annotations are as follows: 393..492 promoter PsmtA; 6..392 CDS smtB; 4698..5237 intron pAQ4-FB; 3610..3670 promoter 30 PpsbA; 3710..4491 marker Nm; 6105..6962 marker Amp; 8179..8915 intron pAQ4-FA; 2276..2534 promoter PrbcL(6803); 2243..2275 terminator oop; 2538..3548 CDS synADHdeg; 3549..3579 terminator oop; 502..2202 CDS zmPDC.
WO 2013/098265 PCT/EP2012/076786 - 115 Construction of plasmid TK193: The pGEM-TK base plasmid was tailored as a cloning vector for amplification of constructs to be homologously recombined into the endogenous plasmid 5 pAQ3 of Synechococcus sp. PCC 7002 (see also Figure 4 and Figure 6). Two regions of homology, flanking region pAQ3-FA incorporating NsiI/SalI endonuclease restriction sites and flanking region pAQ3-FB incorporating NotI/SpeI endonuclease restriction sites were designed to integrate into pAQ3 10 between gene loci SYNPCC7002 C0006 and SYNPCC7002 C0007 as previously described by Xu and colleagues (2011). The flanking regions were amplified from pAQ3 by PCR using the primer pairs #327 and #328 (SEQ ID NO:38 and SEQ ID NO:39) and #329 and #330 (SEQ ID NO:40 and SEQ ID NO:41). The 15 flanking regions pAQ3-FA and pAQ3-FB were then cloned into the pGEM-TK vector via the restriction endonuclease sites NsiI/SalI or NotI/SpeI, respectively. A genetic insert was generated, comprising a first production gene which was the degenerated version of the gene encoding the pyruvate 20 decarboxylase from Zymobacter palmae (zpPDC) under the transcriptional control of the nickel-inducible nrsRS-PnrsB promoter-regulator gene construct, as well as a gentamycin (Gm) resistance cassette. The insert was cloned in between flanking regions pAQ3-FA and pAQ3-FB via restriction 25 endonuclease sites SalI and NotI into the modified pGEM-TK plasmid. The map of plasmid TK193 is shown in Figure 23, and the sequence is deposited under SEQ ID NO:52. Construction of plasmid TK162: The pGEM-TK base plasmid was 30 tailored as a cloning vector for amplification of constructs to be homologously recombined into the endogenous plasmid pAQ3 of Synechococcus sp. PCC 7002 as described above. The plasmid was further furnished with a genetic insert WO 2013/098265 PCT/EP2012/076786 - 116 comprising a Pdc gene from Zymomonas mobilis as a first production gene under the transcriptional control of the zinc-inducible smtB-PsmtA promoter-regulator gene construct, and a degenerated version of the gene encoding the alcohol 5 dehydrogenase from Synechocystis sp. PCC 6803 (synADHdeg) as a second production gene under the transcriptional control of the constitutive PrbcL promoter. The insert was cloned in between flanking regions pAQ3-FA and pAQ3-FB into the modified pGEM-TK plasmid. The map of plasmid TK162 is shown 10 in Figure 24, and the sequence is deposited under SEQ ID NO:65. Plasmid annotations are as follows: 8408..8794 CDS smtB; 8795..8894 promoter PsmtA; 5..1705 CDS Pdc; 3052..3082 terminator oop; 2041..3051 CDS synADHdeg; 1746..1778 terminator oop; 1779..2037 promoter PrbcL6803; 7834..8402 15 intron pAQ3-FA; 5760..6617 marker Amp; 3298..4306 marker Sp/Sm; 4406..4892 intron pAQ3-FB. Construction of plasmids for pAQ1 integration: The pGEM-TK base plasmid was tailored as a cloning vector for 20 amplification of constructs to be homologously recombined into the endogenous plasmid pAQ1 of Synechococcus sp. PCC 7002 (see also Figure 5 and Figure 6). Two regions of homology, flanking region pAQi-FA (SEQ ID NO:42) incorporating NsiI/SalI endonuclease restriction sites and 25 flanking region pAQ1-FB (SEQ ID NO:45) incorporating NotI/SpeI endonuclease restriction sites were designed to integrate into a so far unpublished site of pAQ1 between gene loci SYNPCC7002_BOO01 and SYNPCC7002_B0002. The flanking regions were amplified from pAQ1 by PCR using the primer 30 pairs #336 and #337 (SEQ ID NO:43 and SEQ ID NO:44) and #338 and #339 (SEQ ID NO:46 and SEQ ID NO:47). The flanking regions pAQi-FA and pAQ1-FB were then cloned into the pGEM-TK vector via the restriction endonuclease sites NsiI/SalI or WO 2013/098265 PCT/EP2012/076786 - 117 NotI/SpeI, respectively. Genetic inserts were cloned in between flanking regions pAQ1-FA and pAQ1-FB via restriction endonuclease sites SalI and NotI into the modified pGEM-TK plasmid. 5 Construction of plasmid #1217: The plasmid is based on the pVZ325a plasmid and was designed for self-replication in Synechococcus sp. PCC 7002. It is produced as described for plasmid #1217 in Example 1 and carries two antibiotic 10 resistance markers, a gentamycin (Gm) and a spectinomycin/streptomycin (Sp/Sm) cassette. The map of plasmid #1217 is depicted in Figure 15. Construction of plasmid #1356: The plasmid is based on the 15 pVZ325a plasmid and was designed for self-replication in Synechococcus sp. PCC 7002. A genetic insert was generated (SEQ ID NO:57), comprising a first production gene encoding the pyruvate decarboxylase gene from Zymobacter palmae (zpPDC) under the transcriptional control of the nickel 20 inducible nrsRS-PnrsB* promoter-regulator gene construct, and a second production gene which was a degenerated version of the gene encoding the alcohol dehydrogenase from Synechocystis sp. PCC 6803 (synADHdeg) under the transcriptional control of the constitutive Prbc* promoter. 25 The insert was cloned into the plasmid via SalI and SbfI restriction endonuclease sites. The plasmid further harbored Gm and Sp/Sm antibiotic resistance cassettes. The map of plasmid #1356 is depicted in Figure 16A, and the plasmid sequence is deposited under SEQ ID NO:75. Plasmid annotations 30 are as follows: 2304..3977 CDS zpPDC; 4116..4180 promoter Prbc*; 11365..11895 CDS Gm; 12233..13243 CDS Sp/Sm; 5193..5223 terminator cop; 4182..5192 CDS synADHdeg; WO 2013/098265 PCT/EP2012/076786 - 118 3978..4074 terminator ter; 1476..2179 CDS nrsR(6803); 2180..2300 promoter PnrsB*; 117..1478 CDS nrsS(6803). Construction of plasmid #1375: The plasmid is based on the 5 pVZ325a plasmid and was designed for self-replication in Synechococcus sp. PCC 7002. A genetic insert was generated (SEQ ID NO:27), comprising a first production gene encoding the pyruvate decarboxylase gene from Zymobacter palmae (zpPDC) under the transcriptional control of the nickel 10 inducible nrsRS-PnrsB promoter-regulator gene construct, and a second first production gene which was a degenerated version of the gene encoding the pyruvate decarboxylase from Zymomonas mobilis (zmPDCdeg) under the transcriptional control of the cobalt-inducible corR-PcorT* promoter 15 regulator gene construct. The plasmid further harbored Gm and Sp/Sm antibiotic resistance cassettes. The map of plasmid #1375 is depicted in Figure 17A. Construction of plasmid #1376: The plasmid is based on the 20 pVZ325a plasmid and was designed for self-replication in Synechococcus sp. PCC 7002. A genetic insert was generated (SEQ ID NO:28), comprising a first production gene encoding the pyruvate decarboxylase gene from Zymobacter palmae (zpPDC) under the transcriptional control of the nickel 25 inducible nrsRS-PnrsB* promoter-regulator gene construct, and a second first production gene which was a degenerated version of the gene encoding the pyruvate decarboxylase from Zymomonas mobilis (zmPDCdeg) under the transcriptional control of the cobalt-inducible corR-PcorT* promoter 30 regulator gene construct. The plasmid further harbored Gm and Sp/Sm antibiotic resistance cassettes. The map of plasmid #1376 is depicted in Figure 17B.
WO 2013/098265 PCT/EP2012/076786 - 119 Construction of plasmid #1381: The plasmid is based on the pVZ325a plasmid and was designed for self-replication in Synechococcus sp. PCC 7002. A genetic insert was generated (SEQ ID NO:48), comprising a first production gene encoding 5 the pyruvate decarboxylase gene from Zymobacter palmae (zpPDC) under the transcriptional control of the nickel inducible nrsRS-PnrsB promoter-regulator gene construct, and a second first production gene which was a degenerated version of the gene encoding the pyruvate decarboxylase from 10 Zymomonas mobilis (zmPDCdeg) under the transcriptional control of the cobalt-inducible corR-PcorT promoter-regulator gene construct promoter. The plasmid further harbored Gm and Sp/Sm antibiotic resistance cassettes. The map of plasmid #1381 is depicted in Figure 18A. 15 Construction of plasmid #1383: The plasmid is based on the pVZ325a plasmid and was designed for self-replication in Synechococcus sp. PCC 7002. A genetic insert was generated (SEQ ID NO:49), comprising a first production gene encoding 20 the pyruvate decarboxylase gene from Zymobacter palmae (zpPDC) under the transcriptional control of the nickel inducible nrsRS-nrsB* promoter-regulator gene construct, and a second first production gene which was the degenerated version of the gene encoding the pyruvate decarboxylase from 25 Zymomonas mobilis (zmPDCdeg) under the transcriptional control of the cobalt-inducible corR-PcorT promoter-regulator gene construct promoter. The plasmid further harbored Gm and Sp/Sm antibiotic resistance cassettes. The map of plasmid #1383 is depicted in Figure 18B. 30 Construction of plasmid #1460: The plasmid is based on the pVZ325a plasmid and was designed for self-replication in Synechococcus sp. PCC 7002. A genetic insert was generated, WO 2013/098265 PCT/EP2012/076786 - 120 comprising a first production gene encoding the pyruvate decarboxylase gene from Zymomonas mobilis (zmPDC) under the transcriptional control of the nickel-inducible nrsRS PnrsB916 promoter-regulator gene construct, and a second 5 production gene which was a degenerated version of the gene encoding the alcohol dehydrogenase from Synechocystis sp. PCC 6803 (synADHdeg) under the transcriptional control of the constitutive PrbcL* promoter. The insert was cloned into the plasmid via SalI and SbfI restriction endonuclease sites. The 10 plasmid further harbored Gm and Sp/Sm antibiotic resistance cassettes. The map of plasmid #1460 is depicted in Figure 31A, and the sequence is deposited under SEQ ID NO:68. Plasmid annotations are as follows: 100..1461 CDS nrsS(ABCC916); 1458..2153 CDS nrsR(ABCC916); 2154..2282 15 promoter PnrsB(ABCC916); 4169..5179 CDS synADHdeg; 5180..5210 terminator oop; 4016..4061 insertion sequence dsrAter; 2290..3990 CDS zmPDC; 12220..13230 CDS Sp/Sm; 11352..11882 CDS Gm; 4103..4167 promoter PrbcL*. 20 Construction of plasmid #1470: The pGEM-TK base plasmid was tailored as a cloning vector for amplification of constructs to be homologously recombined into the endogenous plasmid pAQ3 of Synechococcus sp. PCC 7002 as already described above. A genetic insert was generated, comprising a first 25 production gene which was the degenerated version of the gene encoding the pyruvate decarboxylase from Zymomonas mobilis (zmPDCdeg) under the transcriptional control of the cobalt inducible corR-PcorT*1 promoter-regulator gene construct with optimised ribosome binding site, as well as the alcohol 30 dehydrogenase from Synechocystis sp. PCC 6803 (synADH) as second production gene under the transcriptional control of the constitutive Prbc* promoter. The map of the plasmid is shown in Figure 32, and the sequence is deposited under SEQ WO 2013/098265 PCT/EP2012/076786 - 121 ID NO:69. Plasmid annotations are as follows: 1226..1305 promoter PcorT*1; 3016..3063 terminator spfter; 1306..3012 CDS zmPDCdeg; 112..1224 CDS corR; 3083..3147 promoter Prbc*; 3149..4159 CDS synADH; 4189..4220 terminator oop; 8956..9448 5 intron pAQ3-FB; 7231..8088 marker Amp; 5446..6014 intron pAQ3-FA; 4495..5028 marker Gm. Construction of plasmid #1473: The pGEM-TK base plasmid was tailored as a cloning vector for amplification of constructs 10 to be homologously recombined into the endogenous plasmid pAQl of Synechococcus sp. PCC 7002 as described above. A genetic insert was generated, comprising the pyruvate decarboxylase from Zymomonas mobilis (zmPDC) as a first production gene under the transcriptional control of the 15 nickel-inducible nrsRS-PnrsB916 promoter-regulator gene construct, as well as the alcohol dehydrogenase from Synechocystis sp. PCC 6803 (synADH) as second production gene under the transcriptional control of the constitutive Prbc* promoter. The map of the plasmid is shown in Figure 33, and 20 the sequence is deposited under SEQ ID NO:70. Plasmid annotations are as follows: 100..1461 CDS nrsS(ABCC916); 1458..2153 CDS nrsR(ABCC916); 2154..2282 promoter PnrsB(ABCC916); 2290..3990 CDS zmPDC; 4029..4093 promoter Prbc*; 4095..5105 CDS synADH; 5135..5166 terminator oop; 25 6493..7000 intron pAQ1-FB2; 7868..8725 marker Amp; 9942..10612 intron pAQ1-FA2; 5381..6389 marker Sp/Sm. Construction of plasmid #1332: The pGEM-TK base plasmid was tailored as a cloning vector for amplification of constructs 30 to be homologously recombined into the endogenous plasmid pAQ4 of Synechococcus sp. PCC 7002 as described above. A genetic insert comprising a first production gene encoding the pyruvate decarboxylase gene from Zymobacter palmae WO 2013/098265 PCT/EP2012/076786 - 122 (zpPDC) under the transcriptional control of the cobalt inducible corR-PcorT promoter-regulator gene construct, as well as the alcohol dehydrogenase from Synechocystis sp. PCC 6803 (synADH) as second production gene under the 5 transcriptional control of the constitutive Prbc* promoter with optimised ribosome binding site was inserted. The map of the plasmid is shown in Figure 34, and the sequence is deposited under SEQ ID No:71. Plasmid annotations are as follows: 2925..3021 native terminator of zpPDC; 1251..2924 10 CDS zmPDC; 1167..1249 promoter PcorT; 57..1166 CDS corR; 4147..4178 terminator oop; 3107..4117 CDS synADH; 3041..3105 promoter Prbc*; 8777..9513 intron pAQ4-FA; 6703..7560 marker Amp; 4308..5089 Nm; 4208..4268 promoter PpsbA; 5296..5835 intron pAQ4-FB. 15 Construction of plasmid #1627: The plasmid is based on the pVZ325a plasmid and was designed for self-replication in Synechococcus sp. PCC 7002. The plasmid was furnished with genetic inserts comprising a first production gene encoding 20 the pyruvate decarboxylase gene from Zymomonas mobilis under the transcriptional control of the nickel-inducible PnrsB(ABCC916) promoter and the alcohol dehydrogenase from Synechocystis sp. PCC 6803 (synADH) as second production gene under the transcriptional control of the constitutive Prbc* 25 promoter with optimised ribosome binding site. The Ni2 resistance conferring gene cluster nrsRSBAD(ABCC916) that is derived from a Synechococcus species closely related Synechococcus PCC7002 was further inserted. The plasmid map is depicted in Figure 35, and the sequence is deposited under 30 SEQ ID NO:72. Plasmid annotations are as follows: 1889..1957 promoter Prbc*(optRBS); 1843..1888 insertion sequence dsrAter; 1958..2968 CDS synADH; 2998..3028 terminator oop; 117..1817 CDS PDC; 9170..9700 CDS Gm; 10428..11789 CDS WO 2013/098265 PCT/EP2012/076786 - 123 nrsS(ABCC916); 11786..12481 CDS nrsR(ABCC916); 12611..13294 CDS nrsB(ABCC916); 13338..16505 CDS nrsA(ABCC916); 16628..17290 CDS nrsD(ABCC916); 17321..17941 CDS nrsD' (ABCC916); 6..109 promoter PnrsBABCC916. 5 Construction of plasmid #1480: The plasmid was tailored as a cloning vector for amplification of constructs to be homologously recombined into the endogenous plasmid pAQ3 of Synechococcus sp. PCC 7002 as described above. The plasmid 10 was further furnished with a genetic insert comprising a degenerated version of the pyruvate decarboxylase gene from Zymomonas mobilis (zmPDCdeg) as a first production gene under the transcriptional control of the zinc-inducible aztR-PaztA promoter-regulator gene construct from Anabaena PCC7120, as 15 well as the alcohol dehydrogenase from Synechocystis sp. PCC 6803 (synADH) as second production gene under the transcriptional control of the constitutive PrbcL* promoter. The map of the plasmid is shown in Figure 38A, and the sequence is deposited under SEQ ID No:78. Plasmid annotations 20 are as follows: 3830..4363 marker Gm; 4781..5349 intron pAQ3 FA; 6566..7423 marker Amp; 8291..8783 intron pAQ3-FB; 3524..3555 terminator oop; 2484..3494 CDS synADH; promoter 2418..2482 PrbcL*; 2351..2398 terminator spf; 97..507 CDS aztR(7120); 520..642 promoter PaztA(7120); 641..2347 CDS 25 zmPDCdeg. Construction of plasmid #1563: The plasmid pGEM was tailored as a cloning vector for amplification of constructs to be homologously recombined into the Synechococcus sp. PCC 7002 30 chromosome between gene loci A0124 and A0125. Two regions of homology, P-Al and P-A2, flank the genetic construct to allow for chromosomal homologous integration. The plasmid was furnished with a genetic insert comprising a pyruvate WO 2013/098265 PCT/EP2012/076786 - 124 decarboxylase gene from Zymomonas mobilis (zmPDC) as a first production gene under the transcriptional control of the zinc-inducible smtB-PsmtA promoter-regulator gene construct, as well as the alcohol dehydrogenase from Synechocystis sp. 5 PCC 6803 (synADH) as second production gene under the transcriptional control of the constitutive Prbc* promoter. The map of the plasmid is shown in Figure 39A, and the sequence is deposited under SEQ ID No:79. Plasmid annotations are as follows: 4739..6059 intron P-A2; 3621..4629 marker 10 Sp/Sm; 6906..7763 marker Amp; 3375..3406 terminator oop; 2335..3345 CDS synADH; 2269..2333 promoter Prbc*, 6..392 CDS smtB; 393..492 promter PsmtA; 2216..2240 terminator dsrA; 502..2204 CDS zmPDC; 8981..10291 intron P-Al. 15 Construction of plasmid #1568: The plasmid pGEM was tailored as a cloning vector for amplification of constructs to be homologously recombined into the Synechococcus sp. PCC 7002 chromosome between gene loci A1330 and A1331. Two regions of homology, P-B1 and P-B2, flank the genetic construct to allow 20 for chromosomal homologous integration. The plasmid was furnished with a genetic insert comprising a degenerated pyruvate decarboxylase gene from Zymomonas mobilis (zmPDCdeg) as a first production gene under the transcriptional control of the zinc-inducible smtB-PsmtA promoter-regulator gene 25 construct, as well as the alcohol dehydrogenase from Synechocystis sp. PCC 6803 (synADH) as second production gene under the transcriptional control of the constitutive Prbc* promoter. The map of the plasmid is shown in Figure 39B, and the sequence is deposited under SEQ ID No:80. Plasmid 30 annotations are as follows: 4447..5530 intron P-B2; 8452..9516 intron P-B1; 66..392 CDS smtB; 393..492 promoter PsmtA; 3684..4217 marker Gm; 6747..7604 marker Amp; 3378..3409 terminator oop; 2338..3348 CDS synADH; 2272..2336 WO 2013/098265 PCT/EP2012/076786 - 125 promoter Prbc*; 2205..2252 terminator spf; 495..2201 CDS zmPDCdeg. Construction of plasmid #1692: The plasmid pGEM was tailored 5 as a cloning vector for amplification of constructs to be homologously recombined into the Synechococcus sp. PCC 7002 chromosome between gene loci A2578 and A2579. Two regions of homology, P-Cl and P-C2, flank the genetic construct to allow for chromosomal homologous integration. The plasmid was 10 furnished with a genetic insert comprising a pyruvate decarboxylase gene from Zymomonas mobilis (zmPDC) as a first production gene under the transcriptional control of the zinc-inducible smtB-PsmtA promoter-regulator gene construct, as well as the degenerated alcohol dehydrogenase gene from 15 Synechocystis sp. PCC 6803 (synADHdeg) as second production gene under the transcriptional control of the constitutive PrbcL promoter. The map of the plasmid is shown in Figure 39C and the sequence is deposited under SEQ ID No:81. Plasmid annotations are as follows: 4691..5875 intron P-C2; 20 3710..4491 marker Nm; 7283..8140 marker Amp; 9357..10553 intron P-Cl; 502..2202 CDS zmPDC; 3549..3579 terminator cop; 2538..3548 CDS synADHdeg; 2243..2275 terminator oop; 2276..2534 promoter PrbcL(6803); 6..392 CDS smtB; 393..492 promoter PsmtA. 25 Construction of plasmid #1564: The plasmid pGEM was tailored as a cloning vector for amplification of constructs to be homologously recombined into the Synechococcus sp. PCC 7002 chromosome between gene loci A0124 and A0125 as described 30 above. A genetic insert comprising a pyruvate decarboxylase gene from Zymomonas mobilis (zmPDC) as a first production gene under the transcriptional control of the cobalt inducible corR-PcorT promoter-regulator gene construct, as WO 2013/098265 PCT/EP2012/076786 - 126 well as the alcohol dehydrogenase from Synechocystis sp. PCC 6803 (synADH) as second production gene under the transcriptional control of the constitutive Prbc* promoter were inserted between flanking regions P-Al and P-A2. The map 5 of the plasmid is shown in Figure 41A, and the sequence is deposited under SEQ ID No:82. Plasmid annotations are as follows: 1167..1249 promoter PcorT(6803); 57..1166 CDS corR(6803); 2969..2993 terminator dsrA; 1255..2957 CDS zmPDC; 9734..11044 intron P-Al; 3022..3086 promoter Prbc*; 10 3088..4098 CDS synADH; 4128..4159 terminator oop; 7659..8516 marker Amp; 4374..5382 marker Sp/Sm; 5492..6812 intron P-A2. Construction of plasmid #1633: The plasmid pGEM was tailored as a cloning vector for amplification of constructs to be 15 homologously recombined into the Synechococcus sp. PCC 7002 chromosome between gene loci A1330 and A1331 as outlined above. The plasmid was further furnished with a genetic insert comprising a degenerated pyruvate decarboxylase gene from Zymomonas mobilis (zmPDCdeg) as a first production gene 20 under the transcriptional control of the cobalt-inducible corR-PcorT*1 promoter-regulator gene construct with optimised ribosome binding site, as well as the alcohol dehydrogenase from Synechocystis sp. PCC 6803 (synADH) as second production gene under the transcriptional control of the constitutive 25 Prbc* promoter. The map of the plasmid is shown in Figure 41B, and the sequence is deposited under SEQ ID No:83. Plasmid annotations are as follows: 54..1166 CDS corR(6803); 1168..1247 promoter PcorT*1; 5200..6283 intron P-B2; 9205..10269 intron P-B1; 4437..4970 marker Gm; 7500..8357 30 marker Amp; 4131..4162 terminator oop; 3091..4101 CDS synADH; 3025..3089 promoter Prbc*; 2958..3005 terminator spf; 1248..2954 CDS zmPDCdeg.
WO 2013/098265 PCT/EP2012/076786 - 127 Construction of plasmid #1574: The plasmid pGEM was tailored as a cloning vector for amplification of constructs to be homologously recombined into the Synechococcus sp. PCC 7002 chromosome between gene loci A2578 and A2579 as described 5 above. A genetic insert comprising a pyruvate decarboxylase gene from Zymobacter palmae (zpPDC) as a first production gene under the transcriptional control of the cobalt inducible corR-PcorT promoter-regulator gene construct, as well as the degenerated alcohol dehydrogenase gene from 10 Synechocystis sp. PCC 6803 (synADHdeg) as second production gene under the transcriptional control of the constitutive Prbc* promoter were inserted between the flanking regions p C1 and P-C2. The map of the plasmid is shown in Figure 41C and the sequence is deposited under SEQ ID No:84. Plasmid 15 annotations are as follows: 5259..6443 intron P-C2; 4117..4147 terminator oop; 3106..4116 CDS synADHdeg; 4278..5059 marker Nm; 7851..8708 marker Amp; 9925..11121 intron P-Cl; 3040..3104 promoter Prbc*; 56..1165 CDS corR(6803); 1166..1248 promoter PcorT(6803); 1250..2923 CDS 20 zpPDC; 2924..3020 terminator ter. Example 3: Transformation of Synechocystis sp. PCC 6803 by spontaneous DNA uptake 25 Synechocystis sp PCC 6803 is a naturally competent bacterium and is characterised by spontaneous uptake of free DNA without any pre-treatment. For transformation, 10 ml of the bacterial culture in a logarithmic growth phase (OD 750 m~0.8) 30 were centrifuged for 10 min at 4000 rpm. The bulk of the supernatant was discarded and the bacterial pellet was resuspended in the remaining supernatant (approximately 100 200 pl). The resulting bacterial culture concentrate was then WO 2013/098265 PCT/EP2012/076786 - 128 incubated with approximately 500-1000 ng of the respective transformable DNA for 1-2 hours under non-selective conditions, i.e. no shaking and low-light conditions (25-35 pmol m-2 sec ), before being plated on BG11-1% cyanoagar 5 without the addition of antibiotics. After 2 days of incubation at 28 'C (25-35 pmol m- 2 sec- 1 PPF), selection conditions were applied by adding the corresponding antibiotic(s) underneath the agar to form a gradient concentration of antibiotic(s). Colony growth on agar plates 10 under selection conditions allowed for positive selection of transformants. Example 4: Transformation of Synechocystis sp. PCC 6803 by 15 conjugation The transformation of Synechocystis sp. PCC 6803 by conjugation followed the procedure described by Zinchenko et al. (1999). 3 ml overnight cultures were inoculated with E. 20 coli strain XL-1 carrying the cargo plasmid (pVZ) and E. coli strain J53 [RP4]. The culture was supplemented with appropriate antibiotics (50 pg/ml ampicillin and 20 pg/ml kanamycin for E. coli J53 [RP4], and the construct-specific antibiotic for E. coli carrying the respective cargo plasmid 25 pVZ). 250 pl of the overnight culture were mixed with about 10 ml LB medium without antibiotics and further cultured in 100 ml Erlenmeyer flasks for another 2.5 hours at 37'C with shaking. Bacteria were harvested by centrifugation in two 15 ml falcon tubes at 2500 rpm for 8 min at room temperature in 30 a Hettich Rotina 240R centrifuge. The bacterial pellets were resuspended in 1 ml LB medium each, then mixed together in 2 ml Eppendorf tubes and centrifuged again (5 min, 2500 rpm in Hettich Mirco 20CR centrifuge). The resulting pellet was WO 2013/098265 PCT/EP2012/076786 - 129 resuspended in 100 pl LB medium and incubated without shaking 1 h at 30'C. Next, 1.9 ml Synechocystis culture of a mid-log growth phase (OD~ 0.8), was added, shaken slightly and centrifuged. The pellet was resuspended in approximately 50 5 pl BG-11 medium and dispensed dropwise on a HATF (nitrocellulose membrane) filter (Millipore Durapore Membrane Filter, 0.22 pm), which was located on a prepared culture plate (of 20 ml 2x BG-11 medium, 20 ml cyanoagar and 2 ml LB medium). Incubation for 2 days under low light conditions 10 (25-35 pmol m-2 sec-1) at 28 *C was maintained. Afterwards, the cells were released from the membrane filter by in 200 pl BG-11 medium. Different dilutions of the cell suspension (1:10 or 1:100) were plated on 1%-cyano agar plate with antibiotic (for Synechocystis PCC 6803: Streptomycin 2 pg/ml, 15 Gentamycin 2 pg/ml, Kanamycin 10 pg/ml). After approximately 10 days, first transconjugants became visible. A further week later, single colonies were transferred to plates with higher concentrations of antibiotics (e.g. Gentamycin and Streptomycin 5 pg/ml). 20 Example 5: Quantitative determination of acetaldehyde and/or ethanol content in growth media by headspace gas chromatography (GC online measurement) 25 In a typical experiment for the quantitative determination of acetaldehyde and/or ethanol content in growth media by headspace gas chromatography (GC), the ethanol production of the respective cyanobacterial culture has to be induced 1-3 30 days prior to the GC measurement to trigger the overexpression of the pdc and Synadh production genes. For instance, the induction of the ziaA promoter occurred under zinc addition whereas the corT and the nrsB promoter were WO 2013/098265 PCT/EP2012/076786 - 130 induced by cobalt and nickel addition, respectively. The induced hybrid cells were either scratched from BG11 plates or harvested from liquid cultures by centrifugation and then resuspended in appropriate fresh marine medium ensuring that 5 the induction conditions were maintained (e.g. mBG11 with 10 pM zinc sulfate prepared with artificial seawater, or an instant ocean supplement for ziaA promoter). The medium was further supplemented with 50 mM TES, pH 7.3 and 20 mM NaHCO3. The sample was adjusted to an OD 750 mm of about 1. 2 mL sample 10 were then aliquoted per 20 mL GC vial loaded with 3 ml pure C0 2 . The tightly closed GC vials were placed onto the illuminated (150 pE m-2 s ) headspace auto sampler and were analyzed on the same day on a Shimadzu GC-2010 gas chromatograph equipped with medium-bore capillary column (FS 15 CS-624, length 30 m; I.D. 0.32 mm; film 1.8 pm) and flame ionisation detector. After completion of the GC measurements, the final ODm 50 m,, was determined to normalise the ethanol production rate according to the average OD75mm of the bacterial sample. The average OD 750 m was calculated as the 20 arithmetic mean of the OD 750 m at the time of sample preparation and the ODm 50 m 11 after completion of the GC measurement. 25 Example 6A: Validation of the ziaR-PziaA promoter specificity and tightness in Synechocystis sp. PCC6803 A prerequisite for the inventively-used serial induction of different inducible promoters is a high specificity of each 30 promoter to the respective inductor, as well as a tight repression of each promoter in its uninduced state. This prerequisite was tested for each of the metal-inducible promoters that were incorporated in the genetic constructs WO 2013/098265 PCT/EP2012/076786 - 131 for the generation of metabolically enhanced Synechocystis sp. PCC 6803 set forth in Example 1. Particular focus was given to a potential cross-reactivity of different promoters upon addition of the respective alternative, i.e. unrelated, 5 inductors. In Figure 7B, the ethanol production of the ethanologenic, chromosome-integrative strain #1145 (for plasmid map refer to Fig. 7A, for nucleotide sequence see SEQ ID NO:30) is depicted that was analyzed by GC online measurements in the presence of either 10 pM Co 2 , 10 pM Ni2 10 or 10 pM Zn2 , as well as without added metal-ions. The result shows that the ziaR-PziaA promoter regulating the recombinant pdc as first production gene in strain #1145 is very specific for zinc as the inductor, leading to a substantial ethanol production exclusively upon addition of 15 zinc. Thus, the ziaR-PziaA promoter is well suited for use in metabolically enhanced cyanobacteria according to the present invention. 20 Example 6B: Validation of the corR-PcorT promoter specificity and tightness in Synechocystis sp. PCC6803 Figure 8B shows the ethanol production of the ethanologenic hybrid strain carrying the extrachromosomal plasmid #1217 25 (for plasmid map refer to Fig. 8A, for nucleotide sequence see SEQ ID NO:23) analyzed by GC online measurement in the presence of either 10 pM Co2, 10 pM Ni" or 10 pM Zn" , as well as without added metal-ions. The results proof that the corR-PcorT promoter regulating the pdc gene on plasmid #1217 30 responds very specific to cobalt, leading to a substantial ethanol production exclusively upon addition of cobalt. Therefore, the corR-PcorT promoter tested in this experiment WO 2013/098265 PCT/EP2012/076786 - 132 is particularly suitable for use in metabolically enhanced cyanobacteria according to the invention. 5 Example 6C: Validation of the nrsR-PnrsB promoter specificity and tightness in Synechocystis sp. PCC6803 Finally, also the nrsR-PnrsB promoter was tested regarding its specificity and tightness. The ethanol production of the 10 ethanologenic strain #1227 (for plasmid map refer to Fig. 9A, for nucleotide sequence see SEQ ID NO:24) is pictured in Figure 9B. The ethanol production was analyzed by GC online measurements in the presence of either 10 pM Co 2 , 10 pM Ni2 or 10 pM Zn , as well as without added metal-ions. The 15 results demonstrate that the nrsR-PnrsB promoter is very tight as long as no nickel is present in the growth medium. Upon nickel addition, the ethanol production increases significantly. Since the nrsR-PnrsB promoter responds specifically to the presence of nickel, it is, too, well 20 suitable for use in metabolically enhanced cyanobacteria according to the present invention. Example 7: Generation of metabolically enhanced Synechocystis 25 sp. PCC 6803 hybrid strains with multiple first production genes and a second production gene Synechocystis sp. PCC 6803 was transformed with constructs #1145 and #1329 to generate and test a metabolically enhanced 30 cyanobacterium harboring three first production genes under the transcriptional control of different inducible promoters and a second production gene under the transcriptional control of a constitutive promoter. First, Synechocystis sp.
WO 2013/098265 PCT/EP2012/076786 - 133 PCC 6803 was transformed with the integrative construct #1145 (pJET-glgA::ziaR-PziaA-ZmPDC-PrbcL-synADH(deg)-Cm) via natural DNA uptake as described in Example 3. The plasmid map is shown in Fig. 7A, and the nucleotide sequence is deposited 5 as SEQ ID NO:30. By homologous recombination with the genomic DNA the AglgA (s111393) mutant containing the ethanologenic gene cassette under control of the zinc-inducible ziaR-PziaA promoter was generated (AglgA::ziaR-PziaA-ZmPDC-PrbcL synADHdeg). After checking for correct replacement of the 10 wild type version against the hybrid version and full segregation of the transformants by a specific polymerase chain reaction, the self-replicating plasmid #1329 (pVZ325a nrsR-PnrsB-zpPDC-corRPcorT-zmPDC(fco)) was introduced into the ethanologenic AglgA mutant by conjugation as described in 15 Example 4. The plasmid comprised two different pdc copies, namely the pdc from Zymobacter palmae and a codon optimized pdc from Zymomonas mobilis, under control of two different promoters, namely the nrsR-PnrsB and corR-PcorR. The map of plasmid #1329 is shown in Figure IA and corresponding DNA 20 sequence is provided as SEQ ID NO:26. The presence of all the three different promoter-pdc constructs in the transformants was verified by PCR. The production gene assembly in the metabolically enhanced hybrid strain Synechocystis sp. PCC 6803 #1145/#1329 is schematically represented in Figure 11A, 25 i.e. one genomic integration of a pdc gene and an adh gene as well as two pdc genes on the pVZ vector #1329. As a second variant of metabolically enhanced Synechocystis sp. PCC 6803 according to the present invention, a hybrid 30 strain comprising the integrative construct #1389 for the endogenous plasmid pSYSG in addition to the ethanologenic chromosome-integrative construct #1145 and a self-replicating pVZ plasmid #1391 was generated. The map of construct #1389, WO 2013/098265 PCT/EP2012/076786 - 134 an integrative vector for pSYSG is shown in Figure 19A and the corresponding DNA sequence is provided as SEQ ID NO:50. The Synechocystis sp. PCC 6803 hybrid thus carried the chromosome-integrative construct #1145 with the Zymomonas 5 mobilis pdc gene under the transcriptional control of the zinc-inducible ziaR-PziaA promoter as a first production gene, the replicative pVZ vector #1391 with the Zymobacter palmae pdc under the transcriptional control of the cobalt inducible corR-PcorT promoter as the second first production 10 gene and the pSYSG construct #1389 with the degenerated Zymobacter palmae pdc under the transcriptional control of the nickel-inducible nrsRS-PnrsB promoter as the third first production gene, as is schematically shown in Figure 21. 15 As a third variant of metabolically enhanced Synechocystis sp. PCC 6803 according to the present invention, a hybrid strain comprising the ethanologenic chromosome-integrative construct #1145 and the self-replicating pVZ plasmid #1374 was generated. The map of plasmid #1374 is shown in Figure 26 20 and the corresponding DNA sequence is provided as SEQ ID NO:67. As is schematically summarised in Figure 27A, the Synechocystis sp. PCC 6803 hybrid #1145/1373 thus harboured three independently inducible pdc gene copies, namely the Zymomonas mobilis Pdc gene under the transcriptional control 25 of the zinc-inducible ziaR-PziaA promoter as a first production gene, the Zymobacter palmae Pdc under the transcriptional control of the nickel-inducible nrsRS-PnrsB promoter as the second first production gene and the degenerated Zymomonas mobilis Pdc under the transcriptional 30 control of the cobalt-inducible corR-PcorT*1 promoter as the third first production gene.
WO 2013/098265 PCT/EP2012/076786 - 135 Example 8: Metabolic characterisation of the enhanced Synechocystis sp. PCC 6803 hybrid strains with multiple first production genes and a second production gene 5 The transformant Synechocystis sp. PCC 6803 #1145/#1329 described in Example 7 was tested for EtOH production under specific induction conditions in GC online measurements (Figure 11C). In a control experiment, the Synechocystis sp. PCC 6803 transconjugant carrying only plasmid #1329 was 10 analysed as reference (Figure 11B). The results show that ziaR-PziaA was repressed under non-induced conditions, i.e. in absence of Zn-salts, and induced in presence of Zn-salts. Accordingly, nrsR-PnrsB was repressed in the absence of Ni salts and in the presence of Zn-salts, respectively, and was 15 specifically induced by the presence of Ni2. CorR-PcorT was not induced in absence of Co-salts and upon addition of Zn salts or Ni-salts, respectively, but was solely induced upon addition of Co2. As long as neither zinc nor cobalt or nickel were present in the growth medium, all three pdc genes 20 remained silent, i.e. no significant EtOH production (<0,0005%v/v EtOH per OD 50 ,m) was detectable as a results of the very tight repression of the promoters used. As shown in Figure 11B, the EtOH production of the reference strain comprising only the extrachromosomal pVZ plasmid #1329 is 25 exclusively induced upon Ni and Co addition, respectively, whereas addition of Zn shows no effect. This results proofs that the additional pdc gene present in the genome of strain #1145/1329 but not in strain #1329 responds specifically to zinc addition. In conclusion, this example and the examples 30 set forth above demonstrated the monospecificity of the three different metal-ion inducible promoters, and further demonstrated that cyanobacterial hybrid strains can be generated comprising at least three different first WO 2013/098265 PCT/EP2012/076786 - 136 production genes which can be selectively and sequentially induced via their specific different promoters. Figures 12A and 12B show related GC online data from strain #1145/1329. In this experiment the strain #1145/1329 was not pre-induced 5 on agar plates and the cells were accordingly not induced until the transfer to the GC vials that were supplemented with different combinations of zinc, cobalt and nickel. As evident from Figure 12A, in the vial without added metal-ions almost no ethanol is produced, whereas in both vials with 10 either nickel or cobalt supplementation, ethanol production is induced after a lag phase of about 30 hours. If nickel and cobalt were simultaneously supplemented, the ethanol production was significantly higher than in the vial with only one of both metal-ions added, indicating that two pdc 15 genes were induced at the same time. Figure 11B shows that similar behaviours were observed for the separate addition of zinc and cobalt in comparison to zinc plus cobalt: Simultaneous addition of zinc and cobalt resulted in a higher ethanol production rate than found for the separate addition 20 of either one of the metal ions. In conclusion, also the data shown in Figures 12A and 12B indicate that each of the three pdc genes present in strain #1145/1329 can be selectively induced by the addition of the respective metal ion, thus providing the prerequisite of a selective sequential 25 induction of the three first production genes according to the present invention to minimise genetic alteration and prolong the duration of ethanol production. Figure 13 shows the results of an experiment investigating the accumulated Pdc activities upon simultaneous induction of different 30 promoters of the three pdc production genes in strain #1145/1329. As expected, simultaneous addition of zinc, nickel and cobalt resulted in the highest Pdc activity, followed by the dual induction compared the sole addition of WO 2013/098265 PCT/EP2012/076786 - 137 each metal ion. If none of the metal ions was added, the Pdc activity remained very low, demonstrating the tight repression of all three used inducible promoters. 5 Furthermore, the alternative transformant Synechocystis sp. PCC 6803 #1145/#1374 described in Example 7 was also tested for EtOH production under specific induction conditions in GC online measurements, following the general procedure described above. The results are shown in Figure 27B and 10 Figure 27C. Figure 27B shows the results of ethanol production in %(v/v) ethanol per culture OD over time of Synechocystis PCC6803 #1145/1374, as determined by GC online measurement under different induction conditions. It was found that addition of 15 pM Zn (crosshair markers), 5 pM Ni 15 (triangle markers) and 5 pM Co (square markers), respectively, led to specific induction of the corresponding Pdc gene, so that ethanol production took place. In contrast, insignificant ethanol production was observed in the absence of these metals in the control experiment (diamond markers). 20 These findings demonstrated that also in this alternative hybrid strain the Zn, Co, and Ni inducible promoters were selectively addressable by the respective metal ions, with no significant cross-induction detectable. Each of the three promoters specifically drove its operably linked production 25 gene upon induction, as required according to the present invention and supports the specific response of each metal inducible promoter to its specific metal-ion in Synechocystis sp. PCC6803, as was already demonstrated in Example 6 above. Figure 27C shows the Pdc activity in pmol per minute and 30 milligram protein measured for Synechocystis PCC6803 #1145/1374 grown under selective induction conditions. In contrast to the control without addition of metal ions, which exhibits a very low Pdc activity, addition of Ni2-, Co and WO 2013/098265 PCT/EP2012/076786 - 138 Zn 2, respectively, leads to specific induction of one of the three present Pdc copies. 5 Example 9: Culture monitoring The status of culture with respect to genetic integrity of the production genes and/or productivity of the first chemical compound is continuously or semi-continuously 10 controlled by culture monitoring in order to track the productivity of the culture over the whole production period and to take timely measures upon productivity decrease. Amongst other techniques, culture monitoring included pdc enzyme activity tests as well as determination of ethanol 15 content in the growth media by headspace gas chromatography. In addition, mutations in the pdc gene(s) were monitored by sequencing, enzymatic mismatches detection and/or melting point mismatch detection as well as combinations thereof. 20 Pdc activity test: The procedure investigates the activity of the overexpressed enzyme pyruvat decarboxylase (Pdc) in induced, ethanol producing cultures. The assay is an optical enzymatic test wherein the kinetic reaction can be recorded using a spectrophotometer that measures absorbance of a 25 sample over time. Pyruvate is enzymatically converted to acetaldehyde by Pdc, which is reduced to ethanol by ethanol dehydrogenase under NADH oxidation. The determined Pdc activity is related to the protein content, which is measured by Lowry protein assay for determining the total level of 30 protein in solution. For further laboratory reference see for instance Hoppner et al. (1983).
WO 2013/098265 PCT/EP2012/076786 - 139 Enzymatic mismatch detection: Enzymatic mismatch detection is performed according to Qiu et al. using the Surveyor Mutation Detection Kit (Transgenomic, NE, USA) according to the manufacturer's instructions. Briefly, the mismatch specific 5 CEL-1 endonuclease from celery rods recognizes mismatches in fragments up to 2 kb. The amplification of two overlapping fragments of the pdc gene is necessary to cover the whole gene sequence. CEL-1 cleaves with high specificity at the 3' end of any mismatch site in both DNA strands, i.e. base 10 substitutions and insertions or deletions of nucleotides are recognized. To this end, whole DNA is prepared from the bacterial culture in regular intervals throughout the cultivation. Afterwards, the non-mutated and mutated pdc gene copies are amplified by conventional PCR. Next, both types of 15 amplified products are denatured and then re-annealed under non-stringent conditions, leading to mismatched DNA-hybrids consisting of one strand of the original pdc gene and one strand of the mutant version. The DNA-hybrids are then digested with CEL-I endonuclease, leading to a degree of DNA 20 fragmentation proportional to the extent of mutations accumulated in the pdc gene. The degree of DNA fragmentation is determined by DNA gel electrophoresis. 25 Example 10: Long-term cultivation of metabolically enhanced Synechocystis sp. PCC 6803 strain #1145/#1374 with sequential induction of multiple first production genes Synechocystis sp. PCC 6803 strain #1145/#1374 as well as 30 strain #1145 as a control were grown as pre-cultures in mBG11 liquid medium supplemented with gentamycin and chloramphenicol (strain #1145 only with chloramphenicol) to apply selection pressure for constructs #1145 and #1374.
WO 2013/098265 PCT/EP2012/076786 - 140 Neither Zn, Ni or Co were added to the culture at this stage in order to avoid diverting fixed-carbon from cell growth, but to grow the uninduced culture to a high cell density. Upscale of the pre-culture in a main culture using mBG-11 5 medium (35 psu, artificial seawater salts) without addition of metal ions (Zn, Ni, Co) maintained repression of the three different promoters PziaA, PnrsB and PcorT*1. For plasmid maintenance and contamination control, chloramphenicol in a concentration of 100 mg L1 for #1145 and gentamycin in a 10 concentration of 200 mg L' for #1145/1374 was used. Cells were cultivated in 0.5 L round bottles with a culture volume of 0.4 L. Mixing was achieved with a magnetic stir bar at 250 rpm, applied continously. A light/dark photoperiod of 15 12 h/12 h was used. Illumination of the cultures was realized by fluorescence lamps (Sylvania Grolux FHO 39W/T5/GRO). The light intensity was dynamically adjusted according to the cell density, increasing from 140 pE m-2 s to up to 450 pE m- s , whilst illumination was provided from two sides of 20 the culture vessels. The temperature regime was set to 25 28'C during the dark phase and 36-39'C during the light phase. CO 2 enriched air was bubbled through the cultures by injection of 0.5% CO 2 at a flow rate of 20 mL min'. 25 The results of this long-term cultivation experiment are shown in Figures 28A and B, Figures 29A and B and Figures 30A and B. Figure 28A shows the development of culture cell density as OD75mm over the cultivation time in days for the hybrid strain #1145/#1374, whereas Figure 28B shows the same 30 measurement for the control strain #1145. Figure 29A shows the corresponding ethanol production in % (v/v) for the hybrid strain #1145/#1374 in this experiment, whereas Figure 29B shows this measurement again for the control strain #1145.
WO 2013/098265 PCT/EP2012/076786 - 141 Figure 30A additionally shows the corresponding ethanol production in %(v/v) normalised to the culture OD for the hybrid strain #1145/#1374 in this experiment, whereas Figure 30B shows this measurement again for the control strain 5 #1145. The graphs represent the results from double experiments using biological replicates. As can be seen in Figures 28A, 29A and 30A, the experiment was performed for a total cultivation period of about eight 10 weeks. During the first 14 days of cultivation, the cells were induced by zinc addition. For this purpose, 5 pM zinc sulfate was added to the culture on the first cultivation day, and further 10 pM zinc sulfate on the second cultivation day, to give 15 pM zinc sulphate in total. Thenceforth the 15 productivity of the culture was monitored. After about two weeks, a stagnation or decline of the cell density and/or ethanol productivity was detected. Hereupon, a medium exchange was performed by spinning the culture down at 6500 rpm for 10 minutes and replacing the supernatant using fresh 20 mBG-11 medium, thereby adjusting the cell density to an
OD
750 ,m of about 1. A recovery phase of about one week, illustrated by the dashed vertical lines with the bold arrows in between, was maintained under repressed conditions, i.e. without addition of Zn, Co or Ni. Afterwards, the second 25 induction was then realized by addition of 5 pM cobalt sulphate. After approximately two weeks of cultivation under induced conditions, a stagnation or decline of the cell density and/or ethanol productivity was again detected which was again followed by a medium exchange as outlined above, 30 and one week cultivation under repressed condition for culture recovery. Finally, the third induction was subsequently accomplished with addition of 5 pM nickel sulfate. Accordingly, a third ethanol production phase was WO 2013/098265 PCT/EP2012/076786 - 142 observed, until after about two weeks further cultivation time, corresponding to a total cultivation time of approximately 60 days, a stagnation or decline of the cell density and/or ethanol productivity was again detected and 5 the experiment was terminated. As can be derived from Figures 28B, 29B and 30B for the cultivation of the control strain #1145, which contains only one Pdc gene and was cultivated in parallel and treated in 10 the same way as done with the ethanologenic strain #1145/1374, only one first ethanol production phase of about two weeks was observed with this strain. In summary, the serial induction of the three inducible 15 promoters controlling the recombinant first production genes in Synechocystis sp. PCC 6803 strain #1145/#1374 allowed to significantly prolong the production period with the metabolically enhanced cyanobacterium set forth by the present invention when compared to a hybrid strain harbouring 20 only one production gene. It should be noted that the medium exchange used in the present example may be omitted by directly adding the second or further inducing agent to the culture without the need to 25 remove previously added inducing agent by change of medium. Example 11: Generation of metabolically enhanced Synechococcus sp. PCC 7002 30 Synechococcus PCC 7002 was transformed with an ApaI/NsiI digested TK115 construct (pGEM-pAQ4::smtB-PsmtA-PDC-PrbcL synADHdeg) via natural DNA uptake as set forth in Example 3 WO 2013/098265 PCT/EP2012/076786 - 143 for Synechocystis sp. PCC 6803. The ApaI/NsiI part of TK115 contains regions of pAQ4 which flank the ethanologenic gene cassette and its promoter smtB-PsmtA (Zn inducible). By homologous recombination with the endogenous pAQ4 plasmid, a 5 transformant comprising smtB-PsmtA-PDC-PrbcL-synADHdeg was generated. For further details refer to the plasmid map of TK115 (Figure 14A) and the corresponding SEQ ID NO:31, as well as to the corresponding section for TK115 of Example 2. After checking for the correct replacement of the wild type 10 version against the hybrid version, Synechococcus sp. PCC 7002 strain TK115 was tested for EtOH production under induction conditions (10 pM Zn) by GC online measurements. After addition of Zn, the Synechococcus sp. PCC 7002 strain TK115 strain produced EtOH with a rate of ~0.01% (v/v) OD' d 15 1. Without Zn and in the presence of Co and Ni the smtB-PsmtA promoter was tight (Fig. 14B). Example 12: Generation of metabolically enhanced 20 Synechococcus sp. PCC 7002 hybrid strains with different combinations of multiple first production genes and at least one second production gene Synechococcus sp. PCC 7002 strain TK115 was transformed by 25 conjugation according to the method detailed in Example 4 for Synechocystis sp. PCC 6803, except that a specific medium for transformation of Synechococcus sp. PCC 7002 (according to Stevens et al. 1973) was used for growing Synechococcus sp. PCC 7002 prior to conjugation. A variety of different self 30 replicating ethanologenic pVZ plasmids harboring different combinations of pdc production genes and inducible promoters were used. The following plasmids were tested: #1375 (Figure 17A, SEQ ID NO:27), #1376 (Figure 17B, SEQ ID NO:28), #1381 WO 2013/098265 PCT/EP2012/076786 - 144 (Figure 18A, SEQ ID NO:48) and #1383 (Figure 18B, SEQ ID NO:49). All plasmids contained two different pdc copies: the native version from Zymobacter palmae and a degenerated version of the Zymomonas mobilis pdc under control of two 5 different promoters, namely nrsRS-PnrsB and corR-PcorRT. Here, nrsRS-PnrsB was incorporated to provide the Ni inducible and corR-PcorRT was incorporated to provide the Co inducible promoter. The plasmids differed only in the incorporation of optimized ribosomal binding sites (RBS) in 10 some of the promoters, upstream of the Zymomonas mobilis and/or Zymobacter palmae pdc, which are highlighted in the Figures and sequence denominations with an asterisk (*). The specific modifications of the RBS were incorporated by primer design, i.e. reverse primers PcorT*-EcoRI-rev (SEQ ID NO:53) 15 and PnrsB*-EcoRI-rev (SEQ ID NO:54). The presence of the respective three different promoter-pdc versions in the corresponding Synechococcus sp. PCC 7002 hybrid strains, i.e. a first pdc production gene integrated into pAQ4 and two further pdc production genes on the respective pVZ vector, 20 was verified by specific PCR. The transformants were then tested for EtOH production and promoter specificity under defined induction conditions in GC online measurements. The results demonstrate the hybrid strain Synechococcus sp. PCC 7002 TK115 responded specifically to Zn and produced EtOH 25 (Figure 14B). It was also shown that the corR-PcorT promoter in Synechococcus sp. PCC 7002 with plasmid #1217 (Figure 15A) responds specifically to Co without any activation by Zn or Ni (Figure 15B). In addition, tests with Synechococcus sp. PCC 7002 transformed with the self-replicating pVZ plasmid 30 #1356 (Figure 16A) showed that the nrsRS-PnrsB* promoter controlling the zmPDC gene responded specifically to Ni without detectable activation by Zn (Figure 16B). However, a cross-induction of the nrsRS-PnrsB* promoter by Co was WO 2013/098265 PCT/EP2012/076786 - 145 observed. To circumvent a corresponding problem of cross induction during a production cultivation, a production gene transcriptionally controlled by the Ni-inducible promoter nrsRS-PnrsB would have to be induced first, i.e. prior to a 5 production gene transcriptionally controlled by the Co inducible promoter corR-PcorT. By doing that, the observed cross-induction would not be of relevance for the sequential induction of the production genes. The results further demonstrate the required monospecifity of Zn and Ni, and, 10 with certain limitations, also of Co for induction of smtB PsmtA, nrsRS-PnrsB and corR-PcorT in the transformants Synechococcus sp. PCC 7002 TK115 #1375, Synechococcus sp. PCC 7002 TK115 #1376, Synechococcus sp. PCC 7002 TK115 #1381 and Synechococcus sp. PCC 7002 TK115 #1383, i.e. in these 15 transformants Zn selectively induces smtB-PsmtA, Ni selectively induces nrsRS-PnrsB and Co selectively induces corR-PcorT but the least with slight cross-induction of nrsRS-PnrsB. 20 In addition, the pVZ325a based construct #1460 (Figure 31, SEQ ID NO:68) comprising the Pdc gene from Zymomonas mobilis under control of a further nickel-inducible promoter was tested in Synechococcus sp. PCC7002. The promoter PnrsB(ABCC916) was identified in the genome of a 25 Synechococcus species that is closely related to Synechococcus PCC7002. Construct #1460 also comprises the Ni 2 v dependent regulator genes nrsR and nrsS from said Synechococcus species, whose gene products act as transcriptional regulators of the nickel-inducible nrsB 30 promotor. Figure 31B shows the corresponding test of ethanol production of Synechococcus PCC7002 hybrid strain #1460 determined by GC online measurement under selective induction conditions. Addition of 2 pM nickel (crosshair markers) WO 2013/098265 PCT/EP2012/076786 - 146 specifically induces ethanol production in PCC7002 hybrid strain #1460, whereas no significant ethanol production is observed in samples with 5 pM zinc (square markers), 5 pM cobalt (triangle markers) and with no metal-ions added 5 (diamond markers), respectively. Notably, cobalt addition did not interfere with the action of the PnrsB(ABCC916) promoter from Synechococcus. Thus the nrsRS-PnrsB(ABCC916) promoter system derived from the Synechococcus species is a particular advantageous Ni 2 inducible promoter when used for the 10 purpose of sequential induction of multiple pdc copies in Synechococcus PCC7002. In alternative variants of metabolically enhanced Synechococcus sp. PCC 7002 harboring different combinations 15 of multiple first production genes to those detailed above, other integrative constructs for the endogenous Synechococcus plasmids pAQ1 and pAQ3 were tested, either in combination or in place of ethanologenic pAQ4 construct TK115. The sequence of TK193, an integrative vector for pAQ3 is provided as SEQ 20 ID NO:52. An example for an alternative Synechococcus sp. PCC 7002 transformant, carrying the pAQ4 construct TK115, the replicative pVZ vector #1391 (Figure 19B, SEQ ID NO:51) and the pAQ3 construct TK193, is schematically shown in Figure 22. 25 Figure 36A schematically shows a further variant of metabolic enhancements in Synechococcus sp. PCC7002 hybrid strain TK115/#1470/#1473. The strain comprises three independently inducible pdc gene copies due to integration of each specific 30 pdc cassette in one of the three different endogenous plasmids pAQ4, pAQ3 and pAQI. The respective plasmid maps and sequences of the constructs TK115, #1470 and #1473 that were used for transformation of Synechococcus sp. PCC7002 were WO 2013/098265 PCT/EP2012/076786 - 147 already detailed above. Figure 36B shows the corresponding PCR analysis for confirmation of the presence of the three Pdc gene copies introduced into the endogenous plasmids pAQ4, pAQ3 and pAQ1 of Synechococcus sp. PCC7002 hybrid strain 5 TK115/#1470/#1473. The expected PCR products specific for successful integration of each Pdc cassette into the respective endogenous plasmid were only obtained for the desired hybrid strain, whereas the parental strains TK115 and TK115/#1470 were found to produce only one or two positive 10 PCR products, respectively, as expected. The expected size of the PCR product is indicated by the arrow on the left hand side of the shown picture of the DNA agarose gels. Figure 36C shows the ethanol production in %(v/v) per culture OD observed with Synechococcus sp. PCC7002 hybrid strain 15 TK115/#1470/#1473, as determined by GC online measurements under selective induction conditions. Data represent the average of biological duplicates. In contrast to the control GC vial with no metal-ions added (diamond markers), addition of the metal-ions Zn (square markers), Co (triangle 20 markers) and Ni 2 l (crosshair markers) specifically induce one of the three introduced Pdc genes, as is evident from the substantially elevated ethanol production. Figure 36D shows the corresponding ethanol production in % (v/v) per culture OD observed with Synechococcus sp. PCC7002 hybrid strain 25 TK115/#1470. Data represent the average of biological duplicates. In comparison to hybrid strain TK115/#1470/#1473, this strain yet lacks the pdc gene under transcriptional control of the nickel-inducible PnrsB916 promoter. The results show that in this case, in contrast to the results 30 obtained from strain TK115/#1470/#1473 shown in Figure 36C, the addition of Ni 2 v (crosshair markers) does not induce significant ethanol production, whereas the addition of the metal-ions Zn2 (square markers) and Co2 (triangle markers) WO 2013/098265 PCT/EP2012/076786 - 148 again specifically induces substantially elevated ethanol production. Taken together, these results demonstrate that each of the three introduced Pdc copies can be controlled specifically by the choice of added metal-ion which allows a 5 sequential and independent induction procedure that will extent the duration of ethanol production. As an alternative hybrid strain variant, Figure 37A schematically shows the two genetic manipulations realised in 10 Synechococcus sp. PCC7002 hybrid strain #1332/TK162 harbouring two independently inducible pdc gene copies by integration of two distinct pdc/adh cassettes into the endogenous plasmids pAQ4 and pAQ3, respectively. Figure 37B shows the results from PCR analysis for confirmation of the 15 two pdc gene copies introduced into the endogenous plasmids pAQ4 and pAQ3 of Synechococcus PCC7002. The hybrid strain #1332/TK162 exhibits the expected PCR products confirming the successful integration of both pdc cassettes into the respective endogenous plasmid, whereas the parental hybrid 20 strain #1332 exhibits only one positive PCR product, as expected. The predicted size of the PCR product is indicated by an arrow on the left hand side of the DNA agarose gel image. Figure 37C shows the results from ethanol production in %(v/v) per OD of Synechococcus PCC7002 hybrid strain 25 #1332/TK162, as determined by GC online measurement under selective induction conditions. Whilst in the control sample with no metal-ions added (diamond markers) insignificant ethanol production is observed, the addition 5 pM zinc (square markers), 10 pM cobalt (triangle markers) and 20 pM 30 cobalt (round markers) specifically induce one of both introduced pdc genes and the ethanol production is substantially elevated. This demonstrates that each pdc gene copy can be transcriptionally controlled by addition of zinc WO 2013/098265 PCT/EP2012/076786 - 149 and cobalt, respectively, allowing for a sequential and independent induction procedure for an extended duration of ethanol production. 5 Example 13: Long-term cultivation of metabolically enhanced Synechococcus sp. PCC7002 hybrid strain TK115/#1470/#1473 with sequential induction of multiple first production genes Synechococcus sp. PCC7002 hybrid strain TK115/#1470/#1473 is 10 grown as pre-culture in mBG11 liquid medium supplemented with kanamycin, gentamycin and streptomycin to apply selection pressure for constructs TK115, #1470 and #1473. Neither Zn, Ni or Co will be added to the culture at this stage in order to avoid diverting fixed-carbon from cell growth, but to grow 15 the uninduced culture to a high cell density. Upscale of the pre-culture into a main culture using mBG-11 medium (35 psu, artificial seawater salts) without addition of metal ions (Zn, Ni, Co) maintains repression of the three different promoters PsmtA, PcorT*1 and PnrsB916. 20 Cells will be cultivated in 0.5 L round bottles with a culture volume of 0.4 L. Mixing will be achieved with a magnetic stir bar at 250 rpm, applied continously. For instance, a light/dark photoperiod of 12 h/12 h will be used. 25 Illumination of the cultures will be realized by fluorescence lamps (Sylvania Grolux FHO 39W/T5/GRO). The light intensity will be dynamically adjusted according to the cell density, for instance increasing from 140 pE M- 2 s1 to up to 450 pE M- 2 s whilst illumination may be provided from two sides of 30 the culture vessels. The temperature regime may be set to 25 28 0 C during the dark phase and 36-39 0 C during the light phase. CO 2 enriched air may be bubbled through the cultures by injection of 0.5% CO 2 at a flow rate of 20 mL min'.
WO 2013/098265 PCT/EP2012/076786 - 150 At first, the cells may be induced by zinc addition. For this purpose, 5 pM zinc sulfate may be added to the culture on the first cultivation day, and further 5 pM zinc sulfate on the 5 second cultivation day, to give 10 pM zinc sulphate in total. Thenceforth the productivity of the culture will be monitored. After a few weeks weeks, a stagnation or decline of the cell density and/or ethanol productivity may be detected. Hereupon, a medium exchange can be performed, for 10 instance by spinning the culture down at 6500 rpm for 10 minutes and replacing the supernatant using fresh mBG-11 medium, thereby adjusting the cell density to an ODa50rmm of about 1. A recovery phase of about one week may be maintained under repressed conditions, i.e. without addition of Zn, Co 15 or Ni. Alternatively, the medium exchange and recovery phase may be omitted by directly entering the next induction step. Afterwards, the second induction may then realized by addition of 5 pM cobalt sulphate. After several weeks of cultivation under induced conditions, a stagnation or decline 20 of the cell density and/or ethanol productivity may again be detected which may again be followed by a medium exchange as outlined above, and one week cultivation under repressed condition for culture recovery. Alternatively, the medium exchange and recovery phase may again be omitted by directly 25 entering the next induction step. Finally, the third induction may subsequently be accomplished with addition of 2 pM nickel sulfate. Accordingly, a third ethanol production phase may be observed, until after several weeks further cultivation time a stagnation or decline of the cell density 30 and/or ethanol productivity may again be detected and the experiment may be terminated.
WO 2013/098265 PCT/EP2012/076786 - 151 In summary, the serial induction of the three inducible promoters controlling the recombinant first production genes in Synechococcus sp. PCC7002 hybrid strain TK115/#1470/#1473 may allow to significantly prolong the production period with 5 the metabolically enhanced cyanobacterium set forth by the present invention when compared to a hybrid strain harbouring only one production gene. Example 14: Generation of metabolically enhanced 10 Synechococcus sp. PCC 7002 strains with multiple first production genes under the transcriptional control of different promoters which require different concentrations of the same inducing agent for induction 15 Synechococcus sp. PCC 7002 was transformed with constructs TK115 and #1480 to generate and test a metabolically enhanced cyanobacterium harboring two first production genes under the transcriptional control of different inducible promoters, as well as a second production gene under the transcriptional 20 control of a constitutive promoter. In this example, the promoters controlling the two first production genes are chosen to be both inducible by zinc, but require different concentrations of zinc for full induction. 25 Figure 38B is a schematic illustration of the two genetic manipulations realised in Synechococcus sp. PCC7002 hybrid strain #TK115/#1480, harbouring two inducible pdc gene copies both controlled by zinc inducible promoters smtB-PsmtA and aztR-PaztA, respectively, integrated into the endogenous 30 plasmids pAQ4 and pAQ3. Figure 38C shows the corresponding results from PCR analysis for confirmation of the presence of the two pdc gene copies WO 2013/098265 PCT/EP2012/076786 - 152 introduced in the endogenous plasmids pAQ4 and pAQ3 of Synechococcus PCC7002. The hybrid strain TK115/#1480 exhibits the expected PCR products which specifically confirm the successful integration of both pdc cassettes into the 5 respective endogenous plasmid, whereas the parental hybrid strain TK115 exhibits only one positive PCR product, as expected. The predicted size of the expected PCR product is indicated by an arrow on the left hand side of the shown picture of the DNA agarose gel images. 10 Figure 38D shows the results of the corresponding ethanol production achieved with Synechococcus sp. PCC7002 hybrid strain TK115/#1480 compared to the strains TKI15 and #1480 harbouring a single pdc gene only, as determined by GC online 15 measurement using a zinc concentration of 5 pM for induction. Data represent the arithmetic mean of biological duplicates. At 5 pM Zn addition, which leads to a moderate induction of smtB-PsmtA as well as the aztR-PaztA promoter system in Synechococcus PCC7002 the hybrid strain TK115/#1480 (triangle 20 markers) exhibits a substantial higher ethanol production of approximately 0.0109% (v/v) per OD and day compared to both parental strains TK115 (triangle markers) and #1480 (square markers) harbouring only one pdc copy, which produce only 0.0077% and 0.0054% (v/v) per OD and day, respectively. This 25 corresponds to approximately 200% higher ethanol production with hybrid strain TK115/#1480 in comparison to hybrid strain #1480, and approximately 142% higher ethanol production in comparison to hybrid strain TK115 at 5 pM Zn2 addition. This finding is attributed to the elevated gene dosage realized by 30 integration of two different pdc gene copies into pAQ4 and pAQ3.
WO 2013/098265 PCT/EP2012/076786 - 153 Figure 38E shows the corresponding results from ethanol production when 10 pM Zn were used for induction of the promoters. It can be derived that under these inducing conditions hybrid strain TK115 exhibits an increased ethanol 5 production compared to induction with 5 pM zinc. The ethanol production of TK115 is very similar to TK115/#1480. In contrast, only a minor increase in the ethanol production rate is observed for #1480 at 10 pM zinc induction. 10 The results demonstrate that the hybrid strain TK115/#1480 allows accomplishing a high ethanol production already at a moderate induction condition, e.g. 5 pM zinc, and that the ethanol production can be further increased by higher zinc concentrations, because the promoter PsmtA sustains a higher 15 zinc concentration for full induction than the PaztA promoter. This example illustrates how a metabolically enhanced cyanobacterium with multiple first production genes under 20 control of inducible promoters requiring different concentrations of the same inducing agent can be used inventively for long-term ethanol production to accomplish an essentially constant level of ethanol production. For instance, two first production genes under the 25 transcriptional control of inducible promoters which are inducible by the same inducing agent but require different concentrations of inducing agent for full induction, may be present in the cyanobacterium. During ethanol production, at first a low concentration of inducing agent may be 30 established, leading to high expression of the first production gene under the transcriptional control of the inducible promoter requiring a low inducing agent concentration, whereas the other first production gene under WO 2013/098265 PCT/EP2012/076786 - 154 the transcriptional control of the inducible promoter requiring a higher inducing agent concentration may be not expressed or only slightly expressed. Thus, the genetic selection pressure on the latter first production gene is 5 kept low. When, for instance, stagnation or decrease in productivity is observed, for example due to the functional loss of some of the highly expressed first production genes by a "loss of function" mutation, a higher concentration of inducing agent may be added in order to increase the 10 expression level of the first production gene under the transcriptional control of the inducible promoter requiring the higher inducing agent concentration. In this way, the functional loss of first production genes under transcriptional control of the promoter requiring a lower 15 inducing concentration for full induction can be compensated, and the ethanol production can be maintained over a longer period of time by subsequent full induction of the remaining functional pdc gene copy under control of the promoter requiring the higher inducing concentration. Consequently, 20 the ethanol production can be significantly prolonged in comparison to ethanol production with a conventional cyanobacterium harbouring only one first production gene. As an alternative to the use of different promoters as above, 25 also variants of the same promoter may be used, wherein these variants are engineered so as to require different concentrations of the same inducing agent for induction. As an example, Synechococcus sp. PCC 7002 may be transformed with constructs TK162 and a modified version of #1233, 30 hereinafter named #1233*, to generate and test a metabolically enhanced cyanobacterium harboring two first production genes under the transcriptional control of modified variants of the same inducible promoter based on the WO 2013/098265 PCT/EP2012/076786 - 155 smtB-PsmtA promoter, as well as a second production gene under the transcriptional control of a constitutive promoter. First, Synechococcus sp. PCC 7002 may be transformed with the integrative construct TK162 via natural DNA uptake as 5 described before. The plasmid map is shown in Figure 24, and the nucleotide sequence is deposited as SEQ ID NO:65. By homologous recombination with the endogenous plasmid pAQ3 the transformant Synechococcus sp. PCC 7002 strain TK162 containing the ethanologenic gene cassette under control of 10 the zinc-inducible smtB-PsmtA promoter may be generated. After checking for correct replacement of the wild type version against the hybrid version and full segregation of the transformants by a specific polymerase chain reaction, the integrative plasmid #1233* may be introduced into the 15 ethanologenic Synechococcus sp. PCC 7002 strain TK162 by natural uptake as described before. The plasmid #1233* may comprise a different pdc copy than TK162, namely the pdc from Zymobacter palmae while TK162 contains the pdc from Zymomonas mobilis. In contrast to the original plasmid #1233, the 20 plasmid #1233* may comprise a modified variant of the smtB PsmtA promoter (smtB-PsmtA*) in control of the pdc-encoding gene. Such a variant of the smtB-PsmtA promoter may comprise base pair substitutions and/or deletions in the operator region, the TATA box and/or ribosome binding sites, 25 respectively, of PsmtA, which change the Zn concentration required for induction of the promoter smtB-PsmtA* compared to its wild-type version. Accordingly, the expression of the pdc from Zymobacter palmae on the variant of #1233* may require a different concentration of the inductor Zn2 than 30 the expression of the pdc from Zymomonas mobilis on TK162 controlled by the unmodified smtB-PsmtA promoter.
WO 2013/098265 PCT/EP2012/076786 - 156 A third and fourth pdc version under control of smtB-PsmtA promoter variants may be introduced on a replicative pVZ version, such as vector #1375 shown in Figure 17A, after the promoters nrsRS-PnrsB and/or corR-PcorT* have been replaced 5 by further promoter variants smtB-PsmtA** and smtB-PsmtA*** variants which may again differ from each other as well as from smtB-PsmtA* and the wild type promoter with respect to the Zn concentration required for induction. 10 Alternatively to variants of the smtB-PsmtA promoter other Zn inducible promoters, such as ziaR-PziaA (from Synechocystis sp. PCC6803) in combination with aztR-PaztA (from Anabaena sp. PCC7120) in combination with smtB-PsmtA, respectively, may be used to drive sequentially different pdc genes by 15 increasing the concentration of the same inducing agent. Furthermore, alternatively to the Zn inducible smtB-PsmtA promoter, other metal ion inducible promoters, such as corR PcorT in combination with correspondingly modified variants, 20 and/or nrsRS-PnrsB in combination with correspondingly modified variants, may be used inventively to selectively drive the expression of the corresponding different pdc genes by increasing the concentration of the same metal-ion inductor. 25 Example 15: Long-term cultivation of metabolically enhanced Synechococcus sp. PCC 7002 strain TK162/#1233* with sequential induction of multiple first production genes under 30 the transcriptional control of variants of the same promoter requiring different concentrations of the same inducing agent for induction WO 2013/098265 PCT/EP2012/076786 - 157 Synechococcus sp. PCC 7002 strain TK162/#1233* can be grown as a pre-culture in mBGll liquid medium supplemented with kanamycin and streptomycin to apply selection pressure for constructs TK162 and #1233*. Zn is not added to the culture 5 at this stage in order to avoid diverting fixed-carbon from cell growth, but to grow the uninduced culture to a high cell density. Upscale of the pre-culture into a main culture without addition of metal Zn, maintains repression of the smtB-PsmtA promoters driving the two pdc genes present on 10 TK162 and #1233*. Here, 100 ml pre-culture can be used to inoculate the main culture in 500 ml Crison-PBRS. Upon reaching an OD 75 0nm value of approximately 2, the culture may be induced with 5 pM Zn, leading to expression of the ethanologenic genes with Zymomonas mobilis pdc on the 15 endogenous plasmid pAQ3 (TK162). Using 5 pM Zn 2 the modified variant of the PsmtA promoter (smtB-PsmtA*) present on #1233* may remain essentially uninduced. Induction of smtB-PsmtA on TK162 leads to the production of ethanol. Thenceforth the productivity of the culture may be monitored. After a time 20 period which may be several weeks or a few months, a decline of the productivity and the pdc enzyme activity may be detected. Hereupon the Zymobacter palmae pdc gene present on #1233* may be induced by addition of additional 5-10 pM Zn 2 leading to expression of this second pdc gene and the 25 recovery of ethanol productivity in the culture before the culture may later become unproductive. In summary, the serial induction of the inducible promoters controlling the recombinant first production genes can allow 30 to significantly prolong the production period with the metabolically enhanced cyanobacterium set forth by the present invention compared to a conventional hybrid strain.
WO 2013/098265 PCT/EP2012/076786 - 158 If the modified construct #1375 with the ethanologenic genes under control of smtB-PsmtA** and smtB-PsmtA*** is also present in the strain to form Synechococcus sp. PCC 7002 strain TK162/#1233*/1375*, the production phase can be 5 further extended by a third and further fourth selective induction of the expression of the corresponding third and fourth pdc gene using the required further increased Zn2 concentrations. 10 Example 16: Generation of metabolically enhanced Synechococcus sp. PCC 7002 strain with multiple first production genes under the transcriptional control of the same gradually inducible promoter 15 Synechococcus sp. PCC7002 hybrid strain #1563/#1568/#1692 was generated by sequentially introducing three zinc-inducible pdc gene copies controlled by the smtB-PsmtA promoter into different locations of the Synechococcus PCC7002 chromosome as shown in Figure 40A. For this purpose, the construct #1563 20 was used for integration of a first pdc gene from Zymomonas mobilis and an adh gene from Synechocystis sp. PCC6803 in between gene loci A0124 and A0125 (integration site A), construct #1568 was used for integration of a degenerated second pdc gene from Zymomonas mobilis and an adh gene from 25 Synechocystis sp. PCC6803 in between gene loci 1330 and 1331 (integration site B), and construct #1692 was used for integration of a third pdc gene from Zymomonas mobilis and an adh gene from Synechocystis sp. PCC6803 in between gene loci A2578 and A2579 (integration site C). The successful 30 integration of the three zinc-inducible pdc gene copies and the adh genes in the three different locations of the Synechococcus PCC7002 chromosome was verified by PCR analysis (Figure 40B). PCR analysis of Synechococcus PCC7002 WO 2013/098265 PCT/EP2012/076786 - 159 #1563/#1568/#1692 yielded all three expected PCR products specific for successful integration of each pdc/adh cassette into the different locations of the chromosome, whereas the parental precursor strains #1563 and #1563/#1568 yielded only 5 one or two positive PCR product respectively, as was expected. The predicted product size of the PCR amplificate is indicated by an arrow on the left hand side of the DNA agarose gel images. Afterwards, the ethanol production with the metabolically enhanced hybrid strain Synechococcus sp. 10 PCC7002 #1563/#1568/#1692 (Figure 40F) was compared with the ethanol production of the precursor strains #1563 (Figure 40C), #1568 (Figure 40D) and #1563/#1568 Figure 40F) harbouring a single pdc gene or two pdc genes only, respectively, by GC online measurement at a zinc 15 concentrations of 0, 5 and 10 pM. Data represent arithmetic mean of biological duplicates for each data point in the graphs. The metabolically enhanced hybrid strain #1563/#1568/#1692 exhibits at both zinc induction concentrations of 5 pM and 10 pM a substantially higher 20 ethanol production compared to the precursor strains with only one pdc gene. The production rate is approximately 171% higher compared to strain #1563, and approximately 239% higher compared to #1568. In addition, still an approximately 112% higher ethanol production rate is observed with hybrid 25 strain #1563/#1568/#1692 in comparison to the precursor strain #1563/#1568 with two pdc genes at both zinc induction concentrations of 5 pM and 10 pM. These results are attributed to the elevated gene dosage realized by integration of three pdc gene copies into different locations 30 of the chromosome. Taken together, these results clearly show that the smtB PsmtA promoter can be gradually induced by increasing the WO 2013/098265 PCT/EP2012/076786 - 160 zinc-concentration and to correspondingly gradually increase the expression level of the PsmtA-controlled pdc genes, whilst at the same time achieving a relatively high ethanol production rate already at low inducing concentrations due to 5 the elevated pdc gene copy number in the metabolically enhanced cyanobacterium. As a second variant, a Synechococcus sp. PCC7002 hybrid strain #1564/#1633/#1574 was generated by sequentially 10 introducing three cobalt-inducible pdc gene copies controlled by the corR-PcorT promoter into different locations of the Synechococcus PCC7002 chromosome as shown in Figure 42A. For this purpose, the construct #1564 was used for integration of a first pdc gene from Zymomonas mobilis and an adh gene from 15 Synechocystis sp. PCC6803 in between gene loci A0124 and A0125 (integration site A), construct #1633 was used for integration of a degenerated second pdc gene from Zymomonas mobilis and an adh gene from Synechocystis sp. PCC6803 in between gene loci 1330 and 1331 (integration site B), and 20 construct #1574 was used for integration of a third pdc gene from Zymomobacter palmae and an adh gene from Synechocystis sp. PCC6803 in between gene loci A2578 and A2579 (integration site C). The successful integration of the three cobalt inducible pdc gene copies and the adh genes in the three 25 different locations of the Synechococcus PCC7002 chromosome was verified by PCR analysis (Figure 42B). PCR analysis of Synechococcus PCC7002 #1564/#1633/#1574 yielded all three expected PCR products specific for successful integration of each pdc/adh cassette into the different locations of the 30 chromosome, whereas the parental precursor strains #1564 and #1564/#1633 yielded only one or two positive PCR product respectively, as was expected. The predicted product size of WO 2013/098265 PCT/EP2012/076786 - 161 the PCR amplificate is indicated by an arrow on the left hand side of the DNA agarose gel images. Next, the ethanol production with the metabolically enhanced 5 hybrid strain Synechococcus sp. PCC7002 #1564/#1633/#1574 will compared with the ethanol production of the precursor strains #1564, #1633 and #1564/#1633 harbouring a single pdc gene and two pdc genes only, respectively, by GC online measurement at cobalt concentrations of 0, 5 and 10 pM. The 10 metabolically enhanced hybrid strain #1564/#1633/#1574 with the three pdc genes may exhibit a higher ethanol production compared to precursor strain #1564, #1633 and #1564/#1633 with one or two pdc gene copies only. This result may be attributed to the elevated gene dosage realized by 15 integration of three pdc gene copies into different locations of the chromosome. These results will demonstrate that also the corR-PcorT promoter can be gradually induced by increasing the cobalt-concentration and to correspondingly gradually increase the expression level of the PcorT 20 controlled pdc genes, whilst at the same time achieving a relatively high ethanol production rate already at low inducing concentrations due to the elevated pdc gene copy number in the metabolically enhanced cyanobacterium 25 In a further variant, Synechococcus sp. PCC 7002 can be transformed with constructs TK162 and #1233 to generate and test a metabolically enhanced cyanobacterium harboring two first production genes under the transcriptional control of the same inducible promoter, namely the Zn-inducible promoter 30 smtB-PsmtA, and a second production gene under the transcriptional control of a constitutive promoter. First, Synechococcus sp. PCC 7002 can be transformed with the integrative construct TK162 (pGEM-AQ3::smtB-PsmtA-zmPDC- WO 2013/098265 PCT/EP2012/076786 - 162 PrbcL-synADHdeg) via natural DNA uptake as described above. The plasmid map is shown in Figure 24, and the nucleotide sequence is deposited as SEQ ID NO:65. By homologous recombination with the endogenous plasmid pAQ3 the 5 transformant Synechococcus sp. PCC 7002 strain TK162 containing the ethanologenic gene cassette under control of the zinc-inducible smtB-PsmtA promoter is generated (pAQ3::smtB-PsmtA-zmPDC-PrbcL-synADHdeg). After checking for correct replacement of the wild type version against the 10 hybrid version and full segregation of the transformants by a specific polymerase chain reaction, the integrative plasmid #1233 (pGEM-AQ4::smtB-PsmtA-zpPDC-PrbcL-synADHdeg.) can be introduced into the ethanologenic transformant strain TK162 by natural uptake as described previously. The plasmid #1233 15 comprises a different pdc copy than TK162, namely the pdc from Zymobacter palmae while TK162 contains the pdc from Zymomonas mobilis. By homologous recombination with the endogenous plasmid pAQ4 the transformant strain TK162/#1233 (pAQ3::smtB-zmPDC-PrbcL-synADHdeg, pAQ4::smtB-PsmtA-zpPDC 20 PrbcL-synADHdeg) is generated. Selection of transformant TK162 occurrs via Sm/St and selection of TK162/#1233 via Km/Nm. The map of plasmid #1233 is shown in Figure 25, the corresponding DNA sequence is provided as SEQ ID NO:66. The presence of both different pdc constructs in the transformant 25 can be verified by PCR. A third and fourth pdc version under control of smtB-PsmtA can be further introduced into hybrid strain TK162/#1233 on a self-replicative pVZ plasmid, such as plasmid #1375 shown in 30 figure Figure 17A, after the nrsRS-PnrsB and/or corR-PcorT* of #1375 have been replaced by smtB-PsmtA, to produce the Synechococcus sp. PCC 7002 strain TK162/#1233/#1375*. The selection of respective transformants can occur via WO 2013/098265 PCT/EP2012/076786 - 163 Gentamycin resistance. Moreover, as alternative to the Zn inducible smtB-PsmtA promoter of TK162/#1233 or TK162/#1233/#1375*, respectively, other metal ion inducible promoters, such as corR-PcorT or nrsRS-PnrsB can be also used 5 to drive different pdc genes in a dose-dependent manner by increasing the concentration of corresponding inductor metal in subsequent method steps. Preferably, the different pdc genes are located on different genetic elements. 10 Example 17: Long-term cultivation of metabolically enhanced Synechococcus sp. PCC 7002 hybrid strains #1563/#1568/#1692 or #1564/#1633/#1574 with sequential gradual induction of multiple first production genes 15 Synechococcus sp. PCC 7002 #1563/#1568/#1692 or #1564/#1633/#1574 are grown as a pre-culture in mBG11 liquid medium supplemented with Sp, Gm and Km to apply selection pressure for constructs #1563, #1568 and #1692, or #1564, #1633 and #1574, respectively. Zn/Co are not added to the 20 cultures at this stage in order to avoid diverting fixed carbon from cell growth, but to grow the uninduced culture to a high cell density. Upscale of the #1563/#1568/#1692 pre culture into a main culture without addition of metals Zn maintains repression of the smtB-PsmtA promoter driving the 25 pdc genes present on #1563, #1568 and #1692, whereas the #1564/#1633/#1574 main culture without addition of Co likewise maintains repression of the corR-PcorT promoter driving the pdc genes present on #1564, #1633, #1574. Here, 100 ml pre-culture can be used to inoculate the main culture 30 in 500 ml Crison-PBRs. Upon reaching an OD 750 m value of approximately 2, the #1563/#1568/#1692 culture can be induced with 2.5-5 pM Zn 2, leading to dose-dependent expression of the pdc genes under control of the smtB-PsmtA promoter. In WO 2013/098265 PCT/EP2012/076786 - 164 similar manner, the #1564/#1633/#1574 culture can be induced with 2.5-5 PM Co2-, leading to dose-dependent expression of the pdc genes under control of the corR-PcorT promoter. For both strains, due to the increased number of pdc genes under 5 the transcriptional control of the same promoter, a relatively high ethanol production rate can be expected already at a low induction conditions, e.g. 2.5 pM zinc or 2.5 pM cobalt, respectively. After a time period which may be several weeks or a few months, a decline of the productivity 10 and the pdc enzyme activity may be detected. Hereupon, the dose of the inductor Zn2 or Co2 may be increased to 5-10 pM to increase induction of the smtB-PsmtA or corR-PcorT promoter. This will cause elevated transcription of the pdc genes and lead to the recovery of pdc enzyme activity and 15 ethanol productivity in the cultures. After another time period which may be several weeks or a few months, another decline of the productivity and the pdc enzyme activity may be detected. In this case, the production phase can be further extended by a third dose-dependent induction, which 20 may occur at 10-15 pM Zn or Co2 , respectively, to further increase induction of the smtB-PsmtA or corR-PcorT promoter. In summary, the dose-dependent gradual induction of the smtB PsmtA promoter by different levels of Zn 2, e.g. a moderate 25 prior to a complete induction, allows to significantly prolong the production period of the first chemical compound with the metabolically enhanced cyanobacterium set forth by the present invention compared to a conventional hybrid strain. The same principle applies to the dose-dependent 30 gradual induction of the corR-PcorT promoter by different levels of Co2.
WO 2013/098265 PCT/EP2012/076786 - 165 In this manner, metabolically enhanced cyanobacterial hybrid strains with multiple first production genes under the transcriptional control of the same gradually inducible promoter can be used inventively by stepwisely increasing 5 induction of the promoters to compensate the loss of functional pdc genes, which may for instance happen due to occurrence of a "loss of function" mutation. Thereby ethanol production can be sustained at the same level by appropriate addition of inducing agent, for instance up to 15 pM zinc or 10 20 pM cobalt, when the number of remaining functional pdc copies is noticeably decreasing. By applying this strategy ethanol production can be maintained over a longer period of time compared to a conventional ethanologenic cell line with only on single pdc gene copy. 15 Example 18: Long-term cultivation of metabolically enhanced Synechococcus sp. PCC7002 hybrid strains TK162/#1233 with sequential gradual induction of multiple first production genes 20 Synechococcus sp. PCC 7002 strain TK162/#1233 is grown as a pre-culture in mBG11 liquid medium supplemented with kanamycin and streptomycin to apply selection pressure for constructs TK162 and #1233. Zn is not added to the culture at 25 this stage in order to avoid diverting fixed-carbon from cell growth, but to grow the uninduced culture to a high cell density. Upscale of the pre-culture into a main culture without addition of Zn maintains repression of the smtB-PsmtA promoter driving the two pdc genes present on #1233 and 30 TK162. Here, 100 ml pre-culture may be used to inoculate the main culture in 500 ml Crison-PBRS. Upon reaching an OD 750 m value of approximately 2, the culture may be induced with 2.5-5 pM Zn -, leading to dose-dependent expression of the WO 2013/098265 PCT/EP2012/076786 - 166 ethanologenic genes encoding the Zymomonas mobilis and Zymobacter palmae pdc under control of the smtB-PsmtA promoter on construct TK162 and #1233, and to the production of ethanol. Thenceforth the productivity of the culture may 5 be monitored. After a time period which may be several weeks or a few months, a decline of the productivity and the pdc enzyme activity may be detected. Hereupon the dose of the inductor Zn" may be increased to 10 pM to fully induce the smtB-PsmtA promoter. This may cause full transcription of the 10 pdc genes and lead to the recovery of pdc enzyme activity and ethanol productivity in the culture before the culture may become unproductive. In summary, the dose-dependent gradual induction of the smtB-PsmtA promoter by different levels of Zn 2, e.g. a moderate prior to a complete induction, can 15 allow to significantly prolong the production period of the first chemical compound with the metabolically enhanced cyanobacterium set forth by the present invention compared to a conventional hybrid strain. 20 If the modified construct #1375* harboring the ethanologenic genes under control of the smtB-PsmtA promoter is also present in Synechococcus sp. PCC 7002 strain TK162/#1233/#1375*, production phase can be further extended by a third method step for gradual induction of the promoter. 25 For example, the first dose-dependent induction may occur at 3.3 pM Zn2+, the second dose-dependent induction may occur at 6.6 pM Zn2 and the third dose-dependent induction may occur at 10 pM Zn2.
WO 2013/098265 PCT/EP2012/076786 - 167 Reference numeral CB Cyanobacterial cell CH Bacterial chromosome 5 EP Endogenous plasmid VC1 Self-replicating plasmid vector with first production gene under the transcriptional control of a first inducible promoter for the first production gene 10 MT1 Mutation in first production gene CH2 Bacterial chromosome with second first production gene under the transcriptional control of a second inducible promoter for the first production gene EP3 Endogenous plasmid with third first production gene 15 under the transcriptional control of a third inducible promoter for the first production gene MT2 Mutation in the second first production gene VC123 Self-replicating plasmid vector with a first production gene under the transcriptional control 20 of a first inducible promoter for the first production gene, a second first production gene under the transcriptional control of a second inducible promoter for the first production gene, and a third first production gene under the 25 transcriptional control of a third inducible promoter for the first production gene
权利要求:
Claims (62)
[1] 1. A metabolically enhanced cyanobacterium for the production of a first chemical compound, comprising: 5 - at least two first production genes encoding first biocatalysts for the production of the first chemical compound; - wherein one of the two first production genes is under the transcriptional control of a first 10 promoter for the first production gene; - wherein the other of the two first production genes is under the transcriptional control of a second promoter for the first production gene; - wherein the first promoter and second promoter are 15 separately inducible under different conditions; - wherein the at least two first biocatalysts catalyze the same chemical reaction.
[2] 2. The metabolically enhanced cyanobacterium according to 20 claim 1, further comprising: - at least one second production gene encoding a second biocatalyst for the production of the first chemical compound; - wherein the chemical reaction catalyzed by the first 25 biocatalysts is different from the chemical reaction catalyzed by the second biocatalyst.
[3] 3. The metabolically enhanced cyanobacterium according to claim 2, wherein the first biocatalysts produce an 30 intermediate which is further converted by the second biocatalyst to the first chemical compound. WO 2013/098265 PCT/EP2012/076786 - 169
[4] 4. The metabolically enhanced cyanobacterium according to claim 3 or 2, wherein the at least one second production gene is under the transcriptional control of a first promoter for the second production gene. 5
[5] 5. The metabolically enhanced cyanobacterium according to one of the preceding claims 1-4, comprising at least one further first production gene under the transcriptional control of a third promoter for the first production 10 gene.
[6] 6. The metabolically enhanced cyanobacterium according to one of the preceding claims 2-5, comprising at least one further second production gene under the transcriptional 15 control of a second promoter for the second production gene.
[7] 7. The metabolically enhanced cyanobacterium according to one of the preceding claims 2-6, wherein the first 20 promoter for the first production gene and the first promoter for the second production gene are inducible under the same conditions.
[8] 8. The metabolically enhanced cyanobacterium according to 25 one of the preceding claims 2-7, wherein the second promoter for the first production gene and the second promoter for the second production gene are inducible under the same conditions. 30
[9] 9. The metabolically enhanced cyanobacterium according to one of the preceding claims 2-8, wherein one single first promoter controls the transcription of both the first production gene and the second production gene. WO 2013/098265 PCT/EP2012/076786 - 170
[10] 10. The metabolically enhanced cyanobacterium according to one of the preceding claims 2-9, wherein one single second promoter controls the transcription of both the 5 first production gene and the second production gene.
[11] 11. The metabolically enhanced cyanobacterium according to one of the preceding claims 2-4, wherein the second production gene is non-recombinant. 10
[12] 12. The metabolically enhanced cyanobacterium according to one of the preceding claims 2-10, wherein the second production gene is recombinant. 15
[13] 13. The metabolically enhanced cyanobacterium according to any of the preceding claims, wherein the first biocatalysts catalyze a chemical reaction not present in the wild type cyanobacterium. 20
[14] 14. The metabolically enhanced cyanobacterium according to the previous claim, wherein only the at least two first production genes encoding the first biocatalysts are under the transcriptional control of said first and second inducible promoters. 25
[15] 15. The metabolically enhanced cyanobacterium according to the previous claim, wherein the second biocatalyst catalyzes a chemical reaction not separating the carbon flow from the carbon flow in the wild type 30 cyanobacterium.
[16] 16. The metabolically enhanced cyanobacterium according to the previous claim, wherein the at least one second WO 2013/098265 PCT/EP2012/076786 - 171 production gene encoding the second biocatalyst is under the transcriptional control of a constitutive promoter.
[17] 17. The metabolically enhanced cyanobacterium according to 5 any one of the preceding claims, wherein said first production genes are co-located on the same genetic element.
[18] 18. The metabolically enhanced cyanobacterium according to 10 any of the claims 1-16, wherein said first production genes are located on different genetic elements.
[19] 19. The metabolically enhanced cyanobacterium according to claim 17 or 18, wherein a genetic element is selected 15 from a group comprising: vector, endogenous plasmid, and chromosome, and combinations thereof.
[20] 20. The metabolically enhanced cyanobacterium according to any of the preceding claims, wherein biocatalysts 20 catalyzing the same chemical reaction are encoded by non identical gene sequences.
[21] 21. The metabolically enhanced cyanobacterium according to the previous claim, wherein non-identical gene sequences share at most or less than 80%, at most or less than 70%, 25 at most or less than 60%, at most or less than 50% sequence identity, and combinations thereof.
[22] 22. The metabolically enhanced cyanobacterium according to claim 20 or 21, wherein non-identical gene sequences 30 comprise: enzyme isoforms, gene sequences comprising conservative mutations, degenerated gene sequences WO 2013/098265 PCT/EP2012/076786 - 172 comprising codon usage bias and/or tRNA wobble, and combinations thereof.
[23] 23. The metabolically enhanced cyanobacterium according to any of the preceding claims, wherein the first 5 biocatalysts are ethanologenic enzymes.
[24] 24. The metabolically enhanced cyanobacterium according to any of the preceding claims 2-23, wherein the second biocatalyst is an ethanologenic enzyme. 10
[25] 25. The metabolically enhanced cyanobacterium according to claim 23 or 24, wherein the first biocatalysts are pyruvate decarboxylase enzymes, and wherein the second biocatalyst is an alcohol dehydrogenase enzyme. 15
[26] 26. The metabolically enhanced cyanobacterium according to the previous claim, wherein the pyruvate decarboxylase enzymes are selected from a group of host species comprising: Zymomonas mobilis, Zymobacter palmae, Sarcina ventriculi, Saccharomyces cerevisiae, Pichia pastoris, 20 Klyveromyces lactis, plants like Populus deltroides, Ipomea batatas or Zea mays or another pyruvate decarboxylase enzyme capable of expression in cyanobacteria. 25
[27] 27. The metabolically enhanced cyanobacterium according to claim 25 or 26, wherein the alcohol dehydrogenase enzyme is selected from a group of host species comprising: Synechocystis sp., Zymomonas mobilis, Zymobacter palmae or another alcohol dehydrogenase enzyme capable of 30 expression in cyanobacteria. WO 2013/098265 PCT/EP2012/076786 - 173
[28] 28. The metabolically enhanced cyanobacterium according to any of the preceding claims, wherein the cyanobacterium is selected from a group comprising Synechocystis, Synechococcus, Anabaena, Chroococcidiopsis, 5 Chlorogloeopsis, Cyanothece, Lyngbya, Phormidium, Nostoc, Spirulina, Arthrospira, Trichodesmium, Leptolyngbya, Plectonema, Myxosarcina, Pleurocapsa, Oscillatoria, Pseudanabaena, Cyanobacterium, Geitlerinema, Euhalothece, Thermosynechococcus sp., Calothrix, Scytonema. 10
[29] 29. The metabolically enhanced cyanobacterium according to the previous claim, wherein said cyanobacterium is Synechococcus sp. PCC 7002, Synechocystis sp. PCC 6803, Synechococcus sp., Chlorogloeopsis sp., Chroococcidiopsis 15 sp., Thermosynechococcus sp., Cyanobacterium sp., Anabaena sp., Nostoc sp., Cyanothece sp.
[30] 30. The metabolically enhanced cyanobacterium according to any of the preceding claims, wherein an inducible promoter is induced under conditions selected from a 20 group comprising: by nutrient starvation, by nutrient addition, by stationary growth phase, by heat shock, by cold shock, by oxidative stress, by salt stress, by light, by darkness, by metal ions, by organic chemical compounds, and combinations thereof. 25
[31] 31. The metabolically enhanced cyanobacterium according to any of the preceding claims, comprising at least a first promoter and second promoter that are inducible by the same inductor, wherein the concentration of inductor 30 required for induction of the first promoter is different from the concentration of inductor required for induction of the second promoter. WO 2013/098265 PCT/EP2012/076786 - 174
[32] 32. The metabolically enhanced cyanobacterium according to the previous claim 30 or 31, wherein an inducible promoter is selected from a group comprising: PntcA, 5 PnblA, PisiA, PpetJ, PpetE, PggpS, PpsbA2, PpsaA, PsigB, PlrtA, PhtpG, PnirA, PnarB, PnrtA, PhspA, PclpBl, PhliB, PcrhC, PziaA, PsmtA, PnrsB, PnrsB9l6, PcorT, PaztA, PbmtA, Pbxal, PzntA, PczrB, PnmtA, and combinations thereof. 10
[33] 33. The metabolically enhanced cyanobacterium according to the previous claim, wherein the inducible promoter is selected from a group comprising: PpetE, PpetJ, PziaA, PsmtA, PaztA, PcorT, PnrsB, PnrsB916 and combinations thereof. 15
[34] 34. The metabolically enhanced cyanobacterium according to any preceding claim, wherein the first chemical compound is selected from alcohols, alkanes, polyhydroxyalkanoates (e.g. PHB), fatty acids, fatty acid esters, carboxylic acids (such as amino acids), terpenes and terpenoids, 20 peptides, polyketides, hydrogen, alkaloids, hydrogen, lactams (such as pyrrolidone), and ethers (such as THF) or combinations thereof.
[35] 35. The metabolically enhanced cyanobacterium according to 25 the previous claim, wherein the first chemical compound comprises a biofuel.
[36] 36. The metabolically enhanced cyanobacterium according to the previous claim, wherein said biofuel comprises a hydrocarbon-based biofuel. WO 2013/098265 PCT/EP2012/076786 - 175
[37] 37. The metabolically enhanced cyanobacterium according to the previous claim, wherein the hydrocarbon-based biofuel comprises ethanol, isobutanol, isopropanol, n-propanol, fatty acid esters, alkanols, alkenes and alkanes. 5
[38] 38. The metabolically enhanced cyanobacterium according to the previous claim, wherein said first chemical compound comprises ethanol.
[39] 39. A method for producing a metabolically enhanced cyanobacterium according to any preceding claim, 10 comprising the method steps of: a) Providing the following at least two transformable nucleic acid sequences: - said first production gene under the transcriptional control of said first promoter for 15 the first production gene; - said first production gene under the transcriptional control of said second promoter for the first production gene; b) Transforming said at least two transformable nucleic 20 acid sequences into the cyanobacteria cells.
[40] 40. The method according to the previous claim, wherein each of said transformable nucleic acid sequences further comprises an individual selection marker which allows 25 selection of positive transformants carrying said transformable nucleic acid sequence, as well as an ubiquitous selection marker which allows selection of positive transformants carrying any of said transformable nucleic acid sequences. 30 WO 2013/098265 PCT/EP2012/076786 - 176
[41] 41. The method according to the previous claim, comprising selection markers based on antibiotic resistance, selection markers independent of antibiotic resistance, and combinations thereof. 5
[42] 42. The method according to the previous claim, wherein a selection marker based on antibiotic resistance is selected from the group comprising: ampicillin, kanamycin, neomycin, gentamycin, streptomycin, spectinomycin, chloramphenicol, erythromycin, zeozin, and 10 combinations thereof.
[43] 43. The method according to the previous claim, wherein a selection marker independent of antibiotic resistance is selected from the group comprising: complementation of auxotrophic phenotypes, nitrate-usability, resistance 15 against specific metal ions, and combinations thereof.
[44] 44. A method for producing a first chemical compound using any of the metabolically enhanced cyanobacterium according to the preceding claims 1-38, comprising the method steps of: 20 A) Culturing the metabolically enhanced cyanobacterium under conditions for induction of the first promoter for the first production gene, the cyanobacterium producing the first chemical compound; B) Culturing the metabolically enhanced cyanobacterium 25 under conditions for induction of the second promoter for the first production gene, the cyanobacterium producing the first chemical compound; - wherein method step A) and method step B) are 30 temporally separated; WO 2013/098265 PCT/EP2012/076786 - 177 - wherein the second promoter for the first production gene of method step B) is maintained in an uninduced state during method step A). 5
[45] 45. The method according to the previous claim, comprising at least one further method step of: C) Culturing the metabolically enhanced cyanobacterium under conditions for induction of at least one further third promoter for the first production 10 gene, the cyanobacterium producing the first chemical compound; - wherein method step A), method step B) and method step C) are temporally separated from each other; - wherein the third promoter for the first production 15 gene of method step C) is maintained in an uninduced state during method steps A) and B).
[46] 46. The method according to the previous claim 44 or 45, wherein in method steps A), B) and C) the at least one 20 second production gene encoding the second biocatalyst for the production of the first chemical compound is constitutively expressed.
[47] 47. The method according to one of the claims 44 or 45, 25 wherein in method step A) also the first promoter for the second production gene is induced.
[48] 48. The method according to one of the previous claims 44, 45 or 47, wherein in method step B) also the second promoter 30 for the second production gene is induced.
[49] 49. The method according to one of the previous claims 44, 45, 47 or 48, wherein at least in one further method step WO 2013/098265 PCT/EP2012/076786 - 178 C) one further third promoter for the second production gene is induced.
[50] 50. The method according to one of the preceding claims 44 5 49, wherein the metabolically enhanced cyanobacteria are subjected to sunlight and C02 during method step A) and method step B), and, if present, during method step C).
[51] 51. The method for producing a first chemical compound 10 according to one of the preceding claims 44-50, wherein the culturing conditions of method step A) are maintained for a period of time and/or until monitoring indicates a threshold productivity decrease of the first chemical compound, before the next method step B) is initiated. 15
[52] 52. The method for producing a first chemical compound according to the previous claim, wherein the culturing conditions of method step B) are maintained for a period of time and/or until monitoring indicates a threshold 20 productivity decrease of the first chemical compound, before the next method step C) is initiated.
[53] 53. The method for producing a first chemical compound according to the previous claim 51 or 52, wherein 25 monitoring is selected from at least one method of the group comprising: biocatalyst activity tests, determination of the concentration of the first chemical compound in the growth medium or in the space above the growth medium, gene expression analysis, enzymatic 30 mismatch detection, detection of mutations e.g. by real time PCR in combination with melting curve analysis and/or by DNA sequencing, and combinations thereof. WO 2013/098265 PCT/EP2012/076786 - 179
[54] 54. The method according to any one of the preceding claims 44-53, wherein the cyanobacterium is selected from a group comprising: Synechocystis, Synechococcus, Anabaena, Chroococcidiopsis, Chlorogloeopsis, Cyanothece, Lyngbya, 5 Phormidium, Nostoc, Spirulina, Arthrospira, Trichodesmium, Leptolyngbya, Plectonema, Myxosarcina, Pleurocapsa, Oscillatoria, Pseudanabaena, Cyanobacterium, Thermosynechococcus sp., Geitlerinema, Euhalothece, Calothrix, Scytonema. 10
[55] 55. The method according to the previous claim, wherein said cyanobacterium is Synechococcus sp. PCC 7002, Synechocystis sp. PCC 6803, Synechoccoccus sp., Chlorogloeopsis sp., Chroococcidiopsis sp., 15 Cyanobacterium sp., Thermosynechococcus sp., Anabaena sp., Nostoc sp., or Cyanothece sp.
[56] 56. A metabolically enhanced cyanobacterium for the production of a first chemical compound, comprising: - at least a first and second first production gene 20 encoding first biocatalysts for the production of the first chemical compound; - wherein both first production genes are under the transcriptional control of the same inducible promoter for the first production genes; 25 - wherein the inducible promoter for the first production genes is gradually inducible in a dose dependent manner; - wherein said first biocatalysts catalyze the same chemical reaction. 30
[57] 57. The metabolically enhanced cyanobacterium according to the previous claim, further comprising: WO 2013/098265 PCT/EP2012/076786 - 180 - at least a further third first production gene encoding a first biocatalyst for the production of the first chemical compound; - wherein said third first production gene is under 5 the transcriptional control of the same inducible promoter for the first production genes as said first and second first production gene.
[58] 58. The metabolically enhanced cyanobacterium according to 10 the previous claim 56 or 57, wherein one single inducible promoter controls the transcription of said first production genes.
[59] 59. The metabolically enhanced cyanobacterium according to the preceding claims 56-58, further comprising 15 metabolical enhancements according to any of the preceding claims 1-38.
[60] 60. A method for producing a first chemical compound using any of the metabolically enhanced cyanobacteria according any of the preceding claims 56-59, comprising the method 20 steps of: Al)Culturing the metabolically enhanced cyanobacterium under a first condition for induction of the promoter for the first production genes, the cyanobacterium producing the first chemical 25 compound; A2)Culturing the metabolically enhanced cyanobacterium under a second condition for induction of the promoter for the first production genes, the cyanobacterium producing the first chemical 30 compound; WO 2013/098265 PCT/EP2012/076786 - 181 - wherein method step Al) and method step A2) are temporally separated; - wherein the first condition for induction results in a lower induction of the promoter for the first 5 production genes than the second condition of induction.
[61] 61. The method according to the previous claim, comprising at least one further method step of: 10 A3)Culturing the metabolically enhanced cyanobacterium under a third condition for induction of the promoter for the first production genes, the cyanobacterium producing the first chemical compound; 15 - wherein method step Al), method step A2) and method step A3) are temporally separated from each other; - wherein the second condition for induction results in a lower induction of the promoter for the first production genes than the third condition of 20 induction.
[62] 62. The method according to the previous claim 60 or 61, further comprising the features of the method of claim 44, wherein the method steps Al), A2) and if present A3) 25 are substeps of method step A).
类似技术:
公开号 | 公开日 | 专利标题
US9765364B2|2017-09-19|Metabolically enhanced cyanobacterium with sequentially inducible production genes for the production of a first chemical compound
US9315832B2|2016-04-19|Cyanobacterium sp. host cell and vector for production of chemical compounds in Cyanobacterial cultures
US10876137B2|2020-12-29|Biological production of multi-carbon compounds from methane
EP2935566B1|2018-06-06|Cyanobacterium sp. for production of compounds
US9551014B2|2017-01-24|Genetically enhanced cyanobacteria for the production of a first chemical compound harbouring Zn2+, Co2+ or Ni2+ -inducible promoters
JP6375227B2|2018-08-15|Recombinant cell and method for producing isoprene
CA2886157A1|2014-04-03|Polypeptides with ketol-acid reductoisomerase activity
US9476067B2|2016-10-25|Shuttle vector capable of transforming multiple genera of cyanobacteria
US20140154762A1|2014-06-05|Genetically Enhanced Cyanobacteria Lacking Functional Genes Conferring Biocide Resistance for the Production of Chemical Compounds
US9309541B2|2016-04-12|Biological production of organic compounds
US10174329B2|2019-01-08|Methods for increasing the stability of production of compounds in microbial host cells
US10138489B2|2018-11-27|Cyanobacterial strains capable of utilizing phosphite
US9914947B2|2018-03-13|Biological production of organic compounds
WO2016105405A1|2016-06-30|Improved methods for making marker free microbial host cells
US20140272949A1|2014-09-18|Methods for Fully Segregating Recombinant Marine Cyanobacteria
Seo2017|Production of 1-butanol and butanol isomers by metabolically engineered Clostridium beijerinckii and Saccharomyces cerevisiae
同族专利:
公开号 | 公开日
US9315820B2|2016-04-19|
US20160265004A1|2016-09-15|
EP2960334A1|2015-12-30|
US20140322799A1|2014-10-30|
EP2798068A1|2014-11-05|
US9765364B2|2017-09-19|
EP2798068B1|2015-09-16|
WO2013098265A1|2013-07-04|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
US5750380A|1981-06-30|1998-05-12|City Of Hope Research Institute|DNA polymerase mediated synthesis of double stranded nucleic acids|
DE19736591A1|1997-08-22|1999-02-25|Peter Prof Dr Hegemann|Preparing long nucleic acid polymers from linkable oligonucleotides|
EP2244553A2|2008-02-08|2010-11-03|Algenol Biofuels Inc.|Genetically modified photoautotrophic ethanol producing host cells, method for producing the host cells, constructs for the transformation of the host cells, method for testing a photoautotrophic strain for a desired growth property and method of producing ethanol using the host cells|
US7981647B2|2008-03-03|2011-07-19|Joule Unlimited, Inc.|Engineered CO2 fixing microorganisms producing carbon-based products of interest|
BRPI0914440A2|2008-10-17|2015-09-15|Joule Unltd Inc|method for biogenic production of genetically modified ethanol and cyanobacteria|
US20160040191A1|2008-03-03|2016-02-11|Joule Unlimited Technologies, Inc.|Engineered co2 fixing microorganisms producing carbon-based products of interest|
EP2798068B1|2011-12-30|2015-09-16|Algenol Biofuels Inc.|Metabolically enhanced cyanobacterium with sequentially inducible production genes for the production of a first chemical compound|
WO2013098267A1|2011-12-30|2013-07-04|Algenol Biofuels Inc.|Genetically enhanced cyanobacteria for the production of a first chemical compound harbouring zn2+, co2+ or ni2+ -inducible promoters|
US9157101B2|2012-12-21|2015-10-13|Algenol Biotech LLC|Cyanobacterium sp. for production of compounds|
US8846369B2|2012-12-21|2014-09-30|Algenol Biofuels Inc.|Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures|EP2798068B1|2011-12-30|2015-09-16|Algenol Biofuels Inc.|Metabolically enhanced cyanobacterium with sequentially inducible production genes for the production of a first chemical compound|
WO2013098267A1|2011-12-30|2013-07-04|Algenol Biofuels Inc.|Genetically enhanced cyanobacteria for the production of a first chemical compound harbouring zn2+, co2+ or ni2+ -inducible promoters|
US9157101B2|2012-12-21|2015-10-13|Algenol Biotech LLC|Cyanobacterium sp. for production of compounds|
WO2015090422A1|2013-12-19|2015-06-25|Algenol Biofuels Inc.|Chlorogloeopsis sp. host cell for producing ethanol and method for producing ethanol using the same|
MX2017008289A|2014-12-23|2017-10-02|Algenol Biotech LLC|Methods for increasing the stability of production of compounds in microbial host cells.|
JP6585392B2|2015-06-12|2019-10-02|旭化成株式会社|Medium for microalgae|
US10138489B2|2016-10-20|2018-11-27|Algenol Biotech LLC|Cyanobacterial strains capable of utilizing phosphite|
CN109852628B|2019-02-14|2021-10-22|湖北大学|Method for identifying microbial gene function based on inducible promoter|
WO2020231426A1|2019-05-15|2020-11-19|Algenol Biotech LLC|Production of mycosporine-like amino acids employing enhanced production strains and novel enzymes|
法律状态:
2017-01-05| MK1| Application lapsed section 142(2)(a) - no request for examination in relevant period|
优先权:
申请号 | 申请日 | 专利标题
US201161581976P| true| 2011-12-30|2011-12-30||
US61/581,976||2011-12-30||
US201261583580P| true| 2012-01-05|2012-01-05||
US61/583,580||2012-01-05||
PCT/EP2012/076786|WO2013098265A1|2011-12-30|2012-12-21|Metabolically enhanced cyanobacterium with sequentially inducible production genes for the production of a first chemical compound|
[返回顶部]